The Historiography of Embryology and Developmental Biology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
3 Embryology and Development
BIOL 6505 − INTRODUCTION TO FETAL MEDICINE 3. EMBRYOLOGY AND DEVELOPMENT Arlet G. Kurkchubasche, M.D. INTRODUCTION Embryology – the field of study that pertains to the developing organism/human Basic embryology –usually taught in the chronologic sequence of events. These events are the basis for understanding the congenital anomalies that we encounter in the fetus, and help explain the relationships to other organ system concerns. Below is a synopsis of some of the critical steps in embryogenesis from the anatomic rather than molecular basis. These concepts will be more intuitive and evident in conjunction with diagrams and animated sequences. This text is a synopsis of material provided in Langman’s Medical Embryology, 9th ed. First week – ovulation to fertilization to implantation Fertilization restores 1) the diploid number of chromosomes, 2) determines the chromosomal sex and 3) initiates cleavage. Cleavage of the fertilized ovum results in mitotic divisions generating blastomeres that form a 16-cell morula. The dense morula develops a central cavity and now forms the blastocyst, which restructures into 2 components. The inner cell mass forms the embryoblast and outer cell mass the trophoblast. Consequences for fetal management: Variances in cleavage, i.e. splitting of the zygote at various stages/locations - leads to monozygotic twinning with various relationships of the fetal membranes. Cleavage at later weeks will lead to conjoined twinning. Second week: the week of twos – marked by bilaminar germ disc formation. Commences with blastocyst partially embedded in endometrial stroma Trophoblast forms – 1) cytotrophoblast – mitotic cells that coalesce to form 2) syncytiotrophoblast – erodes into maternal tissues, forms lacunae which are critical to development of the uteroplacental circulation. -
Ecological Developmental Biology and Disease States CHAPTER 5 Teratogenesis: Environmental Assaults on Development 167
Integrating Epigenetics, Medicine, and Evolution Scott F. Gilbert David Epel Swarthmore College Hopkins Marine Station, Stanford University Sinauer Associates, Inc. • Publishers Sunderland, Massachusetts U.S.A. © Sinauer Associates, Inc. This material cannot be copied, reproduced, manufactured or disseminated in any form without express written permission from the publisher. Brief Contents PART 1 Environmental Signals and Normal Development CHAPTER 1 The Environment as a Normal Agent in Producing Phenotypes 3 CHAPTER 2 How Agents in the Environment Effect Molecular Changes in Development 37 CHAPTER 3 Developmental Symbiosis: Co-Development as a Strategy for Life 79 CHAPTER 4 Embryonic Defenses: Survival in a Hostile World 119 PART 2 Ecological Developmental Biology and Disease States CHAPTER 5 Teratogenesis: Environmental Assaults on Development 167 CHAPTER 6 Endocrine Disruptors 197 CHAPTER 7 The Epigenetic Origin of Adult Diseases 245 PART 3 Toward a Developmental Evolutionary Synthesis CHAPTER 8 The Modern Synthesis: Natural Selection of Allelic Variation 289 CHAPTER 9 Evolution through Developmental Regulatory Genes 323 CHAPTER 10 Environment, Development, and Evolution: Toward a New Synthesis 369 CODA Philosophical Concerns Raised by Ecological Developmental Biology 403 APPENDIX A Lysenko, Kammerer, and the Truncated Tradition of Ecological Developmental Biology 421 APPENDIX B The Molecular Mechanisms of Epigenetic Change 433 APPENDIX C Writing Development Out of the Modern Synthesis 441 APPENDIX D Epigenetic Inheritance Systems: -
Introduction to Plant Embryology Dr
Introduction to Plant embryology Dr. Pallavi J.N.L. College Khagaul Plant Embryology • Embryology is the study of structure and development of embryo, including the structure and development of male and female reproductive organs, fertilisation and similar other processes. • Father of Indian Plant empryology- Panchanan Maheshwari • Plant embryogenesis is a process that occurs after the fertilization of an ovule to produce a fully developed plant embryo. This is a pertinent stage in the plant life cycle that is followed by dormancy and germination. • The zygote produced after fertilization, must undergo various cellular divisions and differentiations to become a mature embryo. An end stage embryo has five major components including the shoot apical meristem, hypocotyl, root meristem, root cap, and cotyledons. Unlike animal embryogenesis, plant embryogenesis results in an immature form of the plant, lacking most structures like leaves, stems, and reproductive structures. • The Phanerogams (the flowering-plants) are also called spermatophytes (the seed bearing plants). These plants propagate mainly through seeds. The seed is a structure in which the embryo is enclosed. Adjacent to the embryo, foods are stored either inside the endosperm (albuminous) or in cotyledon (exalbuminous) for future use. Life cycle of flowering plants • Alternation between a dominant sporophytic generation and a highly reduced gametophytic generation. Dominant sporophytic generation is diploid and reduced gaThe normal sexual cycle (amphimixing) involves two important processes: • (i) Meiosis and • (ii) Fertilization • In meiosis also known as reduction division, a diploid sporophytic cell spore mother cell) • gets converted into four haploid gametophytic cells. (“2n” number of chromosomes becomes half i.e. “n” number of chromosome) gametophytic generation is haploid. -
Embryology BOLK’S COMPANIONS FOR‑THE STUDY of MEDICINE
Embryology BOLK’S COMPANIONS FOR‑THE STUDY OF MEDICINE EMBRYOLOGY Early development from a phenomenological point of view Guus van der Bie MD We would be interested to hear your opinion about this publication. You can let us know at http:// www.kingfishergroup.nl/ questionnaire/ About the Louis Bolk Institute The Louis Bolk Institute has conducted scientific research to further the development of organic and sustainable agriculture, nutrition, and health care since 1976. Its basic tenet is that nature is the source of knowledge about life. The Institute plays a pioneering role in its field through national and international collaboration by using experiential knowledge and by considering data as part of a greater whole. Through its groundbreaking research, the Institute seeks to contribute to a healthy future for people, animals, and the environment. For the Companions the Institute works together with the Kingfisher Foundation. Publication number: GVO 01 ISBN 90-74021-29-8 Price 10 € (excl. postage) KvK 41197208 Triodos Bank 212185764 IBAN: NL77 TRIO 0212185764 BIC code/Swift code: TRIONL 2U For credit card payment visit our website at www.louisbolk.nl/companions For further information: Louis Bolk Institute Hoofdstraat 24 NL 3972 LA Driebergen, Netherlands Tel: (++31) (0) 343 - 523860 Fax: (++31) (0) 343 - 515611 www.louisbolk.nl [email protected] Colofon: © Guus van der Bie MD, 2001, reprint 2011 Translation: Christa van Tellingen and Sherry Wildfeuer Design: Fingerprint.nl Cover painting: Leonardo da Vinci BOLK FOR THE STUDY OF MEDICINE Embryology ’S COMPANIONS Early Development from a Phenomenological Point of view Guus van der Bie MD About the author Guus van der Bie MD (1945) worked from 1967 to Education, a project of the Louis Bolk Instituut to 1976 as a lecturer at the Department of Medical produce a complement to the current biomedical Anatomy and Embryology at Utrecht State scientific approach of the human being. -
Epigenetics Overview Kim Boekelheide Brown University
Formative Center for the Evaluation of Environmental Impacts on Fetal Development Epigenetics Overview Kim Boekelheide Brown University I have funding from NIEHS, USEPA, and the American Chemistry Council. I am an occasional expert consultant for chemical and pharmaceutical companies, and own stock in CytoSolv, an early stage biotechnology company developing a wound healing therapeutic. Formative Center for the Evaluation of Environmental Impacts on Fetal Development Transgenerational Influences Later Life Outcomes Clinical Events and Susceptibilities • Growth Lifestyle, • Neurobehavior Nutrition & Social • Reproduction Stressors • Obesity • Cancer Developmental Exposures Developmental Environmental Chemicals Developmental Origins of Health and Disease Formative Center for the Evaluation of Environmental Impacts on Fetal Development http://embryology.med.unsw.edu.au/MolDev/epigenetic.htm http://embryology.med.unsw.edu.au/MolDev/epigenetic.htm Formative Center for the Evaluation of Environmental Impacts on Fetal Development Cartoon depicting the mechanism of miRNA transcription, processing, and regulatory activity. miRNA genes are transcribed by RNA polymerase II to form primary miRNA (pri-miRNA) molecules Greco S J , Rameshwar P PNAS 2007;104:15484-15489 ©2007 by National Academy of Sciences Formative Center for the Evaluation of Environmental Impacts on Fetal Development Formative Center for the Evaluation of Environmental Impacts on Fetal Development Female Adult Egg A active, B suppressed Imprinting Zygote Male Adult Sperm A suppressed, -
Developmental Biology, Genetics, and Teratology (DBGT) Branch NICHD
The information in this document is no longer current. It is intended for reference only. Developmental Biology, Genetics, and Teratology (DBGT) Branch NICHD Report to the NACHHD Council September 2006 U.S. Department of Health and Human Services National Institutes of Health National Institute of Child Health and Human Development The information in this document is no longer current. It is intended for reference only. Cover Image: The figures illustrate several of the animal model organisms used in research supported by the DBGT Branch including: the fruit fly, Drosophila (top, left); the zebrafish, Danio (top, middle); the frog, Xenopus (top, right); the chick, Gallus (bottom, left); and the mouse, Mus (bottom, middle). The human baby (bottom, right) represents the translational research on human birth defects. Drawings by Lorette Javois, Ph.D., DBGT Branch The information in this document is no longer current. It is intended for reference only. TABLE OF CONTENTS EXECUTIVE SUMMARY .......................................................................................................... 1 BRANCH PROGRAM AREAS .......................................................................................................... 1 BRANCH FUNDING TRENDS.......................................................................................................... 2 HIGHLIGHTS OF RESEARCH SUPPORTED AND BRANCH ACTIVITIES.............................................. 3 FUTURE DIRECTIONS FOR THE DBGT BRANCH .......................................................................... -
Evolutionary Developmental Biology 573
EVOC20 29/08/2003 11:15 AM Page 572 Evolutionary 20 Developmental Biology volutionary developmental biology, now often known Eas “evo-devo,” is the study of the relation between evolution and development. The relation between evolution and development has been the subject of research for many years, and the chapter begins by looking at some classic ideas. However, the subject has been transformed in recent years as the genes that control development have begun to be identified. This chapter looks at how changes in these developmental genes, such as changes in their spatial or temporal expression in the embryo, are associated with changes in adult morphology. The origin of a set of genes controlling development may have opened up new and more flexible ways in which evolution could occur: life may have become more “evolvable.” EVOC20 29/08/2003 11:15 AM Page 573 CHAPTER 20 / Evolutionary Developmental Biology 573 20.1 Changes in development, and the genes controlling development, underlie morphological evolution Morphological structures, such as heads, legs, and tails, are produced in each individual organism by development. The organism begins life as a single cell. The organism grows by cell division, and the various cell types (bone cells, skin cells, and so on) are produced by differentiation within dividing cell lines. When one species evolves into Morphological evolution is driven another, with a changed morphological form, the developmental process must have by developmental evolution changed too. If the descendant species has longer legs, it is because the developmental process that produces legs has been accelerated, or extended over time. -
Human Anatomy Bio 11 Embryology “Chapter 3”
Human Anatomy Bio 11 Embryology “chapter 3” Stages of development 1. “Pre-” really early embryonic period: fertilization (egg + sperm) forms the zygote gastrulation [~ first 3 weeks] 2. Embryonic period: neurulation organ formation [~ weeks 3-8] 3. Fetal period: growth and maturation [week 8 – birth ~ 40 weeks] Human life cycle MEIOSIS • compare to mitosis • disjunction & non-disjunction – aneuploidy e.g. Down syndrome = trisomy 21 • visit http://www.ivc.edu/faculty/kschmeidler/Pages /sc-mitosis-meiosis.pdf • and/or http://www.ivc.edu/faculty/kschmeidler/Pages /HumGen/mit-meiosis.pdf GAMETOGENESIS We will discuss, a bit, at the end of the semester. For now, suffice to say that mature males produce sperm and mature females produce ova (ovum; egg) all of which are gametes Gametes are haploid which means that each gamete contains half the full portion of DNA, compared to somatic cells = all the rest of our cells Fertilization restores the diploid state. Early embryonic stages blastocyst (blastula) 6 days of human embryo development http://www.sisuhospital.org/FET.php human early embryo development https://opentextbc.ca/anatomyandphysiology/chapter/28- 2-embryonic-development/ https://embryology.med.unsw.edu.au/embryology/images/thumb/d/dd/Model_human_blastocyst_development.jpg/600px-Model_human_blastocyst_development.jpg Good Sites To Visit • Schmeidler: http://www.ivc.edu/faculty/kschmeidler/Pages /sc_EMBRY-DEV.pdf • https://embryology.med.unsw.edu.au/embryol ogy/index.php/Week_1 • https://opentextbc.ca/anatomyandphysiology/c hapter/28-2-embryonic-development/ -
Program Overview: Bachelor of Science, Biological Sciences Biology Concentration; Cellular, Molecular, and Developmental Biolog
Program Overview: Bachelor of Science, Biological Sciences Biology Concentration; Cellular, Molecular, and Developmental Biology Concentration and Ecology, Evolution, and Organismal Biology Concentration. Program Highlights: About This Major . Undergraduate Research There are opportunities to Our program meets the needs of those interested in pursuing careers in the medical work on research projects with and veterinary fields, research careers in a variety of fields ranging from molecular faculty supervision. biology to wildlife biology, or laboratory or field technicians. We have a highly talented faculty with a strong commitment to undergraduate education. Follow Their Lead Land a job as a crime lab The Bachelor of Science, Biological Sciences, provides state-of-the-art laboratories, technician or wildlife biologist, three laboratories dedicated to undergraduate research, and access to extensive or pursue medical research, or collections of plants, mammals, birds, insects, and reptiles. Many undergraduates veterinary careers. There are work with faculty mentors on collaborative research projects in cell biology, molecular many career possibilities with genetics, plant systematics and ecology, as well as tropical ecology in Ecuador and a Biological Sciences Degree marine biology in the coastal northwest. For those interested in wildlife and ecology, from CMU. we offer field based courses and field based research. The Colorado National Monument, the Colorado River, and the San Juan Mountains are some of the areas for Get Smarter fieldwork. There are also a variety of internship and independent study opportunities. Consider a PhD, MD or DVM. A The St. Mary’s Saccomanno Research Institute/Colorado Mesa University Summer Biological Sciences Degree is a Internship Program in Biological Research (SIPBR), is a competitive paid 10-week great launching point for summer research program under the supervision of faculty mentors. -
Molecular, Cellular, and Developmental Biology 1 Molecular, Cellular, and Developmental Biology
Molecular, Cellular, and Developmental Biology 1 Molecular, Cellular, and Developmental Biology Yale Science Building, 203.432.3538 http://mcdb.yale.edu M.S., Ph.D. Chair Vivian Irish Director of Graduate Studies Farren Isaacs Professors Ronald Breaker, John Carlson, Lynn Cooley,* Craig Crews, Stephen Dellaporta, Thierry Emonet, Paul Forscher, Mark Hochstrasser,* Scott Holley, Valerie Horsley, Vivian Irish, Akiko Iwasaki,* Douglas Kankel, Paula Kavathas,* Haig Keshishian, Mark Mooseker, Anna Pyle, Hugh Taylor* Associate Professors Damon Clark, Joshua Gendron, Megan King,* Farren Isaacs, Kathryn Miller-Jensen,* Weimin Zhong Assistant Professors Shirin Bahmanyar, David Breslow, Nadya Dimitrova, Stavroula Hatzios, Yannick Jacob, Sigrid Nachtergaele, Michael O’Donnell, Josien van Wolfswinkel, Jing Yan Lecturers Megan Bathgate,* Alexia Belperron,* Francine Carland, Surjit Chandhoke,* Iain Dawson, Seth Guller,* Amaleah Hartman, Ronit Kaufman, Rebecca LaCroix, Thomas Loreng, Maria Moreno, Kenneth Nelson, Aruna Pawashe,* Joseph Wolenski * A secondary appointment with primary affiliation in another department or school. Fields of Study Research in the Department of Molecular, Cellular, and Developmental Biology spans biology from the organismal to the molecular levels. Topics in genetics and molecular biology include studies of non-coding RNAs, genome engineering, genome organization and regulation, gene dosage, bacterial chemotaxis, oncogenes, and systems and synthetic biology. Research topics in cellular and developmental biology include structure -
Human Embryologyembryology
HUMANHUMAN EMBRYOLOGYEMBRYOLOGY Department of Histology and Embryology Jilin University ChapterChapter 22 GeneralGeneral EmbryologyEmbryology DevelopmentDevelopment inin FetalFetal PeriodPeriod 8.1 Characteristics of Fetal Period 210 days, from week 9 to delivery. characteristics: maturation of tissues and organs rapid growth of the body During 3-5 month, fetal growth in length is 5cm/M. In last 2 month, weight increases in 700g/M. relative slowdown in growth of the head compared with the rest of the body 8.2 Fetal AGE Fertilization age lasts 266 days, from the moment of fertilization to the day when the fetal is delivered. menstrual age last 280 days, from the first day of the last menstruation before pregnancy to the day when the fetal is delivered. The formula of expected date of delivery: year +1, month -3, day+7. ChapterChapter 22 GeneralGeneral EmbryologyEmbryology FetalFetal membranesmembranes andand placentaplacenta Villous chorion placenta Decidua basalis Umbilical cord Afterbirth/ secundines Fusion of amnion, smooth chorion, Fetal decidua capsularis, membrane decidua parietalis 9.1 Fetal Membranes TheThe fetalfetal membranemembrane includesincludes chorionchorion,, amnion,amnion, yolkyolk sac,sac, allantoisallantois andand umbilicalumbilical cord,cord, originatingoriginating fromfrom blastula.blastula. TheyThey havehave functionsfunctions ofof protection,protection, nutrition,nutrition, respiration,respiration, excretion,excretion, andand producingproducing hormonehormone toto maintainmaintain thethe pregnancy.pregnancy. delivery 1) Chorion: villous and smooth chorion Villus chorionic plate primary villus trophoblast secondary villus extraembryonic tertiary villus mesoderm stem villus Amnion free villus decidua parietalis Free/termin al villus Stem/ancho chorion ring villus Villous chorion Smooth chorion Amniotic cavity Extraembyonic cavity disappears gradually; Amnion is added into chorionic plate; Villous and smooth chorion is formed. -
Developmental Biology 020.363 Mark Van Doren, [email protected] Carolyn Norris, [email protected]
Developmental Biology 020.363 Mark Van Doren, [email protected] Carolyn Norris, [email protected] Text: Developmental Biology (Gilbert) 10th or 11th edition, readings listed for both Part 1: Starting Off Right 11th Edition 10th Edition Jan 28 An overview of development. MVD Chpts 1 and 3 Chpts 1 and 2 30 Systems and tools for studying Development. MVD Chpts 1 and 3 Chpts 1 and 2 Feb 1 Cellular potency and epigenetics MVD Chpt 3 Chpt 2 4 Pluripotent Stem Cells MVD 143-149;391-396; Pp 298-303 (esp. Sidelight), 327-331 6 Germ cell development. MVD pp 239-248 pp 140-149 8 Fertilization. MVD Chpt 17 11 Polarity in the Zygote and early Cleavage. MVD pp 265-272 pp 170-176 13 Genetics as a tool to study development. MVD Part 2: Specifying Cell Identity 15 Maternal control of axis formation. MVD 284-293 194-201 18 Transcriptional control of pattern formation. MVD Chpts 3 and 9 Chpts 2 and 6 20 Cell-cell communication and Morphogens. MVD Chpts 4 and 9 Chpts 3 and 6 22 Shaping morphogen gradients: Dorsal/ventral patterning in Drosophila. MVD Chpt9 Chpt 6 25 Hox genes and control of anterior-posterior cell identity. MVD Chpt 9 Chpt 6 27 First Exam (includes up through Friday Feb 22) March 1 Generating cell type diversity: the Drosophila nervous system. MVD Part 3: Morphogenesis and Organogenesis 4 The germ layers and D/V axis patterning in vertebrates. MVD Chpt 11 Chpt 8 6 The cell biology of morphogenesis. MVD Chpt 4 Chpt 3 8 Gastrulation in Vertebrates I.