The IUCN Global Ecosystem Typology V1.01: Descriptive Profiles for Biomes and Ecosystem Functional Groups

Total Page:16

File Type:pdf, Size:1020Kb

The IUCN Global Ecosystem Typology V1.01: Descriptive Profiles for Biomes and Ecosystem Functional Groups The IUCN Global Ecosystem Typology v1.01: Descriptive profiles for Biomes and Ecosystem Functional Groups David A. Keith, Jose R. Ferrer, Emily Nicholson, Melanie J. Bishop, Beth A. Polidoro, Eva Ramirez- Llodra, Mark G. Tozer, Jeanne L. Nel, Ralph Mac Nally, Edward J. Gregr, Kate E. Watermeyer, Franz Essl, Don Faber-Langendoen, Janet Franklin, Caroline E. R. Lehmann, Andres Etter, Dirk J. Roux, Jonathan S. Stark, Jessica A. Rowland, Neil A. Brummitt, Ulla C. Fernandez-Arcaya, Iain M. Suthers, Susan K. Wiser, Ian Donohue, Leland J. Jackson, R. Toby Pennington, Nathalie Pettorelli, Angela Andrade, Tytti Kontula, Arild Lindgaard, Teemu Tahvanainan, Aleks Terauds, Oscar Venter, James E. M. Watson, Michael A Chadwick, Nicholas J. Murray, Justin Moat, Patricio Pliscoff, Irene Zager, Richard T. Kingsford Adapted from: ‘Earth’s ecosystems: a function-based typology for conservation and sustainable management’ February 2020 Contents Introduction ........................................................................................................................................................................ 1 Development of the typology ....................................................................................................................................... 2 Design principles ................................................................................................................................................................ 2 Levels of classification within the Global Ecosystem Typology ........................................................................ 5 Realms ............................................................................................................................................................................... 7 Biomes ............................................................................................................................................................................ 20 Ecosystem Functional Groups ................................................................................................................................ 20 Lower levels of classification ................................................................................................................................... 22 Reflections on the approach to typology development ................................................................................... 23 Descriptive profiles for Ecosystem Functional Groups ................................................................................. 25 Nomenclature ............................................................................................................................................................. 25 Text descriptions ...................................................................................................................................................... 25 Exemplary photographs......................................................................................................................................... 28 Major ecosystem drivers ....................................................................................................................................... 28 Diagrammatic assembly models ......................................................................................................................... 28 Indicative distribution maps ................................................................................................................................ 28 Use of references ....................................................................................................................................................... 32 Updates ......................................................................................................................................................................... 32 References cited ........................................................................................................................................................ 32 T1. Tropical-subtropical forests biome ...................................................................................................................... 1 T1.1 Tropical-subtropical lowland rainforests ............................................................................................... 2 T1.2 Tropical-subtropical dry forests and scrubs .......................................................................................... 3 T1.3 Tropical-subtropical montane rainforests .............................................................................................. 4 T1.4 Tropical heath forests ...................................................................................................................................... 5 T2. Temperate-boreal forests and woodlands biome ....................................................................................... 6 T2.1 Boreal and temperate montane forests and woodlands ................................................................... 7 T2.2 Deciduous temperate forests........................................................................................................................ 8 T2.3 Oceanic temperate rainforests ..................................................................................................................... 9 T2.4 Warm temperate rainforests ..................................................................................................................... 10 T2.5 Temperate pyric humid forests ................................................................................................................ 11 T2.6 Temperate pyric sclerophyll forests and woodlands ...................................................................... 12 T3. Shrublands and shrubby woodlands biome .................................................................................................. 13 T3.1 Seasonally dry tropical shrublands......................................................................................................... 14 ii T3.2 Seasonally dry temperate heath and shrublands .............................................................................. 15 T3.3 Cool temperate heathlands ........................................................................................................................ 16 T3.4 Young rocky pavements, lava flows and screes ................................................................................. 17 T4. Savannas and grasslands biome ........................................................................................................................ 18 T4.1 Trophic savannas............................................................................................................................................ 19 T4.2 Pyric tussock savannas ................................................................................................................................ 20 T4.3 Hummock savannas....................................................................................................................................... 21 T4.4 Temperate woodlands .................................................................................................................................. 22 T4.5 Temperate subhumid grasslands ............................................................................................................ 23 T5. Deserts and semi-deserts biome ....................................................................................................................... 24 T5.1 Semi-desert steppe ........................................................................................................................................ 25 T5.2 Succulent or Thorny deserts and semi-deserts ................................................................................. 26 T5.3 Sclerophyll hot deserts and semi-deserts ............................................................................................ 27 T5.4 Cool deserts and semi-deserts .................................................................................................................. 28 T5.5 Hyper-arid deserts ......................................................................................................................................... 29 T6. Polar-alpine (cryogenic) biome .......................................................................................................................... 30 T6.1 Ice sheets, glaciers and perennial snowfields ..................................................................................... 31 T6.2 Polar-alpine cliffs, screes, outcrops and lava flows .......................................................................... 32 T6.3 Polar tundra and deserts ............................................................................................................................. 33 T6.4 Temperate alpine meadows and shrublands ...................................................................................... 34 T6.5 Tropical alpine grasslands and herbfields ........................................................................................... 35 T7. Intensive land-use biome ..................................................................................................................................... 36 T7.1 Annual croplands ...........................................................................................................................................
Recommended publications
  • Plants Prohibited from Sale in South Australia Plants Considered As Serious Weeds Are Banned from Being Sold in South Australia
    Plants prohibited from sale in South Australia Plants considered as serious weeds are banned from being sold in South Australia. Do not buy or sell any plant listed as prohibited from sale. Plants listed in this document are declared serious weeds and are prohibited from sale anywhere in South Australia pursuant to Section 188 of the Landscape South Australia Act 2019 (refer South Australian Government Gazette 60: 4024-4038, 23 July 2020). This includes the sale of nursery stock, seeds or other propagating material. However, it is not prohibited to sell or transport non-living products made from these plants, such as timber from Aleppo pine, or herbal medicines containing horehound. Such products are excluded from the definition of plant, under the Landscape South Australia (General) Regulations 2020. Section 3 of the Act defines sell as including: • barter, offer or attempt to sell • receive for sale • have in possession for sale • cause or permit to be sold or offered for sale • send, forward or deliver for sale • dispose of by any method for valuable consideration • dispose of to an agent for sale on consignment • sell for the purposes of resale How to use this list Plants are often known by many names. This list can help you to find the scientific name and other common names of a declared plant. This list is not intended to be a complete synonymy for each species, such as would be found in a taxonomic revision. The plants are listed alphabetically by the common name as used in the declaration. Each plant is listed in the following format: Common name alternative common name(s) Scientific name Author Synonym(s) Author What to do if you suspect a plant for sale is banned If you are unsure whether a plant offered for sale under a particular name is banned, please contact your regional landscape board or PIRSA Biosecurity SA.
    [Show full text]
  • The Journal of the Australian Speleological Federation ICS Down
    CAVES The Journal of the Australian Speleological Federation AUSTRALIA ICS Down Under 2017 • White Nose Syndrome Spéléo Secours FranÇais • Khazad-Dum The Thailand Project No. 197 • JUNE 2014 COMING EVENTS This list covers events of interest to anyone seriously interested in caves and http:///www.uis-speleo.org/ or on the ASF website http://www.caves.org. au. For karst. The list is just that: if you want further information the contact details international events, the Chair of International Commission (Nicholas White, ASF for each event are included in the list for you to contact directly. A more exten- [email protected]) may have extra information. This looks like a sive list was published in the last ESpeleo. The relevant websites and details of very busy 2014 and do not forget the ASF conference in Exmouth in mid-2015. other international and regional events may be listed on the UIS/IUS website I hope we have time to go caving! 2014 September 29—October 2 October 25 Climate Change—the Karst Record 7 (KR7) Melbourne. This international Canberra Speleological Society 60th Birthday Lunch. Yowani Country conference at the University of Melbourne will showcase the latest research Club, 455 Northbourne Ave, Lyneham ACT.11.30am for a 12 noon start. Buf- from specialists investigating past climate records from speleothems and cave fet lunch with some drinks provided. Bar facilities available. Cost: $35 per sediments. Pre and post field trips to karst regions of eastern Australia and person. Payment is required by 30th September, 2014. Should you need to northern New Zealand.
    [Show full text]
  • Select Terrestrial, Freshwater and Marine Conservation Targets/Biodiversity Elements/Features Across Multiple Biological and Spatial Scales
    Standard 7: Select terrestrial, freshwater and marine conservation targets/biodiversity elements/features across multiple biological and spatial scales. [plan] Rationale It is necessary to define a subset of targets that best represent the biodiversity of an ecoregion to focus the assessment. Conservation targets should cover the suite of biological scales (species to communities, ecological systems and other targets), taxa, and ecological characteristics to adequately inform comprehensive biodiversity conservation. Targets should include coarse and fine filter targets. This includes using rare and endangered, wide ranging, migratory and keystone species, rare communities, and all ecological systems and/or ecosystem types, as well as additional targets that are useful in capturing the variety of biodiversity characteristics, scales and ecological processes. Recommended Products ,,,List, and attributes of fine-filter targets such as distribution (local, widespread), conservation status (threatened and endangered), endemic, wide-ranging, rare communities and coarse-filter targets (ecological systems and ecosystems) as well as other types of targets as appropriate. See the Ecoregional Assessment Data Standards 1.0 for required fields. Maps of occurrences of targets throughout the ecoregion. Description of data gaps for specific target groups and geographic areas. GUIDANCE A systematic approach to conservation planning demands that we be explicit about what features of biodiversity we are trying to conserve (Groves 2003). With the goal of conserving the biodiversity of an ecoregion, we need to define a subset of features to work with that will adequately capture that representation and variety. We refer to these features as conservation targets (Redford et al. 2003). Conservation targets are the species, communities, ecological systems 1 and surrogates that we focus our assessments on in order to capture the broad range of biodiversity as best we can.
    [Show full text]
  • Freshwater Fishes
    WESTERN CAPE PROVINCE state oF BIODIVERSITY 2007 TABLE OF CONTENTS Chapter 1 Introduction 2 Chapter 2 Methods 17 Chapter 3 Freshwater fishes 18 Chapter 4 Amphibians 36 Chapter 5 Reptiles 55 Chapter 6 Mammals 75 Chapter 7 Avifauna 89 Chapter 8 Flora & Vegetation 112 Chapter 9 Land and Protected Areas 139 Chapter 10 Status of River Health 159 Cover page photographs by Andrew Turner (CapeNature), Roger Bills (SAIAB) & Wicus Leeuwner. ISBN 978-0-620-39289-1 SCIENTIFIC SERVICES 2 Western Cape Province State of Biodiversity 2007 CHAPTER 1 INTRODUCTION Andrew Turner [email protected] 1 “We live at a historic moment, a time in which the world’s biological diversity is being rapidly destroyed. The present geological period has more species than any other, yet the current rate of extinction of species is greater now than at any time in the past. Ecosystems and communities are being degraded and destroyed, and species are being driven to extinction. The species that persist are losing genetic variation as the number of individuals in populations shrinks, unique populations and subspecies are destroyed, and remaining populations become increasingly isolated from one another. The cause of this loss of biological diversity at all levels is the range of human activity that alters and destroys natural habitats to suit human needs.” (Primack, 2002). CapeNature launched its State of Biodiversity Programme (SoBP) to assess and monitor the state of biodiversity in the Western Cape in 1999. This programme delivered its first report in 2002 and these reports are updated every five years. The current report (2007) reports on the changes to the state of vertebrate biodiversity and land under conservation usage.
    [Show full text]
  • Benthic Macrofaunal Structure and Secondary Production in Tropical Estuaries on the Eastern Marine Ecoregion of Brazil
    Benthic macrofaunal structure and secondary production in tropical estuaries on the Eastern Marine Ecoregion of Brazil Lorena B. Bissoli and Angelo F. Bernardino Grupo de Ecologia Bêntica, Department of Oceanography, Universidade Federal do Espírito Santo, Vitoria, ES, Brazil ABSTRACT Tropical estuaries are highly productive and support diverse benthic assemblages within mangroves and tidal flats habitats. Determining differences and similarities of benthic assemblages within estuarine habitats and between regional ecosystems may provide scientific support for management of those ecosystems. Here we studied three tropical estuaries in the Eastern Marine Ecoregion of Brazil to assess the spatial variability of benthic assemblages from vegetated (mangroves) and unvegetated (tidal flats) habitats. A nested sampling design was used to determine spatial scales of variability in benthic macrofaunal density, biomass and secondary production. Habitat differences in benthic assemblage composition were evident, with mangrove forests being dominated by annelids (Oligochaeta and Capitellidae) whereas peracarid crustaceans were also abundant on tidal flats. Macrofaunal biomass, density and secondary production also differed between habitats and among estuaries. Those differences were related both to the composition of benthic assemblages and to random spatial variability, underscoring the importance of hierarchical sampling in estuarine ecological studies. Given variable levels of human impacts and predicted climate change effects on tropical estuarine
    [Show full text]
  • Seasonal Diets of Sheep in the Steppe Region of Tierra Del Fuego, Argentina
    J. Range Manage. 49: 24-30 January 1996 Seasonal diets of sheep in the steppe region of Tierra del Fuego, Argentina GABRIELA POSSE, JUAN ANCHORENA, AND MARTA B. COLLANTES Authors are range ecologists, Centro de Ecojisiologia Vegetal (CEVEG-CONICET), Serrano 669, (1414) Buenos Aires. Argentina. Abstract with large flocks roaming yearlong in paddocks of 2,000 to more than 4,000 ha. Grazing management is empirical and several Sheep diets were determined seasonally for large flocks grazing problems such as low reproduction rates and high winter mortali- year-round in 2 landscape types of the Magellanic steppe of ty of lambs were ascribed to nutritional causes. Nutritional prob- Argentina. A tussock-grasssteppe of Festuca gracillima Hooker f. lems could result from historical overgrazing, a situation that was dominates the uplands of the whole area. On acid soils established in several places of the area (Baetti et al. unpub- (Quaternary landscape), woody variants of the steppe prevail; on lished). As in other regions of unimproved natural pastures, neutral soils (Tertiary landscape), woody plants are almost knowledge of plant preferences in relation to resource availability ahsent and short grassesand forbs are abundant. Principal tasa is especially needed to develop sustainable management systems. consumed throughout the year were: Poa L., Deschampsia This is the first study of the foraging behavior of sheep in this P.Beauv., and “sedges & rushes”. Consumption of woody species area. and of the dominant tussock-grass Festuca gracillima increased notably in winter. Despite the large proportion of speciesin com- Our interest was to study sheep dietary habits in 2 different mon, diets differed significantly between landscapes.
    [Show full text]
  • Cave-70-02-Fullr.Pdf
    L. Espinasa and N.H. Vuong ± A new species of cave adapted Nicoletiid (Zygentoma: Insecta) from Sistema Huautla, Oaxaca, Mexico: the tenth deepest cave in the world. Journal of Cave and Karst Studies, v. 70, no. 2, p. 73±77. A NEW SPECIES OF CAVE ADAPTED NICOLETIID (ZYGENTOMA: INSECTA) FROM SISTEMA HUAUTLA, OAXACA, MEXICO: THE TENTH DEEPEST CAVE IN THE WORLD LUIS ESPINASA AND NGUYET H. VUONG School of Science, Marist College, 3399 North Road, Poughkeepsie, NY 12601, [email protected] and [email protected] Abstract: Anelpistina specusprofundi, n. sp., is described and separated from other species of the subfamily Cubacubaninae (Nicoletiidae: Zygentoma: Insecta). The specimens were collected in SoÂtano de San AgustõÂn and in Nita Ka (Huautla system) in Oaxaca, MeÂxico. This cave system is currently the tenth deepest in the world. It is likely that A.specusprofundi is the sister species of A.asymmetrica from nearby caves in Sierra Negra, Puebla. The new species of nicoletiid described here may be the key link that allows for a deep underground food chain with specialized, troglobitic, and comparatively large predators suchas thetarantula spider Schizopelma grieta and the 70 mm long scorpion Alacran tartarus that inhabit the bottom of Huautla system. INTRODUCTION 760 m, but no human sized passage was found that joined it into the system. The last relevant exploration was in Among international cavers and speleologists, caves 1994, when an international team of 44 cavers and divers that surpass a depth of minus 1,000 m are considered as pushed its depth to 1,475 m. For a full description of the imposing as mountaineers deem mountains that surpass a caves of the Huautla Plateau, see the bulletins from these height of 8,000 m in the Himalayas.
    [Show full text]
  • Forests Warranting Further Consideration As Potential World
    Forest Protected Areas Warranting Further Consideration as Potential WH Forest Sites: Summaries from Various and Thematic Regional Analyses (Compendium produced by Marc Patry, for the proceedings of the 2nd World Heritage Forest meeting, held at Nancy, France, March 11-13, 2005) Four separate initiatives have been carried out in the past 10 years in an effort to help guide the process of identifying and nominating new WH Forest sites. The first, carried out by Thorsell and Sigaty (1997), addresses forests worldwide, and was developed based on the authors’ shared knowledge of protected forests worldwide. The second focuses exclusively on tropical forests and was assembled by the participants at the 1998 WH Forest meeting in Berastagi, Indonesia (CIFOR, 1999). A third initiative consists of potential boreal forest sites developed by the participants to an expert meeting on boreal forests, held in St. Petersberg in 2003. Finally, a fourth, carried out jointly between UNEP and IUCN applied a more systematic approach (IUCN, 2004). Though aiming at narrowing the field of potential candidate sites, these initiatives do not automatically imply that all of the listed forest areas would meet the criteria for inscription on the WH List, and conversely, nor do they imply that any site left off the list would not meet these criteria. Since these lists were developed, several of the proposed sites have been inscribed on the WH List, while others have been the subject of nominations, but were not inscribed, for various reasons. The lists below are reproduced here in an effort to facilitate access to this information and to guide future nomination initiatives.
    [Show full text]
  • Modern-Day Explorers
    UT] O B A THINK O MODERN-DAY EXPLORERS Who are the men and women who are conquering the unthinkable? They walk among us, seemingly normal, but undertake feats of extreme adventure and live to tell the tale… METHING T SO Alex Honnold famous free soloist [ LEWIS PUGH RHYMES with “whew” “...he couldn’t feel his fingertips for CROSSROADS four months!” The funniest line in Lewis Pugh’s recently-released memoir, 21 Yaks and a Speedo: How to achieve your impossible (Jonathan Ball Publishers) is when he says, “I’m not a rule-breaker by nature.” The British-South African SAS reservist and endurance swimmer is a regular in the icy waters of the Arctic and Antarctic ALEX HONNOLD oceans. He’s swum long-distance in every ocean in the world and GIVES ROCKS By Margot Bertelsmann holds several world records, perhaps most notably the record of being the first person to swim 500 metres freestyle in the Finnish World Winter Swimming Championships (the usual distance is 25 “...if you fall, you’ll likely die (and metres breaststroke) – wearing only a Speedo. He also swam a near-unimaginable 1000 metres in -1.7°C waters near the North many free soloists have).” Pole, after which he couldn’t feel his fingertips for four months! When he’s not breaking endurance records, Lewis tours the When your appetite for the thrill of danger is as large as globe speaking about his passion: conserving our oceans and 27-year-old Alex Honnold’s, you’d better find a 600 metres- water, climate change and global warming.
    [Show full text]
  • South Africa: Fairest Cape to Kruger - January 2020
    Tropical Birding Trip Report South Africa: Fairest Cape to Kruger - January 2020 A Tropical Birding set departure tour South Africa: Fairest Cape to Kruger Main Tour: 10th – 24th January 2020 Eastern Endemics and Drakensberg Extension: 24th January – 1st February 2020 Tour Leader: Emma Juxon All photographs in this report were taken by Emma Juxon, species depicted in photographs are named in BOLD RED Gurney’s Sugarbird seen on our day exploring the Sani Pass during the Drakensberg Extension www.tropicalbirding.com +1-409-515-9110 [email protected] Tropical Birding Trip Report South Africa: Fairest Cape to Kruger - January 2020 Introduction South Africa has it all, from mind-blowing wildlife to incredible scenery to fantastic people and cultures, not to mention the delicious food! This tour really gives clients a wonderful insight into life in this fantastic and varied country. We cover a huge area of the country, taking us through many different habitats and thus allowing us the opportunity to enjoy large species numbers. This tour follows our tried and tested route through the rugged Western Cape and along the south coast into the Garden Route. From there we move inland to the arid landscapes of the Karoo and Tankwa Karoo before hopping across country via airplane to Johannesburg and exploring the world-famous Kruger National Park. Then back to Johannesburg before winding our way through the mid-altitude grasslands of Wakkerstroom to Zululand, visiting Mkhuze Game Reserve, the St. Lucia estuary, the montane forests of Eshowe and oNgoye and the agricultural lands of Howick and Underberg. A final adventurous ascent takes us into the striking high- altitude vistas of Lesotho before winding our way back down to the tropical Indian Ocean shores of Durban.
    [Show full text]
  • Resilience of Alternative States in Spatially Extended Ecosystems
    RESEARCH ARTICLE Resilience of Alternative States in Spatially Extended Ecosystems Ingrid A. van de Leemput*, Egbert H. van Nes, Marten Scheffer Department of Environmental Sciences, Wageningen University, Wageningen, The Netherlands * [email protected] Abstract Alternative stable states in ecology have been well studied in isolated, well-mixed systems. However, in reality, most ecosystems exist on spatially extended landscapes. Applying ex- isting theory from dynamic systems, we explore how such a spatial setting should be ex- pected to affect ecological resilience. We focus on the effect of local disturbances, defining resilience as the size of the area of a strong local disturbance needed to trigger a shift. We show that in contrast to well-mixed systems, resilience in a homogeneous spatial setting does not decrease gradually as a bifurcation point is approached. Instead, as an environ- OPEN ACCESS mental driver changes, the present dominant state remains virtually ‘indestructible’, until at Citation: van de Leemput IA, van Nes EH, Scheffer a critical point (the Maxwell point) its resilience drops sharply in the sense that even a very M (2015) Resilience of Alternative States in Spatially Extended Ecosystems. PLoS ONE 10(2): e0116859. local disturbance can cause a domino effect leading eventually to a landscape-wide shift to doi:10.1371/journal.pone.0116859 the alternative state. Close to this Maxwell point the travelling wave moves very slow. Under Academic Editor: Emanuele Paci, University of these conditions both states have a comparable resilience, allowing long transient co-occur- Leeds, UNITED KINGDOM rence of alternative states side-by-side, and also permanent co-existence if there are mild Received: April 11, 2014 spatial barriers.
    [Show full text]
  • Introduction to Theoretical Ecology
    Introduction to Theoretical Ecology Natal, 2011 Objectives After this week: The student understands the concept of a biological system in equilibrium and knows that equilibria can be stable or unstable. The student understands the basics of how coupled differential equations can be analyzed graphically, including phase plane analysis and nullclines. The student can analyze the stability of the equilibria of a one-dimensional differential equation model graphically. The student has a basic understanding of what a bifurcation point is. The student can relate alternative stable states to a 1D bifurcation plot (e.g. catastrophe fold). Study material / for further study: This text Scheffer, M. 2009. Critical Transitions in Nature and Society, Princeton University Press, Princeton and Oxford. Scheffer, M. 1998. Ecology of Shallow Lakes. 1 edition. Chapman and Hall, London. Edelstein-Keshet, L. 1988. Mathematical models in biology. 1 edition. McGraw-Hill, Inc., New York. Tentative programme (maybe too tight for the exercises) Monday 9:00-10:30 Introduction Modelling + introduction Forrester diagram + 1D models (stability graphs) 10:30-13:00 GRIND Practical CO2 chamber - Ethiopian Wolf Tuesday 9:00-10:00 Introduction bifurcation (Allee effect) and Phase plane analysis (Lotka-Volterra competition) 10:00-13:00 GRIND Practical Lotka-Volterra competition + Sahara Wednesday 9:00-13:00 GRIND Practical – Sahara (continued) and Algae-zooplankton Thursday 9:00-13:00 GRIND practical – Algae zooplankton spatial heterogeneity Friday 9:00-12:00 GRIND practical- Algae zooplankton fish 12:00-13:00 Practical summary/explanation of results - Wrap up 1 An introduction to models What is a model? The word 'model' is used widely in every-day language.
    [Show full text]