Alternative Stable States in Size-Structured Communities: Patterns, Processes, and Mechanisms
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Alternative Stable States of Tidal Marsh Vegetation Patterns and Channel Complexity
ECOHYDROLOGY Ecohydrol. (2016) Published online in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/eco.1755 Alternative stable states of tidal marsh vegetation patterns and channel complexity K. B. Moffett1* and S. M. Gorelick2 1 School of the Environment, Washington State University Vancouver, Vancouver, WA, USA 2 Department of Earth System Science, Stanford University, Stanford, CA, USA ABSTRACT Intertidal marshes develop between uplands and mudflats, and develop vegetation zonation, via biogeomorphic feedbacks. Is the spatial configuration of vegetation and channels also biogeomorphically organized at the intermediate, marsh-scale? We used high-resolution aerial photographs and a decision-tree procedure to categorize marsh vegetation patterns and channel geometries for 113 tidal marshes in San Francisco Bay estuary and assessed these patterns’ relations to site characteristics. Interpretation was further informed by generalized linear mixed models using pattern-quantifying metrics from object-based image analysis to predict vegetation and channel pattern complexity. Vegetation pattern complexity was significantly related to marsh salinity but independent of marsh age and elevation. Channel complexity was significantly related to marsh age but independent of salinity and elevation. Vegetation pattern complexity and channel complexity were significantly related, forming two prevalent biogeomorphic states: complex versus simple vegetation-and-channel configurations. That this correspondence held across marsh ages (decades to millennia) -
Trade‐Off Between Early Emergence and Herbivore
UC San Diego UC San Diego Previously Published Works Title Trade-off between early emergence and herbivore susceptibility mediates exotic success in an experimental California plant community. Permalink https://escholarship.org/uc/item/3ht2w2q4 Journal Ecology and evolution, 6(24) ISSN 2045-7758 Authors Waterton, Joseph Cleland, Elsa E Publication Date 2016-12-01 DOI 10.1002/ece3.2610 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Received: 4 August 2016 | Revised: 13 October 2016 | Accepted: 22 October 2016 DOI: 10.1002/ece3.2610 ORIGINAL RESEARCH Trade-offbetweenearlyemergenceandherbivore susceptibilitymediatesexoticsuccessinanexperimental Californiaplantcommunity JosephWaterton | ElsaE.Cleland Ecology, Behavior and Evolution Section, University of California San Diego, La Abstract Jolla, CA, USA Ecological trade- offs are fundamental to theory in community ecology; critical for un- Correspondence derstanding species coexistence in diverse plant communities, as well as the evolution Joseph Waterton, Ecology, Behavior & of diverse life- history strategies. Invasions by exotic species can provide insights into Evolution Section, University of California San Diego, 9500 Gilman Dr., La Jolla, the importance of trade- offs in community assembly, because the ecological strategies California 92093 U.S.A. of invading species often differ from those present in the native species pool. Exotic Email: [email protected] annual species have invaded many Mediterranean- climate areas around the globe, and Fundinginformation often germinate and emerge earlier in the growing season than native species. Early- Jeanne M. Messier Memorial Fellowship season growth can enable exotic annual species to preempt space and resources, com- petitively suppressing later- emerging native species; however, early- emerging individuals may also be more apparent to herbivores. -
Resilience of Alternative States in Spatially Extended Ecosystems
RESEARCH ARTICLE Resilience of Alternative States in Spatially Extended Ecosystems Ingrid A. van de Leemput*, Egbert H. van Nes, Marten Scheffer Department of Environmental Sciences, Wageningen University, Wageningen, The Netherlands * [email protected] Abstract Alternative stable states in ecology have been well studied in isolated, well-mixed systems. However, in reality, most ecosystems exist on spatially extended landscapes. Applying ex- isting theory from dynamic systems, we explore how such a spatial setting should be ex- pected to affect ecological resilience. We focus on the effect of local disturbances, defining resilience as the size of the area of a strong local disturbance needed to trigger a shift. We show that in contrast to well-mixed systems, resilience in a homogeneous spatial setting does not decrease gradually as a bifurcation point is approached. Instead, as an environ- OPEN ACCESS mental driver changes, the present dominant state remains virtually ‘indestructible’, until at Citation: van de Leemput IA, van Nes EH, Scheffer a critical point (the Maxwell point) its resilience drops sharply in the sense that even a very M (2015) Resilience of Alternative States in Spatially Extended Ecosystems. PLoS ONE 10(2): e0116859. local disturbance can cause a domino effect leading eventually to a landscape-wide shift to doi:10.1371/journal.pone.0116859 the alternative state. Close to this Maxwell point the travelling wave moves very slow. Under Academic Editor: Emanuele Paci, University of these conditions both states have a comparable resilience, allowing long transient co-occur- Leeds, UNITED KINGDOM rence of alternative states side-by-side, and also permanent co-existence if there are mild Received: April 11, 2014 spatial barriers. -
The Overlooked Role of Priority Effects in Grassland Overyielding
Received: 27 May 2019 | Accepted: 8 September 2019 DOI: 10.1111/1365-2435.13455 RESEARCH ARTICLE When history matters: The overlooked role of priority effects in grassland overyielding Benjamin M. Delory1 | Emanuela W. A. Weidlich2 | Philipp von Gillhaussen2 | Vicky M. Temperton1,2 1Ecosystem Functioning and Services, Institute of Ecology, Leuphana University, Abstract Lüneburg, Germany 1. Biodiversity–ecosystem functioning experiments have shown that plant species 2 Plant Sciences, Institute for Bio and and functional group richness are important drivers of grassland productivity, but Geosciences, IBG‐2, Forschungszentrum Jülich GmbH, Jülich, Germany the impact that plant order of arrival (i.e. priority effects) has on grassland ove- ryielding and its drivers (complementarity and dominance effects) has been over- Correspondence Benjamin M. Delory looked so far. Email: [email protected] 2. Using species‐specific plant biomass data collected in mixture and monoculture Vicky M. Temperton plots of a grassland field experiment (Jülich Priority Effect experiment) that ma- Email: [email protected] nipulated the order of arrival of three plant functional groups (forbs, grasses and Present address legumes), we quantified net biodiversity effects (overyielding) as well as comple- Emanuela W. A. Weidlich, Botanical Department, Universidade Federal de Santa mentarity and dominance effects in mixtures one and 2 years after sowing. In Catarina, Florianópolis, Brazil this experiment, priority effects were created by sowing one functional group 6 weeks before the two others. First, we tested whether plant order of arrival Funding information Forschungszentrum Jülich GmbH affected overyielding, complementarity and dominance effects. Second, we in- vestigated whether the magnitude of net biodiversity, complementarity and domi- Handling Editor: Marko Spasojevic nance effects was dependent on the strength and direction of priority effects. -
Introduction to Theoretical Ecology
Introduction to Theoretical Ecology Natal, 2011 Objectives After this week: The student understands the concept of a biological system in equilibrium and knows that equilibria can be stable or unstable. The student understands the basics of how coupled differential equations can be analyzed graphically, including phase plane analysis and nullclines. The student can analyze the stability of the equilibria of a one-dimensional differential equation model graphically. The student has a basic understanding of what a bifurcation point is. The student can relate alternative stable states to a 1D bifurcation plot (e.g. catastrophe fold). Study material / for further study: This text Scheffer, M. 2009. Critical Transitions in Nature and Society, Princeton University Press, Princeton and Oxford. Scheffer, M. 1998. Ecology of Shallow Lakes. 1 edition. Chapman and Hall, London. Edelstein-Keshet, L. 1988. Mathematical models in biology. 1 edition. McGraw-Hill, Inc., New York. Tentative programme (maybe too tight for the exercises) Monday 9:00-10:30 Introduction Modelling + introduction Forrester diagram + 1D models (stability graphs) 10:30-13:00 GRIND Practical CO2 chamber - Ethiopian Wolf Tuesday 9:00-10:00 Introduction bifurcation (Allee effect) and Phase plane analysis (Lotka-Volterra competition) 10:00-13:00 GRIND Practical Lotka-Volterra competition + Sahara Wednesday 9:00-13:00 GRIND Practical – Sahara (continued) and Algae-zooplankton Thursday 9:00-13:00 GRIND practical – Algae zooplankton spatial heterogeneity Friday 9:00-12:00 GRIND practical- Algae zooplankton fish 12:00-13:00 Practical summary/explanation of results - Wrap up 1 An introduction to models What is a model? The word 'model' is used widely in every-day language. -
Multiple Stable States and Regime Shifts - Environmental Science - Oxford Bibliographies 3/30/18, 10:15 AM
Multiple Stable States and Regime Shifts - Environmental Science - Oxford Bibliographies 3/30/18, 10:15 AM Multiple Stable States and Regime Shifts James Heffernan, Xiaoli Dong, Anna Braswell LAST MODIFIED: 28 MARCH 2018 DOI: 10.1093/OBO/9780199363445-0095 Introduction Why do ecological systems (populations, communities, and ecosystems) change suddenly in response to seemingly gradual environmental change, or fail to recover from large disturbances? Why do ecological systems in seemingly similar settings exhibit markedly different ecological structure and patterns of change over time? The theory of multiple stable states in ecological systems provides one potential explanation for such observations. In ecological systems with multiple stable states (or equilibria), two or more configurations of an ecosystem are self-maintaining under a given set of conditions because of feedbacks among biota or between biota and the physical and chemical environment. The resulting multiple different states may occur as different types or compositions of vegetation or animal communities; as different densities, biomass, and spatial arrangement; and as distinct abiotic environments created by the distinct ecological communities. Alternative states are maintained by the combined effects of positive (or amplifying) feedbacks and negative (or stabilizing feedbacks). While stabilizing feedbacks reinforce each state, positive feedbacks are what allow two or more states to be stable. Thresholds between states arise from the interaction of these positive and negative feedbacks, and define the basins of attraction of the alternative states. These feedbacks and thresholds may operate over whole ecosystems or give rise to self-organized spatial structure. The combined effect of these feedbacks is also what gives rise to ecological resilience, which is the capacity of ecological systems to absorb environmental perturbations while maintaining their basic structure and function. -
Ectomycorrhizal Fungal Communities at Forest Edges 93, 244–255 IAN A
Journal of Blackwell Publishing, Ltd. Ecology 2005 Ectomycorrhizal fungal communities at forest edges 93, 244–255 IAN A. DICKIE and PETER B. REICH Department of Forest Resources, University of Minnesota, St Paul, MN, USA Summary 1 Ectomycorrhizal fungi are spatially associated with established ectomycorrhizal vegetation, but the influence of distance from established vegetation on the presence, abundance, diversity and community composition of fungi is not well understood. 2 We examined mycorrhizal communities in two abandoned agricultural fields in Minnesota, USA, using Quercus macrocarpa seedlings as an in situ bioassay for ecto- mycorrhizal fungi from 0 to 20 m distance from the forest edge. 3 There were marked effects of distance on all aspects of fungal communities. The abundance of mycorrhiza was uniformly high near trees, declined rapidly around 15 m from the base of trees and was uniformly low at 20 m. All seedlings between 0 and 8 m distance from forest edges were ectomycorrhizal, but many seedlings at 16–20 m were uninfected in one of the two years of the study. Species richness of fungi also declined with distance from trees. 4 Different species of fungi were found at different distances from the edge. ‘Rare’ species (found only once or twice) dominated the community at 0 m, Russula spp. were dominants from 4 to 12 m, and Astraeus sp. and a Pezizalean fungus were abundant at 12 m to 20 m. Cenococcum geophilum, the most dominant species found, was abundant both near trees and distant from trees, with lowest relative abundance at intermediate distances. 5 Our data suggest that seedlings germinating at some distance from established ecto- mycorrhizal vegetation (15.5 m in the present study) have low levels of infection, at least in the first year of growth. -
Do Priority Effects Benefit Invasive Plants
Biol Invasions (2012) 14:2617–2624 DOI 10.1007/s10530-012-0257-2 ORIGINAL PAPER Do priority effects benefit invasive plants more than native plants? An experiment with six grassland species Timothy L. Dickson • Jennifer L. Hopwood • Brian J. Wilsey Received: 7 August 2011 / Accepted: 28 May 2012 / Published online: 13 June 2012 Ó Springer Science+Business Media B.V. 2012 Abstract Invasive, non-native plant species often species would decrease plant biodiversity. To test this outcompete native species and reduce biodiversity. hypothesis, we grew three pairs of invasive and native Invasive plants frequently begin growth before native plant species from three different functional groups/ plants, yet few studies have examined whether inva- plant families (C3 grasses/Poaceae, non-leguminous sives win in competition partly by colonizing disturbed forbs/Asteraceae, and legumes/Fabaceae). We seeded sites more quickly or by beginning growth earlier in the each of the species 3 weeks before seeding the other season than native plants (i.e. due to priority effects). five species into large pots in a greenhouse. Consistent We hypothesized that invasive plant species would with our hypothesis, we found much stronger priority benefit more from priority effects than would compa- effects with invasive than native species. Each invasive rable native species and that earlier growth of invasive species formed a near-monocultures when seeded first (97.5 % of total biomass, on average) whereas native species did not similarly dominate (29.8 % of total Electronic supplementary material The online version of biomass, on average). Similarly, Simpson’s species this article (doi:10.1007/s10530-012-0257-2) contains diversity was 81 % higher when the initially sown supplementary material, which is available to authorized users. -
Is Ecological Succession Predictable?
Is ecological succession predictable? Commissioned by Prof. dr. P. Opdam; Kennisbasis Thema 1. Project Ecosystem Predictability, Projectnr. 232317. 2 Alterra-Report 1277 Is ecological succession predictable? Theory and applications Koen Kramer Bert Brinkman Loek Kuiters Piet Verdonschot Alterra-Report 1277 Alterra, Wageningen, 2005 ABSTRACT Koen Kramer, Bert Brinkman, Loek Kuiters, Piet Verdonschot, 2005. Is ecological succession predictable? Theory and applications. Wageningen, Alterra, Alterra-Report 1277. 80 blz.; 6 figs.; 0 tables.; 197 refs. A literature study is presented on the predictability of ecological succession. Both equilibrium and nonequilibrium theories are discussed in relation to competition between, and co-existence of species. The consequences for conservation management are outlined and a research agenda is proposed focusing on a nonequilibrium view of ecosystem functioning. Applications are presented for freshwater-; marine-; dune- and forest ecosystems. Keywords: conservation management; competition; species co-existence; disturbance; ecological succession; equilibrium; nonequilibrium ISSN 1566-7197 This report can be ordered by paying € 15,- to bank account number 36 70 54 612 by name of Alterra Wageningen, IBAN number NL 83 RABO 036 70 54 612, Swift number RABO2u nl. Please refer to Alterra-Report 1277. This amount is including tax (where applicable) and handling costs. © 2005 Alterra P.O. Box 47; 6700 AA Wageningen; The Netherlands Phone: + 31 317 474700; fax: +31 317 419000; e-mail: [email protected] No part of this publication may be reproduced or published in any form or by any means, or stored in a database or retrieval system without the written permission of Alterra. Alterra assumes no liability for any losses resulting from the use of the research results or recommendations in this report. -
Evolutionary Ecology of Chagas Disease; What Do We Know and What Do We Need?
Evolutionary ecology of Chagas disease; what do we know and what do we need? Alheli Flores-Ferrer, Olivier Marcou, Etienne Waleckx, Eric Dumonteil, Sébastien Gourbière To cite this version: Alheli Flores-Ferrer, Olivier Marcou, Etienne Waleckx, Eric Dumonteil, Sébastien Gourbière. Evolu- tionary ecology of Chagas disease; what do we know and what do we need?. Evolutionary Applications, Blackwell, 2018, 11 (4), pp.470-487. 10.1111/eva.12582. hal-02435120 HAL Id: hal-02435120 https://hal-univ-perp.archives-ouvertes.fr/hal-02435120 Submitted on 4 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Received: 13 April 2017 | Accepted: 19 November 2017 DOI: 10.1111/eva.12582 REVIEW AND SYNTHESES Evolutionary ecology of Chagas disease; what do we know and what do we need? Alheli Flores-Ferrer1,2 | Olivier Marcou1 | Etienne Waleckx3 | Eric Dumonteil4 | Sébastien Gourbière1,2 1UMR 228, ESPACE-DEV-IMAGES, ‘Institut de Modélisation et d’Analyses en Géo- Abstract Environnement et Santé’, Université de The aetiological agent of Chagas disease, Trypanosoma cruzi, is a key human pathogen Perpignan Via Domitia, Perpignan, France afflicting most populations of Latin America. -
Curriculum Vitae Fulbright Postdoctoral Fellow Soil and Fungal
1 LOUISE M. EGERTON-WARBURTON Curriculum Vitae Chicago Botanic Garden Phone: 847.835.6915 1000 Lake Cook Rd Fax: 847.835.5484 Glencoe IL 60022 [email protected] EDUCATION: Fulbright Postdoctoral Fellow University of California, 1994- Soil and fungal ecology Riverside 1997 Ph.D., Environmental Biology Curtin University of 1994 Dissertation: Soil-plant relationships of Eucalyptus species Technology, Australia in acidic coal mining soils. Adviser: Byron B. Lamont B.S., Biology (Highest Honors) Curtin University of 1989 Minor: Statistics Technology, Australia B.S., Nursing Western Australian School 1984 Clinical specialty: Operating Theater of Nursing APPOINTMENTS: Director and Coordinator, Research Experiences for Chicago Botanic Garden 2004- Undergraduates (REU) site in Plant Conservation and 2010 Biology Adjunct Professor of Biology Northwestern University 2003- present Conservation Scientist, Chicago Botanic Garden 2001- Soil and Microbial Ecology, and present Manager, Soil Sciences Program Assistant Researcher, University of California, 1999- Soil Microbial Ecology Riverside 2001 Post-doctoral Research Fellow, University of Melbourne, 1998- Cell & Molecular Biology, Nanotechnology Australia 1999 TEACHING APPOINTMENTS: Instructor, §Field and Lab Methods in Conservation Northwestern University 2009- Biology (PBC499) present Instructor, §Soils and Environment (PBC448), Northwestern University 2008- Fall quarter present Guest lecturer, Introductory Mycology University of Wisconsin, 2008 Winter quarter Madison 2 Guest lecturer, -
Vellend2016.Pdf
CHAPTER 1 Introduction Many budding ecologists have their imaginations captured by a seemingly sim- ple question: why do we fnd different types and numbers of species in differ- ent places? The question is the same whether the setting is birds in the forest, plants along a mountainside, fsh in lakes, invertebrates on a rocky shore, or microbes in the human body. Some parts of the answer to this question are glar- ingly obvious just from a short walk more or less anywhere on earth. Strolling through any city or town in eastern North America, we can see that the plant species growing in sidewalk cracks and dry roadsides are different from those growing in wet ditches, which are different still from those growing in wooded parks. Some birds reach very high abundance in dense urban areas, while oth- ers are found exclusively in wetlands or forests. So, we can observe everyday evidence that environmental variation selects for different species in different places (Fig. 1.1). As we begin to look more closely, however, the story is not so simple. Some places that seem to present near- identical environmental conditions are none- theless home to very different sets of species. Some pairs of species seem to live in very similar types of environments but almost never in the same phys- ical place. Two places experiencing a very similar disturbance event (e.g., a drought or fre) subsequently follow very different successional trajectories. A hectare of one type of forest might contain 100-fold more species than a hectare of another type of forest.