Jill Bailey the Facts on File Dictionary of Botany

Total Page:16

File Type:pdf, Size:1020Kb

Jill Bailey the Facts on File Dictionary of Botany The Facts On File DICTIONARY of BOTANY The Facts On File DICTIONARY of BOTANY Edited by Jill Bailey The Facts On File Dictionary of Botany Copyright © 2003 by Market House Books Ltd All rights reserved. No part of this book may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval systems, without permission in writing from the publisher. For information contact: Checkmark Books An imprint of Facts On File, Inc. 132 West 31st Street New York NY 10001 Library of Congress Cataloging-in-Publication Data The Facts on File dictionary of botany / edited by Jill Bailey. p. cm. Includes bibliographical references (p. ). ISBN 0-8160-4910-6 (hc)—ISBN 0-8160-4911-4 (pbk.) 1. Botany—Dictionaries. I. Title: Dictionary of botany. II. Bailey, Jill. III. Facts on File, Inc. QK9.F33 2002 580'.3—dc2l 2002035202 Checkmark Books are available at special discounts when purchased in bulk quantities for businesses, associations, institutions, or sales promotions. Please call our Special Sales Department in New York at (212) 967-8800 or (800) 322-8755. You can find Facts On File on the World Wide Web at http://www.factsonfile.com Compiled and typeset by Market House Books Ltd, Aylesbury, UK Printed in the United States of America MP 10987654321 This book is printed on acid-free paper PREFACE This dictionary is one of a series covering the terminology and concepts used in important branches of science. The Facts On File Dictionary of Botany is planned as an additional source of information for students taking Ad- vanced Placement (AP) Science courses in high schools, but will also be help- ful to older students taking introductory college courses. This volume covers the whole area of pure and applied plant science includ- ing anatomy and plant morphology, plant physiology, biochemistry, cell bi- ology, genetics, evolution, and ecology. It also covers the taxonomy and classification of plants, with entries for the higher-ranking taxa. The defini- tions are intended to be clear and informative and, where possible, we have provided helpful diagrams and examples. The book also has a selection of short biographical entries for people who have made important contribu- tions to the field. The appendices include lists of webpages and an informa- tive bibliography. The book will be a helpful additional source of information for anyone studying AP Biology, notably the sections on Organisms and Populations, Structure and Function of Plants and Animals, and Molecules and Cells. However, we have not restricted the content to this syllabus. Modern plant science is a subject of considerable importance and we hope that this book will be useful to anyone interested in the subject. ACKNOWLEDGMENTS Consultant Andrew Lack B.Sc., Pd.D. Contributors Eve Daintith B.Sc. Elizabeth Tootill B.Sc. CONTENTS Entries A to Z 1 Appendixes I. SI Units 248 II. Webpages 249 Bibliography 250 A ABA See abscisic acid. abscission The organized loss of part of a plant, usually a leaf, fruit, or unfertilized abaxial In structures such as a leaves flower. An abscission zone occurs at the and petals, the side facing away from the base of the organ. Here a separation layer main axis, i.e. the lower surface. In lateral (abscission layer) is formed by breakdown organs such as leaves, abaxial is synony- or separation of cells and final severance mous with the underside. Compare adax- occurs when the vascular bundles are bro- ial. ken mechanically, e.g. by wind or rain. The abscission layer is activated by increasing abiotic environment The nonliving levels of ethylene and a decreasing concen- factors of the environment that influence tration of auxin ecological systems. Abiotic factors include climate, chemical pollution, geographical absolute humidity See humidity. features, etc. absolute pollen frequency (APF) See pollen analysis. absorption 1. The uptake of liquid by cells and organs. In plants, water and min- eral salts are absorbed mainly by the root hairs, just behind the root tips. 2. The capture of radiant energy by plant pigments. About 80% of the visible light falling on a leaf is absorbed, and about Abscisic acid 10% of the infrared radiation. abscisic acid (ABA)A plant hormone, absorption spectrum A plot of the ab- that functions chiefly as an inhibitor of sorbance by a substance of radiation at dif- growth and cell elongation. Abscisic acid ferent wavelengths, usually of ultraviolet, has a variety of effects related to seed dor- visible, or infrared radiation. It can give in- mancy and stress responses: it regulates formation about the identity or quantity of protein expression in seed development a substance. Chlorophylls, for example, leading to dormancy and is one of the hor- have absorption peaks in the red and blue mones involved in bud dormancy; it regu- (and therefore reflect green light). Com- lates stress responses by, for example, pare action spectrum. closing stomata in times of water shortage and increasing the ability of roots to carry accessory cell See subsidiary cell. water. It can also promote root growth and inhibit shoot growth. Despite its name it accessory chromosome See B chromo- does not directly promote abscission, but some. only indirectly through increasing ethylene production. Formerly it was known as ab- accessory pigment See photosynthetic scisin II or dormin. pigments. 1 acellular acellular Denoting relatively large tis- achene A dry indehiscent fruit formed sues or organisms that are not composed of from an ovary with a single carpel contain- discrete cells and are, in effect, unicellular. ing a single seed, e.g. oak (Quercus). Dif- In flowering plants, for instance, the early ferent types of achenes include the stages of endosperm development are often CARYOPSIS, CYPSELA, NUT, and SAMARA. acellular. Other examples include aseptate fungal hyphae and certain green algae, acicular Needle-shaped. such as Acetabularia. The term is used in preference to unicellular to distinguish acid A substance that gives rise to hy- + such structures (which are often multinu- drogen ions (or H3O ) when dissolved in cleate) from conventional cells and show water. An acid in aqueous solution will their equivalence to multicellular struc- have a pH below 7. Lowry–Brønsted tures. See also coenocyte. theory defines an acid as a substance that exhibits a tendency to release a proton, and Aceraceae A family of temperate and a base as a substance that tends to accept a tropical trees and shrubs that includes the proton. Strong acids (e.g. HNO3) react +. maples and sycamores. completely with water to give H3O Weak acids (e.g. CH3COOH) are only partly dis- + acetaldehyde (ethanal) An aldehyde, sociated because H3O is a stronger acid than the free acids. CH3CHO, that is an intermediate in the conversion of pyruvic acid to ethanol dur- See ing the final stage of glycolysis during acidic stain staining. anaerobic respiration in plants. It is in- acid rain The deposition of acids by nat- volved in the synthesis and breakdown of ural precipitation, mainly by rain but also the amino acid threonine. by snow and fog. Acids are formed by re- action of gaseous waste products, particu- acetic acid (ethanoic acid) A carboxylic larly sulfur dioxide, and also nitrogen acid, CH COOH, obtained by the oxida- 3 oxides, with moisture in the air to form sul- tion of ethyl alcohol. Acetic acid is a com- furic and nitric acids. The subsequent pre- ponent of vinegar (which is obtained by cipitation has led to raised acidity in forests bacterial oxidation of wine waste). It is and lakes, especially in Scandinavia and used as an alternative carbon source by cer- some other parts of northern Europe, dam- tain green algae. When combined with aging the environment. Acid rain is often COENZYME A to form ACETYL COA, it plays a used more loosely for any atmospheric pol- key role in AEROBIC RESPIRATION. lutant that dissolves in precipitation caus- ing environmental damage, such as carbon acetocarmine A stain used to color monoxide or ozone, and these may interact chromosomes deep reddish-black for view- with the acids. ing with a light microscope. Tissues are The most serious pollutant is sulfur fixed in acetic acid before applying aceto- dioxide, which comes mainly from burning carmine. See fixation; staining. coal and is, consequently, less serious now than in the twentieth century. Sulfuric acid acetyl CoA (acetyl coenzyme A) A com- in soils may lead to the formation of am- pound made up of acetyl and coenzyme A monium sulfate, which causes the release linked by a sulfur bridge. Acetyl CoA plays of toxic aluminum and heavy metal ions a key role in metabolism, being a precursor that inhibit metabolic activity. In water- of the KREBS CYCLE and GLYOXYLATE CYCLE, ways these can damage the gills of fish. Un- and the starting point for synthesis of fatty polluted rain is normally slightly acidic acids, terpenes, and some amino acids. The with a pH of 5.0–5.6. synthesis of acetyl CoA is a high-energy process, requiring energy from ATP, which acid soil A soil with a pH less than 6.0. is converted to AMP. Such soils usually form in areas of heavy 2 activation energy rainfall, which causes leaching of lime form bacteria are rodlike structures. The from the surface layers, or over acid sub- Actinobacteria are distinguished by pro- strata such as granite or sand. In the acidic ducing actinospores: entire cells encysted conditions, decomposition of organic ma- in thick walls to form resistant spores. terial in the soil is slow. Acid soils often contain substantial concentrations of iron actinodromous (palmate; digitate) De- and aluminum hydroxides. See brown scribing a form of leaf VENATION in which earth; podsol.
Recommended publications
  • History Department Botany
    THE HISTORY OF THE DEPARTMENT OF BOTANY 1889-1989 UNIVERSITY OF MINNESOTA SHERI L. BARTLETT I - ._-------------------- THE HISTORY OF THE DEPARTMENT OF BOTANY 1889-1989 UNIVERSITY OF MINNESOTA SHERI L. BARTLETT TABLE OF CONTENTS Preface 1-11 Chapter One: 1889-1916 1-18 Chapter Two: 1917-1935 19-38 Chapter Three: 1936-1954 39-58 Chapter Four: 1955-1973 59-75 Epilogue 76-82 Appendix 83-92 Bibliography 93-94 -------------------------------------- Preface (formerly the College of Science, Literature and the Arts), the College of Agriculture, or The history that follows is the result some other area. Eventually these questions of months ofresearch into the lives and work were resolved in 1965 when the Department of the Botany Department's faculty members joined the newly established College of and administrators. The one-hundred year Biological Sciences (CBS). In 1988, The overview focuses on the Department as a Department of Botany was renamed the whole, and the decisions that Department Department of Plant Biology, and Irwin leaders made to move the field of botany at Rubenstein from the Department of Genetics the University of Minnesota forward in a and Cell Biology became Plant Biology's dynamic and purposeful manner. However, new head. The Department now has this is not an effort to prove that the administrative ties to both the College of Department's history was linear, moving Biological Sciences and the College of forward in a pre-determined, organized Agriculture. fashion at every moment. Rather I have I have tried to recognize the attempted to demonstrate the complexities of accomplishments and individuality of the the personalities and situations that shaped Botany Department's faculty while striving to the growth ofthe Department and made it the describe the Department as one entity.
    [Show full text]
  • Chilling Out: the Evolution and Diversification of Psychrophilic Algae with a Focus on Chlamydomonadales
    Polar Biol DOI 10.1007/s00300-016-2045-4 REVIEW Chilling out: the evolution and diversification of psychrophilic algae with a focus on Chlamydomonadales 1 1 1 Marina Cvetkovska • Norman P. A. Hu¨ner • David Roy Smith Received: 20 February 2016 / Revised: 20 July 2016 / Accepted: 10 October 2016 Ó Springer-Verlag Berlin Heidelberg 2016 Abstract The Earth is a cold place. Most of it exists at or Introduction below the freezing point of water. Although seemingly inhospitable, such extreme environments can harbour a Almost 80 % of the Earth’s biosphere is permanently variety of organisms, including psychrophiles, which can below 5 °C, including most of the oceans, the polar, and withstand intense cold and by definition cannot survive at alpine regions (Feller and Gerday 2003). These seemingly more moderate temperatures. Eukaryotic algae often inhospitable places are some of the least studied but most dominate and form the base of the food web in cold important ecosystems on the planet. They contain a huge environments. Consequently, they are ideal systems for diversity of prokaryotic and eukaryotic organisms, many of investigating the evolution, physiology, and biochemistry which are permanently adapted to the cold (psychrophiles) of photosynthesis under frigid conditions, which has (Margesin et al. 2007). The environmental conditions in implications for the origins of life, exobiology, and climate such habitats severely limit the spread of terrestrial plants, change. Here, we explore the evolution and diversification and therefore, primary production in perpetually cold of photosynthetic eukaryotes in permanently cold climates. environments is largely dependent on microbes. Eukaryotic We highlight the known diversity of psychrophilic algae algae and cyanobacteria are the dominant photosynthetic and the unique qualities that allow them to thrive in severe primary producers in cold habitats, thriving in a surprising ecosystems where life exists at the edge.
    [Show full text]
  • STEM Disciplines
    STEM Disciplines In order to be applicable to the many types of institutions that participate in the HERI Faculty Survey, this list is intentionally broad and comprehensive in its definition of STEM disciplines. It includes disciplines in the life sciences, physical sciences, engineering, mathematics, computer science, and the health sciences. Agriculture/Natural Resources Health Professions 0101 Agriculture and related sciences 1501 Alternative/complementary medicine/sys 0102 Natural resources and conservation 1503 Clinical/medical lab science/allied 0103 Agriculture/natural resources/related, other 1504 Dental support services/allied 1505 Dentistry Biological and Biomedical Sciences 1506 Health & medical administrative services 0501 Biochem/biophysics/molecular biology 1507 Allied health and medical assisting services 0502 Botany/plant biology 1508 Allied health diagnostic, intervention, 0503 Genetics treatment professions 0504 Microbiological sciences & immunology 1509 Medicine, including psychiatry 0505 Physiology, pathology & related sciences 1511 Nursing 0506 Zoology/animal biology 1512 Optometry 0507 Biological & biomedical sciences, other 1513 Osteopathic medicine/osteopathy 1514 Pharmacy/pharmaceutical sciences/admin Computer/Info Sciences/Support Tech 1515 Podiatric medicine/podiatry 0801 Computer/info tech administration/mgmt 1516 Public health 0802 Computer programming 1518 Veterinary medicine 0803 Computer science 1519 Health/related clinical services, other 0804 Computer software and media applications 0805 Computer systems
    [Show full text]
  • Alien Plants in Temperate Weed Communities: Prehistoric and Recent Invaders Occupy Different Habitats
    Ecology, 86(3), 2005, pp. 772±785 q 2005 by the Ecological Society of America ALIEN PLANTS IN TEMPERATE WEED COMMUNITIES: PREHISTORIC AND RECENT INVADERS OCCUPY DIFFERENT HABITATS PETR PYSÏ EK,1,2,5 VOJTEÏ CH JAROSÏÂõK,1,2 MILAN CHYTRY ,3 ZDENEÏ K KROPA CÏ ,4 LUBOMÂõR TICHY ,3 AND JAN WILD1 1Institute of Botany, Academy of Sciences of the Czech Republic, CZ-252 43 PruÊhonice, Czech Republic 2Department of Ecology, Faculty of Science, Charles University, VinicÏna 7, CZ-128 01 Praha 2, Czech Republic 3Department of Botany, Masaryk University, KotlaÂrÏska 2, CZ-611 37 Brno, Czech Republic 4SlavõÂkova 16, CZ-130 00 Praha 3, Czech Republic Abstract. Variables determining the number of native and alien plants on arable land in Central Europe are identi®ed. Species richness of 698 samples of weed ¯oras recorded in the Czech Republic in plots of a standard size of 100 m2 in 1955±2000 was studied in relation to altitudinally based ¯oristic region, soil type, type of cultivated crop, climatic variables, altitude, year of the record, crop cover and height, and human population density in the region. Vascular plant species were classi®ed into native and alien, the latter divided in archaeophytes, introduced before AD 1500, and neophytes, introduced after this date. The use of minimal adequate models in the analysis of covariance allowed determination of the net effects of mutually correlated environmental variables. Models for particular species groups explained 33±48% of variation in species numbers and 27±51% in propor- tions; however, explanatory variables affected native species, archaeophytes, and neophytes differently.
    [Show full text]
  • Ecological Impact Assessment in the Context of EIA
    RADAR Research Archive and Digital Asset Repository An evaluation of ecological impact assessment in England Katherine Drayson (2012) https://radar.brookes.ac.uk/radar/items/0d813ad8-3f82-48f2-a25d-f04f78444cca/1/ Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. When referring to this work, the full bibliographic details must be given as follows: Drayson, K (2012) An evaluation of ecological impact assessment in England PhD, Oxford Brookes University Removed pp. 258-end: published papers WWW.BROOKES.AC.UK/GO/RADAR AN EVALUATION OF ECOLOGICAL IMPACT ASSESSMENT IN ENGLAND Katherine Drayson A thesis submitted in partial fulfilment of the requirements of the award of DOCTOR OF PHILOSOPHY Oxford Brookes University DECEMBER 2012 ABSTRACT Ecological impact assessment (EcIA) has historically been poorly performed, resulting in poor quality EcIA chapters. No research has been conducted to identify whether poor quality EcIA chapters result in poor quality mitigation and therefore potential net loss of biodiversity. A review of 112 EcIA chapters was conducted to determine whether there have been improvements since the last review in 2000 and which factors are linked with EcIA chapter quality, such as the introduction of professional guidance in 2006.
    [Show full text]
  • Biology Has Been Taught at Bristol – As Botany and Zoology – Since Before the University Was Founded in 1909
    Biology has been taught at Bristol – as Botany and Zoology – since before the University was founded in 1909. Bristol has made significant contributions to many fields, from animal cognition and medicinal plants to entomology, evolutionary Game Theory and bird flight – and the BBC Natural History Unit's proximity to the University has led to television careers for a number of graduates! In 1876, University College, the precursor to the University, appointed Dr. Frederick Adolph Leipner as Lecturer in Botany, Zoology and, amusingly, German. Leipner had trained at the Bristol Medical School, but taught botany and natural philosophy, later combining this with teaching in Vegetable Physiology at the Medical School. He became Professor of Botany in 1884 and was a founding member of the Bristol Naturalists' Society, becoming its President in 1893. Bristol today is proud of its interdisciplinary strengths and, among others, offers Joint Honours Degrees in Geology and Biology, and in Psychology and Zoology. A portent of these modern links is seen in one of the University's most notable early appointments, Conwy Lloyd Morgan, appointed as Professor of Zoology and Geology in 1884 and then – somehow fitting in service as Vice- Chancellor – becoming the first Chair in Psychology (and Ethics). Lloyd Morgan is most famous as a pioneer of the study of comparative animal cognition. He was a highly influential figure for the North American Behaviourist movement: “Lloyd Morgan's cannon” is a comparative psychologist's version of Occam's Razor whereby no behaviour should be ascribed to more complex cognitive mechanisms than strictly necessary. He was the first Fellow of the Royal Society to be elected for psychological work.
    [Show full text]
  • A Glossary of Botanic Terms, with Their Derivation and Accent
    A GLOSSARY OF BOTANIC TERMS WITH THEIR DERIVATION AND ACCENT BY BENJAMIN DAYDON JACKSON LONDON DUCKWORTH & CO. PHILADELPHIA: J. B. LIPPINCOTT COMPANY 1900 CONTENTS Pages PREFACE v-xi Plan of the Work ... xii GLOSSARY .... 1-294 Additions during Printing . 295-319 APPENDIX— A. Signs and Abbreviations ..... 322 B. The Pronunciation of Latin and Latinized Words . 322 C. The Use of the Terms "Right" and "Left" . 323 D. Bibliography . .... 324-326 ERRATA ... ... 327 " Every other authout may aspire to praise, the lexicographer can only hope to escape reproach." De Samuel Johnson. PEEFACE Nearly thirty-nine years ago Dr M. C. Cooke published his " Manual,'' which reached a second edition nine years afterwards. Since then no botanic dictionary has been published in Britain, while during the period which has passed since then botany has undergone a momentous change. While systematic botany has been actively prosecuted, the other departments of morphology, physiology and minute anatomy have been energetically pursued by the help of improved appliances and methods of investigation. One result has been a large increase of technical terms, which are only partially accounted for in the various text-books. The time seemed therefore ripe for a new Glossary which should include these terms, and, encouraged by the help of many botanic friends, I have drawn up the present volume. After the work had been partly written, and announced for publication, Mr Crozier's " Dictionary " first came under my notice. I have consequently compared it with my manuscript, and inserted many words which had not come within my knowledge, or had been rejected by me, as will be seen by the acknowledgment in each case.
    [Show full text]
  • Alcohol Dehydrogenase) from Cylindrospermopsis Raciborskii T3 by Zymography and Mass Spectrometry
    Investigation of the Putative Enzyme Function of SxtL (GDSL-lipase) and SxtU (Alcohol dehydrogenase) from Cylindrospermopsis raciborskii T3 by Zymography and Mass Spectrometry by Kulbhushan N Ugemuge z3274021 Supervisor: Prof. Brett A. Neilan Co supervisors: Dr. Sohail Siddiqui and Dr. Michelle Gehringer UNSW 21 April 2011 A.D. In Partial Fulfilment of the Requirements for the Award of Master of Philosophy (Research) School of Biotechnology and Biomolecular Sciences Centre for Cyanobacteria and Astrobiology The University of New South Wales, Sydney, Australia i ii Acknowledgement I would like to thank my supervisor Brett Neilan for giving me this wonderful opportunity to learn and prosper in the field of cyanobacterial research as an MPhil student. I couldn’t have gotten a better supervisor. Long back I dreamed of becoming a scientist and was seeking a role model. Thank you for being that inspiration for me. I am thankful for your support and guidance during the research, your knowledge in the field of cyanobacteria is extraordinary. I am grateful for your friendship during the ups and downs of my life and also for guiding me throughout. Thank you so much. I am grateful to my co-supervisors Michelle Gehringer and Sohail Siddiqui who have been the heart of my project. This thesis wouldn’t have been the same without your tremendous knowledge and expertise in the field. Thank you for all the discussions and valuable inputs while trying to solve the mysteries in the project. Your ideas and suggestions have been remarkable. Thank you for all the technical support and also for making this thesis presentable.
    [Show full text]
  • Gokul Jarishma Keriuscia Vol1
    SUPRAGLACIAL SYSTEMS BIOLOGY OF DYNAMIC ARCTIC MICROBIAL ECOSYSTEMS A thesis submitted for the degree of Philosophiae Doctor (Doctor of Philosophy) by Jarishma Keriuscia Gokul (MSc, BTech (Hons), BSc) Interdisciplinary Centre for Environmental Microbiology Institute for Biological, Environmental and Rural Sciences Aberystwyth University May 2017 DECLARATION Word count of thesis: .……………………………………………………………………………….…………….57 348 DECLARATION This work has not previously been accepted in substance for any degree and is not being concurrently submitted in candidature for any degree. Candidate name ……………………………………………………………………………………………………….Jarishma Keriuscia Gokul Signature …………………………………………………………………………………………………………………. Date ………………………………………………………………………………………………………………………….30 May 2017 STATEMENT 1 This thesis is the result of my own investigations, except where otherwise stated. Where correction services have been used, the extent and nature of the correction is clearly marked in a footnote(s). Other sources are acknowledged by footnotes giving explicit references. A bibliography is appended. Signature …………………………………………………………………………………………………………………. Date ………………………………………………………………………………………………………………………….30 May 2017 STATEMENT 2 I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter-library loan, and for the title and summary to be made available to outside organisations. Signature …………………………………………………………………………………………………………………. Date ………………………………………………………………………………………………………………………….30 May 2017 i SUMMARY Arctic glacier surfaces
    [Show full text]
  • Nitric Oxide Overproduction by Cue1 Mutants Differs on Developmental
    plants Article Nitric Oxide Overproduction by cue1 Mutants Differs on Developmental Stages and Growth Conditions Tamara Lechón, Luis Sanz, Inmaculada Sánchez-Vicente and Oscar Lorenzo * Department of Botany and Plant Physiology, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/Río Duero 12, 37185 Salamanca, Spain; [email protected] (T.L.); [email protected] (L.S.); elfi[email protected] (I.S.-V.) * Correspondence: [email protected]; Tel.: +34-923294500-5117 Received: 29 September 2020; Accepted: 2 November 2020; Published: 4 November 2020 Abstract: The cue1 nitric oxide (NO) overproducer mutants are impaired in a plastid phosphoenolpyruvate/phosphate translocator, mainly expressed in Arabidopsis thaliana roots. cue1 mutants present an increased content of arginine, a precursor of NO in oxidative synthesis processes. However, the pathways of plant NO biosynthesis and signaling have not yet been fully characterized, and the role of CUE1 in these processes is not clear. Here, in an attempt to advance our knowledge regarding NO homeostasis, we performed a deep characterization of the NO production of four different cue1 alleles (cue1-1, cue1-5, cue1-6 and nox1) during seed germination, primary root elongation, and salt stress resistance. Furthermore, we analyzed the production of NO in different carbon sources to improve our understanding of the interplay between carbon metabolism and NO homeostasis. After in vivo NO imaging and spectrofluorometric quantification of the endogenous NO levels of cue1 mutants, we demonstrate that CUE1 does not directly contribute to the rapid NO synthesis during seed imbibition. Although cue1 mutants do not overproduce NO during germination and early plant development, they are able to accumulate NO after the seedling is completely established.
    [Show full text]
  • Chilling Out: the Evolution and Diversification of Psychrophilic Algae with a Focus on Chlamydomonadales
    Polar Biol (2017) 40:1169–1184 DOI 10.1007/s00300-016-2045-4 REVIEW Chilling out: the evolution and diversification of psychrophilic algae with a focus on Chlamydomonadales 1 1 1 Marina Cvetkovska • Norman P. A. Hu¨ner • David Roy Smith Received: 20 February 2016 / Revised: 20 July 2016 / Accepted: 10 October 2016 / Published online: 21 October 2016 Ó Springer-Verlag Berlin Heidelberg 2016 Abstract The Earth is a cold place. Most of it exists at or Introduction below the freezing point of water. Although seemingly inhospitable, such extreme environments can harbour a Almost 80 % of the Earth’s biosphere is permanently variety of organisms, including psychrophiles, which can below 5 °C, including most of the oceans, the polar, and withstand intense cold and by definition cannot survive at alpine regions (Feller and Gerday 2003). These seemingly more moderate temperatures. Eukaryotic algae often inhospitable places are some of the least studied but most dominate and form the base of the food web in cold important ecosystems on the planet. They contain a huge environments. Consequently, they are ideal systems for diversity of prokaryotic and eukaryotic organisms, many of investigating the evolution, physiology, and biochemistry which are permanently adapted to the cold (psychrophiles) of photosynthesis under frigid conditions, which has (Margesin et al. 2007). The environmental conditions in implications for the origins of life, exobiology, and climate such habitats severely limit the spread of terrestrial plants, change. Here, we explore the evolution and diversification and therefore, primary production in perpetually cold of photosynthetic eukaryotes in permanently cold climates. environments is largely dependent on microbes.
    [Show full text]
  • The Essential Gene Set of a Photosynthetic Organism PNAS PLUS
    The essential gene set of a photosynthetic organism PNAS PLUS Benjamin E. Rubina, Kelly M. Wetmoreb, Morgan N. Priceb, Spencer Diamonda, Ryan K. Shultzabergerc, Laura C. Lowea, Genevieve Curtina, Adam P. Arkinb,d, Adam Deutschbauerb, and Susan S. Goldena,1 aDivision of Biological Sciences, University of California, San Diego, La Jolla, CA 92093; bPhysical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; cKavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA 92093; and dDepartment of Bioengineering, University of California, Berkeley, CA 94720 Contributed by Susan S. Golden, September 29, 2015 (sent for review July 16, 2015; reviewed by Caroline S. Harwood and William B. Whitman) Synechococcus elongatus PCC 7942 is a model organism used for Tn-seq–like system in Chlamydomonas reinhardtii; however, the studying photosynthesis and the circadian clock, and it is being mutant library currently lacks sufficient saturation to determine developed for the production of fuel, industrial chemicals, and gene essentiality (12). To date, the essential genes for photo- pharmaceuticals. To identify a comprehensive set of genes and autotrophs have only been estimated by indirect means, such as intergenic regions that impacts fitness in S. elongatus, we created by comparative genomics (13). The absence of experimentally a pooled library of ∼250,000 transposon mutants and used sequencing determined essential gene sets in photosynthetic organisms, de- to identify the insertion locations. By analyzing the distribution and spite their importance to the environment and industrial pro- survival of these mutants, we identified 718 of the organism’s 2,723 duction, is largely because of the difficulty and time required for genes as essential for survival under laboratory conditions.
    [Show full text]