Wilhelm Roux (1850 - 1924) – Seine Hallesche Zeit

Total Page:16

File Type:pdf, Size:1020Kb

Wilhelm Roux (1850 - 1924) – Seine Hallesche Zeit Aus dem Institut für Anatomie und Zellbiologie an der Martin-Luther-Universität Halle-Wittenberg (Direktor: Univ.-Prof. Dr. med. Dr. agr. Bernd Fischer) Wilhelm Roux (1850 - 1924) – seine hallesche Zeit Dissertation zur Erlangung des akademischen Grades Doktor der Zahnmedizin (Dr. med. dent.) vorgelegt der Medizinischen Fakultät der Martin-Luther-Universität Halle-Wittenberg von Ulrike Feicht geboren am 19.12.1973 in Halle/S. Betreuer: Prof. Dr. sc. med. Rüdiger Schultka Gutachter: 1. Prof. Dr. R. Schultka 2. Prof. Dr. R. Hildebrand (Münster) 17.09.2007 28.01.2008 urn:nbn:de:gbv:3-000013879 [http://nbn-resolving.de/urn/resolver.pl?urn=nbn%3Ade%3Agbv%3A3-000013879] Referat und bibliographische Beschreibung Wilhelm Roux (1850-1924) war am Ende des 19. Jahrhunderts in Wissenschafts-Kreisen eine Berühmtheit. Sein Wechsel nach Halle läutete eine neue Ära am Anatomischen Institut in Halle ein. Hatten all seine Vorgänger diese Einrichtung geprägt, so konnte Roux durch die lange Zeit seines Wirkens deutliche Zeichen setzen. Da er die übliche Unterrichtsmethodik für nicht effektiv hielt, bemühte er sich Zeit seines Lebens um bessere Lernbedingungen für die Studenten. Unermüdlich engagierte er sich für die Neugestaltung und Verbesserung des anatomischen Unterrichtes. Ebenso suchte er nach fähigen Mitarbeitern, die auf dem Gebiet der Entwicklungsmechanik und der kausalen Forschung mit ihm arbeiten und forschen sollten. Die Forderungen an seine Mitarbeiter waren hoch. Er stellte nicht nur an sie Forderungen, sondern unterstützte ihre Karrieren und bot Hilfe bei privaten Problemen an. Die „Wilhelm-Roux-Sammlung“ war anfangs im Anatomischen Institut untergebracht und ist heute nur noch in einzelnen wenigen Fragmenten erhalten. Ebenso konnte die „Wilhelm-Roux- Stiftung“ nicht über einen längeren Zeitraum hinaus am Leben erhalten werden. Demgegenüber wird das von Roux begründete und vor allem in der halleschen Zeit erfolgreich publizierte „Archiv der Entwicklungsmechanik“ bis heute herausgegeben und bewahrt sein wissenschaftliches Erbe. Durch ein weit gespanntes soziales Netz war er in der Lage, Institutionen und Personen geschickt für seine Ziele einzubinden. Zu seinen engen Vertrauten zählten Menschen aus allen Bereichen der Wissenschaft und Kultur. Aufschluss über das Leben und die Forschungsarbeit Roux’ in Halle gaben die archivalischen Quellen, seine persönliche Aufzeichnungen, Schriftwechsel, Quellen aus Privatbesitz und die übrig gebliebenen Fragmente der „Wilhelm-Roux-Sammlung“. Besonders hervorzuheben ist der Briefwechsel zwischen Roux und dem Minister Friedrich Theodor Althoff. Fakten aus biographischen Daten und seinen eigenen Publikationen vertiefen das Wissen über Roux. Seine Publikationen sind nicht nur auf dem Gebiet der Anatomie oder Biologie angesiedelt. Zu Lebzeiten genoss Roux sowohl Anerkennung als auch herbe Kritik. Besonders die Verwendung philosophischer Ausdrücke lehnte man in Forscherkreisen lange Zeit ab. Dem Privatmenschen Roux war der familiäre Zusammenhalt sehr wichtig. Öffentliche Auftritte, die nur gesellschaftlichem Zwecke dienten, waren ihm ein Gräuel. Das Ziel der Arbeit ist die Darstellung der Persönlichkeit Roux’ und die Positionierung in die Reihe der Direktoren des Anatomischen Institutes. 26 Jahre Tätigkeit Roux’ an der halleschen Universität führten zu markanten Änderungen, die die Vielseitigkeit und den Ehrgeiz des Begründers der Entwicklungsmechanik beschreiben. Feicht, Ulrike: Wilhelm Roux (1850-1924) – seine hallesche Zeit. Halle, Univ., Med. Fak., Diss., 199 Seiten, 2007 Inhaltsverzeichnis 1. Einleitung und Zielstellung ………...................................................................... S. 1 2. Biographisches ...................................................................................................... S. 2 3. Lehre und Forschung im Anatomischen Institut zu Halle (1895-1924) .............. S. 12 3.1 Berufung ................................................................................................................ S. 12 3.2 Roux als Lehrer ..................................................................................................... S. 28 3.2.1 Vorlesungen, Kurse und Prüfungen...................................................................... S. 28 3.2.2 Experimentelle Untersuchungen an Tierspezies .................................................. S. 31 3.2.3 Das Leichen-Problem........................................................................................... S. 33 3.3 Roux als Direktor des Anatomischen Institutes .................................................... S. 40 3.3.1 Personalentscheidungen und die Mitarbeiter im Anatomischen Institut .............. S. 40 3.3.2 Bauliche Veränderungen des Anatomischen Institutes ........................................ S. 55 3.4 Die Arbeit im Dekanat und als Mitglied der Medizinischen Fakultät ................. S. 64 3.5 Emeritierung und Nachfolge ................................................................................ S. 73 4. Die Wilhelm-Roux-Sammlung und Roux’ wissenschaftliches Erbe ................... S. 77 4.1 Aufbau und Bestand der Wilhelm-Roux-Sammlung ........................................... S. 77 4.2 Das „Archiv für Entwicklungsmechanik“ ............................................................. S. 81 5. Bedeutung und Stellung ......................................................................................... S. 82 5.1 Roux’ Verhältnis zu Althoff................................................................................... S. 82 5.2 Roux’ Haltung zum Spirituskreis........................................................................... S. 94 5.3 Der Mensch Wilhelm Roux.................................................................................... S. 95 5.4 Die Wilhelm-Roux-Stiftung ................................................................................. S. 100 5.5 Probleme................................................................................................................. S. 105 5.6 Wilhelm Roux’ Tätigkeit in der Leopoldina.......................................................... S. 109 5.7 Ernennungen, Mitgliedschaften.............................................................................. S. 116 5.8 Jahrestage, Jubiläen................................................................................................ S. 118 6. Zusammenfassung.................................................................................................. S. 119 7. Quellen- und Literaturverzeichnis….. ................................................................... S. 121 7.1 Nicht-gedruckte Quellen ....................................................................................... S. 121 7.2 Gedruckte Quellen und Sekundärliteratur.............................................................. S. 129 7.3 Digitale Quellen (DQ)…. ...................................................................................... S. 133 8. Anhang……………..…………………………………………………………......S. 136 8.1 Bestandsliste Wilhelm-Roux-Sammlung............................................................... S. 136 8.2 Veröffentlichungen von Wilhelm Roux................................................................ S. 167 9. Thesen…................................................................................................................. S. 190 Tabellarischer Lebenslauf ..................................................................................... S. 193 Selbstständigkeitserklärung.................................................................................... S. 195 Erklärung über frühere Promotionsversuche.......................................................... S. 196 Danksagung............................................................................................................ S. 197 Hinweise auf Publikationen.................................................................................... S. 199 Abkürzungsverzeichnis AL Archiv der Deutschen Akademie der Naturforscher Leopoldina, Halle/Saale DQ Digitale Quellen FA Familienarchiv GMR Geheimer Medizinalrat GR Geheimrat GRR Geheimer Regierungsrat GStA PK Geheimes Staatsarchiv Preußischer Kulturbesitz in Berlin-Dahlem HA Hauptabteilung HAZ Hallische Allgemeine Zeitung HN Hallische Nachrichten Nl Nachlass PA Personalakte SAH Stadtarchiv Halle SZ Saale-Zeitung UA Universitätsarchiv der Martin-Luther-Universität Halle-Wittenberg, Halle/Saale UAH Universitätsarchiv der Martin- Luther-Universität Halle-Wittenberg, Halle/Saale 1. Einleitung und Zielstellung Wilhelm Roux (1850-1924) ist bekannt als Begründer der Entwicklungsmechanik. Als W. Roux 1895 seinen Tätigkeitsbereich nach Halle verlegte, war dies der Beginn einer der bedeutendsten Phasen für das Anatomische Institut und die berufliche Weiterentwicklung des Anatomie- Professors. Über Roux ist bereits mehrfach wissenschaftlich gearbeitet worden, die hallesche Schaffenszeit wurde aber bislang wenig beachtet. 1 In die Periode seines Direktorates fallen sowohl bauliche Veränderungen am und im Gebäude als auch Änderungen der Forschungsrichtung und der Lehrinhalte am halleschen Institut. Roux leitete eine neue Etappe im Fach Anatomie ein. Hatte sein Vorgänger Hermann Welcker (1822-1897) vor allem die makroskopische und mikroskopische Anatomie und die Anthropologie gefördert, so begann Roux, die Entwicklungsmechanik und kausal-morphologische Fragen in die Lehre zu integrieren. Fast 30 Jahre, die Roux in Halle verbringen sollte, waren gekennzeichnet durch Verbreitung
Recommended publications
  • Sir Charles Scott Sherrington (1857–1952)
    GENERAL ARTICLE Sir Charles Scott Sherrington (1857–1952) Prasanna Venkhatesh V Twentieth century bore witness to remarkable scientists who have advanced our understanding of the brain. Among them, Sir Charles Scott Sherrington’s ideas about the way in which the central nervous system operates has continuing relevance even today. He received honorary doctorates from twenty- two universities and was honoured with the Nobel Prize in Physiology or Medicine in the year 1932 along with Lord Prasanna Venkhatesh V is Edgar Adrian for their work on the functions of neurons. He currently a graduate developed our modern notion of the reflex as a model for how student at the Center for the periphery and spinal cord connect sensation and action. Neuroscience working with Prof. Aditya Murthy. He is “...To move things is all that mankind can do, for such the sole working on voluntary control of reaching and executant is muscle, whether in whispering a syllable or in felling pointing movements. His aforest.” research interests are –Sherrington neural basis of motor control and animal Sherrington had the genius to see the real need to amalgamate the behavior. scattered ideas in neurophysiology at that time, to give a compre- hensive overview that changed our perception of brain functions. In a career spanning almost sixty-five years, he published more than three hundred and twenty articles and a couple of noteworthy books. He was a man of admirable qualities and greatness, which is evident from the enviable number of articles, commentaries and books that have been written about his life, his approach to science and the world in general.
    [Show full text]
  • The Historiography of Embryology and Developmental Biology
    The Historiography of Embryology and Developmental Biology Kate MacCord and Jane Maienschein Contents Introduction ....................................................................................... 2 Embryos and the Enlightenment of the Eighteenth and Early Nineteenth Centuries . 3 Embryos and Evolution in the Late Nineteenth Century ........................................ 6 Experimental Embryology ........................................................................ 8 Early Twentieth-Century Understanding of Embryos and Development . ..................... 10 From Embryology to Developmental Biology ................................................... 14 Nonmolecular Narratives in the History of Developmental Biology ............................ 15 Evolutionary Developmental Biology ............................................................ 17 Conclusion ........................................................................................ 19 References ........................................................................................ 20 Abstract Embryology is the science of studying how embryos undergo change over time as they grow and differentiate. The unit of study is the unfolding organism, and the timeline upon which embryology is focused is brief compared to the life cycle of the organism. Developmental biology is the science of studying development, which includes all of the processes that are required go from a single celled embryo to an adult. While embryos undergo development, so to do later stages of organisms.
    [Show full text]
  • A New Season for Experimental Neuroembryology: the Mysterious
    Endeavour 43 (2019) 100707 Contents lists available at ScienceDirect Endeavour journa l homepage: www.elsevier.com/locate/ende Lost and Found A new season for experimental neuroembryology: The mysterious history of Marian Lydia Shorey a ,b Piergiorgio Strata , Germana Pareti* a Department of Neuroscience, University of Turin, corso Raffaello 30 - 10125 Turin, Italy b Department of Philosophy and Educational Sciences, University of Turin, via S. Ottavio 20 - 10124 Turin, Italy A R T I C L E I N F O A B S T R A C T Article history: At the turn of the nineteenth and twentieth centuries, the landscape of emerging experimental Available online 26 December 2019 embryology in the United States was dominated by the Canadian Frank Rattray Lillie, who combined his qualities as scientist and director with those of teacher at the University of Chicago. In the context of his research on chick development, he encouraged the young Marian Lydia Shorey to investigate the Keywords: interactions between the central nervous system and the peripheral structures. The results were Lillie experimental embryology published in two papers which marked the beginning of a new branch of embryology, namely Chick development neuroembryology. These papers inspired ground-breaking enquiry by Viktor Hamburger which opened a Marian Lydia Shorey new area of the research by Rita Levi-Montalcini, in turn leading to the discovery of the nerve growth Centre/periphery relationship factor, NGF. Muscle/nerve development Neuroblast © 2019 Elsevier Ltd. All rights reserved. Differentiation Viktor Hamburger Introduction how the nervous system was reacting. How Lillie ever got that idea I don’t know.
    [Show full text]
  • Introducing the Spemann-Mangold Organizer: Experiments and Insights That Generated a Key Concept in Developmental Biology
    Int. J. Dev. Biol. 45: 1-11 (2001) Introducing the Spemann-Mangold organizer 1 Introducing the Spemann-Mangold organizer: experiments and insights that generated a key concept in developmental biology KLAUS SANDER*,1 and PETER E. FAESSLER2 1Institut für Biologie I (Zoologie), Freiburg, Germany and 2Lehrstuhl für Wirtschafts- und Sozialgeschichte der Technischen Universität, Dresden, Germany “What has been achieved is but the first step; we still stand in the presence spent a year in Spemann’s institute and helped him with the English of riddles, but not without hope of solving them. And riddles with the hope version of his book (Spemann 1938). Two witnesses of that period of solution - what more can a man of science desire?” who had seen the film felt that Eakin’s performance gives a good (Hans Spemann, Croonian Lecture 1927) impression of Spemann’s gist for lecturing. Hans Spemann (Fig. 1) gained early fame by his work on lens induction in frogs (Sander 1985, Saha 1991). Evocation of the The “organizer paper” by Hans Spemann and Hilde Mangold “outer parts of the eye” by an outgrowth of the nerve tube (the (1924) initiated a new epoch in developmental biology. It marked optical vesicle) had been postulated early in the 19th century (von the climax of Spemann’s life-long research, and the “organizer Baer 1828; Oppenheimer 1970b), but Spemann’s experiments effect” received special mention by the committee that honoured were the first to raise considerable interest; perhaps not so much him with the Nobel Prize for physiology and medicine in 1935. This by their results than by the long-lasting controversy these trig- introduction precedes a translation of that paper by Spemann’s gered.
    [Show full text]
  • Julius Bernstein's Lebensarbeit
    Julius Bernstein's Lebensarbcit. Zugleich ein Beitrag zur @eschichte der neueren Biophysik. Von Prof. Dr. ,(. v. Tschermak~ Prag. (l~;i~yegctngen am 16. August 1918.) Am 6. Februar 1917 ist za Halle a. S. der Altmeister unserer Wissen- sehaft Julius Bernstein im 78. Lebensjahre aus unserer Mitre gesehieden, ein still und emsig Sehaffender, ein h6ehst sorgf~ltiger Beobachter un~d feinsinnig-kritiseher Kopf, eh~ sehlichter, edler Menseh. Mit Bernstein ist der letzte der Grossen aus dem Kreise Emil du Bois-Reymond's dahingegangen, selbst ein Meister biophysikalischer Forsehung, ein wahres Musterbild eines deutsehen Gelehrten. Sein Dasein war so gut wie ganz gewissenhaftester wissensehaftlieher Arbeit als Lehrer und Forseher geweiht, und deren Friichte bedeuten fiir den Fernerstehenden schier den Inhalt des i~usserlieh wenig bewegten Lebens. Als dankbarer Sehiiler will ich die Summe yon Bernstein's Geistesarbeit ziehen und damit zugleieh einen Beitrag zur Geschichte der neueren Biophysik liefern. Nut einleitend seien aueh einige persSn- liehe Daten in Erinnerung gerufen 1). A. LebenslauL Sehon im Elternhause empfing der frtihreife Knabe -- geboren am 8. Dezember 1839 zu Berlin -- bedeutsame Weekung und An- regung zu vielseitigen naturwissensehaftliehen Interessen. Der Vater, Aron Bernstein, war als armer Studierender der jiidisehen Theologie aus Danzig naeh Berlin gekommen und hatte dort zuni~ehst ein Lese- kabinett gegriindet, in dem ein grosset Teil der damaligen gebildeten Gesellsehaft Berlins verkehrte. Sp~ter wandte sich der geistig un- gemein rege Mann zun~ehst der belletristisehen, seit dem Jahre 1848 der poliLisehen Sehriftstellerei zu, griindete die Urw~hler-Zeitung (1849), sparer die Volkszeitung (1853). Sehon friihzeitig hatte er seine stille Liebe den Naturwissensehaften zugewandt, mit astronomisehen Be- 1) Zudem sei auf die piet/igvolle Grabrede E.
    [Show full text]
  • 6B. Earth Sciences, Astronomy & Biology
    19-th Century ROMANTIC AGE Astronomy, Biology, Earth sciences Collected and edited by Prof. Zvi Kam, Weizmann Institute, Israel The 19th century, the Romantic era. Why romantic? Borrowed from the arts and music, but influenced also the approach to nature and its studies: emphasizing descriptive biology and classification of animals and plants. ASTRONOMY and EARTH SCIENCES EARTH SCIENCES AGE OF THE UNIVERSE AND OF EARTH How can we measure the age of the universe? The size of the universe? The size and distances of stars? How can we estimate the age of earth? How were the various chemical elements created? Characteristic of the 19th century is the transition from geology of stone collecting and sorting, to attempts on modeling the mechanisms shaping the earth crust. The release from religious constraints provided space for testing new theories based on fossils, distributions of rock and soil types, earthquakes, volcanic eruptions, soil erosion and sediment, glaciers and their traces, sea floors, earth core etc. Before the 19th century, a reminder: 1650 James Ussher, 1581-1656, an Irish archbishop, claim earth was created 4000 BC, before the first day of creation. 1715 Edmond Halley, 1656-1742, Calculated an estimation of earth age from seawater salinity. He assumed the ancient see contained sweet water, and salinity rose due to earth erosion. 1785 Dr. James Parkinson, 1755-1824, a surgeon (who identified what was later called “Parkinson disease”) and a geologist, one of the founders of the geological society and a supporter of “catastrophism”. Saved the nature museum in Leicester square from bankruptcy of his owner, Sir Ashton Lever.
    [Show full text]
  • A Short History of European Neuroscience - from the Late 18Th to the Mid 20Th Century
    A Short History of European Neuroscience - from the late 18th to the mid 20th century - Authors: Dr. Helmut Keenmann, Chair of the FENS History of European Neuroscience Commi8ee (2010-July 2014) & Dr Nicholas Wade, Member of the FENS History of European Neuroscience Commi8ee (2010-July 2014) Neuroscience, as a discipline, emerged as a consequence of the endeavours of many who conspired to illuminate the structure of the nervous system, the manner of communicaon within it, its links to reflexes and its relaon to more complex behaviour. Neuroscience emerged from the biological sciences because conceptual building blocks were isolated, and the ways in which they can be arranged were explored. The foundaons on which the structure could be securely based were the cell and neuron doctrines on the biological side, and morphology and electrophysiology on the func9onal side. The morphological doctrines were dependent on the development of microtomes and achromac microscopes and of appropriate staining methods so that the sec9ons of anatomical specimens could be examined in greater detail. Electrophysiology provided the conceptual modern framework on which the no9on of the nervous func9on was envisioned as depending on an ongoing flux of electrical signals along the nervous pathways at both central and peripheral levels. These aspects of the history of neuroscience will be explored under headings of electrical excitability, the neuron, glia, neurotransmiAers, brain func9on and localizaon, circuits and diseases. A general account of developments in neuroscience up to 1900 can be found in the FENS supported project at hp:// neuroportraits.eu/, while the Neuroscience by Caricature in Europe throughout the ages – another FENS funded project – illustrates a history of Neuroscience through the use of caricature on facts and people.
    [Show full text]
  • Neurofeedback Training for Parkinsonian Tremor and Bradykinesia
    Neurofeedback Training for Parkinsonian Tremor and Bradykinesia by Cordelia Erickson-Davis A Paper Presented to the Faculty of Mount Holyoke College in Partial Fulfillment of the Requirements for the Degree of Bachelors of Arts with Honor Department of Biological Sciences South Hadley, MA 01075 May, 2006 1 This paper was prepared under the direction of Professor Sue Barry for eight credits. 2 ACKNOWLEDGMENTS I would like to express my deepest appreciation and gratitude first and foremost to professor Sue Barry, without whom this thesis would not have been possible. Thanks also to Dean Bowie and Professor Joseph Cohen for their help, encouragement and time. This study was enabled by support and funding from Struthers Parkinson’s Center, and a large thank you goes to Catherine Wielinksi, for making this happen. I am also indebted to Nancy Lech and the Mount Holyoke College biology department for all of their patience and support. 3 TABLE OF CONTENTS List of figures………………………………………………………………….v Abstract………………………………………………………………………..vi Commonly Used Abbreviations………………………………………………vii Introduction…………………………………………………………………..1-5 Chapter 1. Historical Overview……………………………………………...6-17 Chapter 2. The Bioelectrical Domain………………………………………18-24 Chapter 3. Neurofeedback Training and the Model of Disregulation……..25-33 Chapter 4. Parkinson’s Disease and Thalamocortical Rhythmicity Parkinson’s Disease………………………………………………...34-37 Thalamocortical Rhythmicity………………………………………37-47 Deep Brain Stimulation…………………………………………….47-51 Chapter 5. Mechanism of Neurofeedback………………………………….52-59 Chapter 6. Neurofeedback Training for Parkinsonian Rigidity and Bradykinesia: a Pilot Study…………………………………………………………………..60-63 Chapter 7. Conclusion………………………………………………………64-67 References…………………………………………………………………..68-80 Appendix……………………………………………………………………81-97 4 LIST OF FIGURES Figure 1. EEG electrode placement using the 10-20 system…………………78 Figure 2.
    [Show full text]
  • Some Milestones in History of Science About 10,000 Bce, Wolves Were Probably Domesticated
    Some Milestones in History of Science About 10,000 bce, wolves were probably domesticated. By 9000 bce, sheep were probably domesticated in the Middle East. About 7000 bce, there was probably an hallucinagenic mushroom, or 'soma,' cult in the Tassili-n- Ajjer Plateau in the Sahara (McKenna 1992:98-137). By 7000 bce, wheat was domesticated in Mesopotamia. The intoxicating effect of leaven on cereal dough and of warm places on sweet fruits and honey was noticed before men could write. By 6500 bce, goats were domesticated. "These herd animals only gradually revealed their full utility-- sheep developing their woolly fleece over time during the Neolithic, and goats and cows awaiting the spread of lactose tolerance among adult humans and the invention of more digestible dairy products like yogurt and cheese" (O'Connell 2002:19). Between 6250 and 5400 bce at Çatal Hüyük, Turkey, maces, weapons used exclusively against human beings, were being assembled. Also, found were baked clay sling balls, likely a shepherd's weapon of choice (O'Connell 2002:25). About 5500 bce, there was a "sudden proliferation of walled communities" (O'Connell 2002:27). About 4800 bce, there is evidence of astronomical calendar stones on the Nabta plateau, near the Sudanese border in Egypt. A parade of six megaliths mark the position where Sirius, the bright 'Morning Star,' would have risen at the spring solstice. Nearby are other aligned megaliths and a stone circle, perhaps from somewhat later. About 4000 bce, horses were being ridden on the Eurasian steppe by the people of the Sredni Stog culture (Anthony et al.
    [Show full text]
  • Goltz Against Cerebral Localization Methodology and Experimental
    Studies in History and Philosophy of Biol & Biomed Sci xxx (xxxx) xxxx Contents lists available at ScienceDirect Studies in History and Philosophy of Biol & Biomed Sci journal homepage: www.elsevier.com/locate/shpsc Goltz against cerebral localization: Methodology and experimental practices J.P. Gamboa Department of History and Philosophy of Science, University of Pittsburgh, 1101 Cathedral of Learning 4200 Fifth Avenue, Pittsburgh PA, 15260, USA ARTICLE INFO ABSTRACT Keywords: In the late 19th century, physiologists such as David Ferrier, Eduard Hitzig, and Hermann Munk argued that Friedrich Goltz cerebral brain functions are localized in discrete structures. By the early 20th century, this became the dominant Cerebral localization position. However, another prominent physiologist, Friedrich Goltz, rejected theories of cerebral localization German physiology and argued against these physiologists until his death in 1902. I argue in this paper that previous historical Exploratory experimentation accounts have failed to comprehend why Goltz rejected cerebral localization. I show that Goltz adhered to a falsificationist methodology, and I reconstruct how he designed his experiments and weighted different kinds of evidence. I then draw on the exploratory experimentation literature from recent philosophy of science to trace one root of the debate to differences in how the German localizers designed their experiments and reasoned about evidence. While Goltz designed his experiments to test hypotheses about the functions of predetermined cerebral structures, the localizers explored new functions and structures in the process of constructing new theories. I argue that the localizers relied on untested background conjectures to justify their inferences about functional organization. These background conjectures collapsed a distinction between phenomena they pro- duced direct evidence for (localized symptoms) and what they reached conclusions about (localized functions).
    [Show full text]
  • Julius Bernstein (1839-1917) Formulates His "Membrane Theory"
    1 A Hundred Years Ago: Julius Bernstein (1839-1917) Formulates His "Membrane Theory" Ernst-August Seyfarth and Leo Peichl "The electrical currents observed in many living organs of animals and plants have been the objects of much research. We detect such currents in muscles, nerves, secretory glands, and electric organs of fish as well as in plant tissue (…) It seems likely that all these currents have a similar, if not the same basis, and that their strength and potency depends on the structural conditions and chemical composition of the cells making up each organ." Such were the ambitious words of Julius Bernstein one hundred years ago, at the very beginning of his "Investigations into the Thermodynamics of Bioelectrical Currents", in which he 2 suggested a new "membrane theory" (Bernstein 1902). He started with the assumption that muscle and nerve fibers are enveloped by isolating boundary shells that are permeable only to specific ions. Bernstein primarily considered K+ diffusing in the direction of the concentration gradient into the extracellular medium. As negative ions -- in particular, phosphates -- apparently could not follow this same course, Bernstein argued that an electrical potential builds up across the semipermeable membrane, which would impede further outflow of potassium. This potential corresponded exactly to the "resting current", which was clearly measurable with the methods available at the time. Furthermore, Bernstein postulated that an excitation of the fibers would lead to a brief loss of the selective membrane permeability, thereby eliciting "action currents" and a “negative variation” in the potential. Bernstein’s findings and interpretations led to a paradigm shift in the understanding and further investigation of bioelectrical processes.
    [Show full text]
  • Historical Background of Umbilical Stem Cell Culture
    Borys-Wójcik et al. Medical Journal of Cell Biology 2019 DOI: 10.2478/acb-2019-0002 Received: 06.03.2019 Accepted: 26.03.2019 Historical background of umbilical stem cell culture Sylwia Borys-Wójcik1 2 3, Sandra Knap3, Wojciech 4 5 1, Bartosz Kempisty1,3,6 , Małgorzata Józkowiak , Katarzyna Stefańska Pieńkowski , Paweł Gutaj , Małgorzata Bruska Abstract Umbilical cord is a waste material, and therefore does not raise ethical concerns related to its use for rese- arch and medicine. Stem cells from umbilical cord have a significant advantage over cells from other sour- ces. First, the umbilical cord is an infinite source of stem cells, because it can be taken theoretically during each delivery. Secondly, acquisition of umbilical cord is a non-invasive, safe procedure for mother and child. Thirdly, the transplantation of umbilical cord stem cells is associated with a lower risk of infection and a less-frequent “graft versus host” reaction. In this work, the authors present a historical background of rese- arch on the cell from its discovery to modern times characterized by highly advanced methods of obtaining stem cells from umbilical cord and from other sources. Running title: History of umbilical stem cell culture Keywords: umbilical stem cells, history of umbilical stem cells 1Department of Anatomy, Poznan University of Medical Sciences, Poznan, Poland 2Department of Toxicology, Poznan University of Medical Sciences, Poznan, Poland 3Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland 4Division of Perinatology and Women’s Diseases, Poznan University of Medical Sciences, Poznan, Poland 5Department of Reproduction, Poznan University of Medical Sciences, Poznan, Poland 6 * Correspondence: [email protected] FullDepartment list of author of Obstetrics information and is Gynecology, available at University the end of Hospital article and Masaryk University, Brno, Czech Republic 12 Borys-Wójcik et al.
    [Show full text]