Valeriia Shurupina

Total Page:16

File Type:pdf, Size:1020Kb

Valeriia Shurupina Animated Transitions in Statistical Maps by FIRSTVALERIIA NAME SHURUPINA LASTNAME 100% This research develops possible 90% THESIS CONDUCTED AT 80% transitions between maps and charts 70% 60% Department of Geo-Information and determines how they affect user 50% 40% 30% perception. There were two 20% Processing 10% experiments conducted testing the 0% I animation: II animation: III animation: I animation: II animation: III animation: Faculty of Geo-Information Science effects on the syntactic and semantic Proportional symbol map Proportional symbol map Proportional symbol map Choropleth map Choropleth map Choropleth map 100% and Earth Observation levels of analysis. 90% 80% 70% University of Twente (UTwente) 60% The results revealed a positive 50% 40% influence of animation on identifying 30% 20% 10% objects with the highest or the lowest 0% I animation: II animation: III animation: IV static: I animation: II animation: III animation: IV static: value and no effects for tasks in which Proportional Proportional Proportional Proportional Choropleth map Choropleth map Choropleth map Choropleth map participants were required to determine symbol map symbol map symbol map symbol map 100% 90% trends. An object tracking test showed 80% 70% that tweening is a more effective 60% 50% 40% THESIS ASSESSMENT BOARD technique than staging. 30% 20% 10% 0% Chair Professor: Prof. Dr. Menno-Jan I animation: II animation: III animation: IV static: I animation: II animation: III animation: IV static: Proportional Proportional Proportional Proportional Choropleth map Choropleth map Choropleth map Choropleth map MOTIVATION AND OBJECTIVE symbol map symbol map symbol map symbol map Kraak, UT With the advent of animation, statistical From top: Fig. 2: Correct (blue), half-correct (yellow), and wrong (red) answers in object tracking; Fig. 3: Correct (blue) and Supervisor: Drs. Barend Köbben, UT data graphics became motional, wrong (red) answers in determining trends; Fig.4: Correct and wrong answers in identifying the object values. simplifying data analysis and emptying Reviewer: M.Sc. Moris Zahtila, TUD screen space. However, it is not clear METHODOLOGY any discernible influence of animation what kind of animated transitions are either in accuracy nor in timing; both Two experiments were conducted to test YEAR possible between maps and charts and static and animated tasks had equally the effects of designed transitions. The how they might affect user perception. good results (Fig. 3). In animated tasks, 2020 first experiment set an object tracking Therefore, the main objective of this it showed the benefits of staging over test revealing transition effects on the research is to determine how animated tweening. Generally, choropleth maps syntactic level of analysis, in other transitions from statistical maps to had a higher number of correct results KEYWORDS words, it checks the ability to recognize charts and vice versa change user than proportional symbol maps when and locate transforming objects in perception. animated. Results highlighted a better animated transitions, statistical data, shape, size, and position. It compared performance of smooth staged graphics, maps, charts, cartography three different animated transitions animation for transitions with DESIGN OF TRANSITIONS among each other. The second proportional symbol maps; and better experiment is tested on the semantic Three charts and three maps were results of sharp staged animation in ADDITIONAL MATERIALS level of analysis revealing transition selected for designing transitions combination with choropleth maps. between them. They are scatter plot effects on understanding of statistical (chart), bar chart, pie chart, proportional data. This experiment narrowed down to Identification of objects with the symbol map, flow map, and choropleth identification of map trends and objects highest/lowest value displayed a greater map. Each represents quantitative with the highest/lowest value. It number of correct answers in animated statistical data at discrete enumeration includes tasks with animated and static tasks than static ones (Fig. 4). Among units. graphics. The evaluation of results is transitions, smooth staged animation based on answers’ accuracy, time spent performed worse in accuracy than sharp Nine basic pairs of transitions between on completing each task, and subjective staged and tweened ones. However, a selected maps and charts were designed preferences. comparison of the mean time spent on (Fig. 1). Each can apply additional solving revealed a better performance of RESULTS transition techniques to enhance the tweening. Additionally, there was no animation ability to represent and The object tracking experiment results significant difference revealed in communicate statistical data. showed the advantages of tweening accuracy between proportional symbol over staged animations in completing and choropleth maps when animated. In the tasks more accurately and faster static examples, proportional symbol (Fig. 2). They also demonstrated the maps had a greater number of correct Scan QR-Code or visit https://kartoweb.itc.nl/ students/msc-carto/shurupina_2020/ to find better results achieved with proportional answers than choropleth. more materials maps as compared to choropleths. CONCLUSION Participants tended to be more successful in completing the tasks All in all, the experiments showed that starting from charts than from maps. A transitions can have different effects on fewer number of graphic components users' perception. On the one hand, it also positively affected the answer’s proves their effectiveness in some accuracy. tasks, on the other hand, it speaks for the need of the further development for Determination of trends did not reveal Fig. 1: Possible transitions between maps and charts. other types of tasks. This master thesis was created within the Cartography M.Sc. programme – proudly co-funded by the Erasmus+ Programme of the European Union..
Recommended publications
  • Cartographic Design (GEOG 416) Fall 2013
    Cartographic Design (GEOG 416) Fall 2013 3.000 Credits Instructor: Santosh Rijal Office: 4528 Faner Hall Contact Email: [email protected] and Phone: (618) 303-6143 Office hours: T, W, (12:00-2:00 pm) or drop by anytime Lecture hours: T 10:00-11:50 am Faner 2533 Lab hours: W, R, 10:00-11:50 am Faner 2524 Prerequisites: Geog401 or consent of instructor Course introduction and objectives Cartographic design deals with the knowledge associated with the art, science, and technologies of maps that represent and communicate about our worlds. This course focuses on the fundamentals of cartographic design and cover map design, production, visualization, and analysis. This course requires students have the knowledge and skills in geographic information systems (GIS). By the end of the course students will master the: Basic geodesy, map projections and coordinate systems Cartographic generalization and symbolization Quantitative methods in thematic mapping Commonly used mapping technologies (choropleth map, dot map, proportional symbol map, isarithmic map, topographic map, value-by-area mapping, flow mapping) Map design, map composition, typography, and coloring Multivariate mapping, map animation, virtual and web mapping, multimedia mapping, and other new developments in cartography Use of popular software packages for map generation and displaying In addition to these, students will: Learn how to use mapping technologies and tools to solve problems in geography, environment, etc.; Learn how to integrate cartographic design with GIS, Global Positioning System (GPS), remote sensing, computer sciences, statistics, etc., to solve practical problems; Learn how to work as a good team worker; Understand maps are involved in their lives; Know how to teach themselves to use ArcGIS and its updated versions in the future.
    [Show full text]
  • Force-Directed Layout of Origin-Destination Flow Maps
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2017 http://dx.doi.org/10.1080/13658816.2017.1307378 ARTICLE Force-directed layout of origin-destination flow maps Bernhard Jenny a,b,c, Daniel M. Stephen c, Ian Muehlenhaus d, Brooke E. Marstonc, Ritesh Sharma e, Eugene Zhange and Helen Jennyc aFaculty of Information Technology, Monash University, Melbourne, Australia; bSchool of Science – Geospatial Sciences, RMIT University, Melbourne, Australia; cCollege of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA; dDepartment of Geography, University of Wisconsin Madison, Madison, WI, USA; eSchool of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, USA ABSTRACT ARTICLE HISTORY This paper introduces a force-directed layout method for creating Received 7 November 2016 origin-destination flow maps. Design principles derived from man- Accepted 13 March 2017 ual cartography and automated graph drawing to increase read- fl KEYWORDS ability of ow maps and graph layouts are taken into account. The Origin-destination flow origin-destination flow maps produced with our algorithm show maps; graph drawing; flows with quadratic Bézier curves that reduce flow-on-flow and cartographic design flow-on-node overlaps, and avoid sharp or irregular bends in flow principles; map design lines. A survey of expert cartographers found that flow maps created with our automated method are similar in quality to manually produced flow maps. 1. Introduction Flow maps visualize movement and not only demonstrate which places have been affected by movement but also the type, direction, and volume of movement. They are efficient tools for identifying spatial patterns and answer questions about geo- graphic phenomena.
    [Show full text]
  • Maps Are Subjective There Are a Thousand and One Ways to Map a Geographical Phenomenon
    1 The Mapping Guide is part of ESPON ECL Project. 2013 LIST OF AUTHORS Christine Zanin, University Paris Diderot, UMR 8504 Géographie-Cités-UMS 2414 RIATE Nicolas Lambert, UMS 2414 RIATE Paule Annick Davoine, Grenoble INP, UMR 5217 LIG-Steamer Hélène Mathian, CNRS, UMR 8504 Géographie-Cités Cécile Saint-Marc, UMR 5217 LIG-Steamer Contact : [email protected] [email protected] [email protected] tel. + 33 1 57 27 65 32 2 CONTENTS LIST OF AUTHORS 2 CONTENTS 3 ILLUSTRATIONS 4 MAPS 4 PART 1: FROM DATA TO MAP 9 THE BASE MAP 12 FROM DATA TO MAP 16 THE GRAPHIC LANGUAGE 21 THE EFFECTIVENESS OF A MAP 24 "STAGING" THE MAP 24 PART 2: MAP “FACES OF EUROPE 29 GRADUATED SYMBOL MAPS 32 SEGMENTED GRADUATED SYMBOL MAPS 34 CHOROPLETH MAPS 36 COUNT AND RATIO DATA MAPS 38 ISOPLETH MAPS 40 3D ISOPLETH MAPS 42 CARTOGRAM MAPS 44 DORLING CARTOGRAM MAPS 46 DISCONTINUITY MAPS 48 PRISM MAPS 50 DOT DENSITY MAPS 52 “SMART PROJECTED” MAPS 54 HISTO-MAPS 56 FLOW MAPS 58 GRID MAPS 60 TYPOLOGY MAPS 62 MAPPING SPATIAL SCENARIOS 64 PART 3: THE POWER OF MAPS 67 THE MAP AND THE MAP-MAKER 71 THE POWER OF MAPS 72 THE POWER OF COLOURS 75 THE RULES OF THE “MAPPING” GAME 81 ANNEXES 83 TOOLS FOR DESIGNING THE ECL MAPS 84 CARTOGRAPHIC GLOSSARY 87 REFERENCE BOOKS AND MANUALS RELATED TO CARTOGRAPHY 93 3 ILLUSTRATIONS Figure 1: From exploratory to communication maps ............................................................................................................................... 6 Figure 2: Pathways in the cartographic design process ........................................................................................................................ 11 Figure 3: The base map, to generalize or not to generalize? ..............................................................................................................
    [Show full text]
  • Thematic Mapping Engine
    Institute of Geography - School of GeoSciences - University of Edinburgh MSc in Geographical Information Science 2008 Awarded with Distinction Part 2: Supporting Document Thematic Mapping Engine Bjørn Sandvik This document is available from thematicmapping.org under a Creative Commons Attribution- Share Alike 3.0 License : http://creativecommons.org/licenses/by-sa/3.0/ Thematic Mapping Engine Bjørn Sandvik Table of contents 1. Introduction 5 2. The Thematic Mapping Engine 7 2.1 Requirements .......................................................................................................7 2.3 The TME web Interface.......................................................................................8 2.3.1 User guide .....................................................................................................9 2.3.2 How the web interface works .....................................................................10 2.4 TME Application Programming Interface (API)...............................................13 2.4.1 TME DataConnector class ..........................................................................14 2.4.2 TME ThematicMap class............................................................................15 3. Data preparation 17 3.1 Using open data..................................................................................................17 3.2 UN statistics.......................................................................................................17 3.3 World borders dataset ........................................................................................18
    [Show full text]
  • Cartographic Redundancy in Reducing Change Blindness in Detecting Extreme Values in Spatio-Temporal Maps
    International Journal of Geo-Information Article Cartographic Redundancy in Reducing Change Blindness in Detecting Extreme Values in Spatio-Temporal Maps Paweł Cybulski * ID and Beata Medy ´nska-Gulij Department of Cartography & Geomatics, Faculty of Geographic and Geological Sciences, Adam Mickiewicz University, Krygowskiego 10, 61-680 Pozna´n,Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-61-829-6307 Received: 23 November 2017; Accepted: 28 December 2017; Published: 1 January 2018 Abstract: The article investigates the possibility of using cartographic redundancy to reduce the change blindness effect on spatio-temporal maps. Unlike in the case of previous research, the authors take a look at various methods of cartographic presentation and modify the visual variables in order to see how those modifications affect the user’s perception of changes on spatio-temporal maps. The study described in the following article was the first attempt at minimizing the change blindness phenomenon by manipulating graphical parameters of cartographic visualization and using various quantitative mapping methods. Research shows that cartographic redundancy is not enough to completely resolve the problem of change blindness; however, it might help reduce it. Keywords: animated map; cartography; change blindness; user testing; visual perception 1. Introduction Cartographic animation makes it possible to present spatial and temporal changes simultaneously. Even though technological progress has moved animated maps into the realm of the Internet and enabled users to view them in an interactive fashion, their perception is still problematic. As aptly noticed by [1], the problem with animated map perception is not caused by the technology itself, but rather by the limited perceptual capabilities of the user.
    [Show full text]
  • Unit 47: On-Screen Visualization
    UC Santa Barbara GIS Core Curriculum for Technical Programs (1997-1999) Title Unit 47: On-Screen Visualization Permalink https://escholarship.org/uc/item/12q7v9xv Authors Unit 47, CCTP Edsall, Robert M. Publication Date 1998 Peer reviewed eScholarship.org Powered by the California Digital Library University of California UNIT 47: ON-SCREEN VISUALIZATION Written by Robert M. Edsall, Department of Geography, Penn State University Context Example Application Learning Objectives Preparatory Units Example Application Revisited Follow-Up Units Resources Context Effective interpretation of the results of your analysis -- both by you and by others -- depends to a large extent on the design of the on-screen display. Visualizing information in the form of a map, chart, image, or other form of graphic takes advantage of humans' most perceptive sense -- vision -- to uncover patterns, associations, and processes that would likely be missed if the data were displayed in tabular or some other non-graphic form. However, as Buttenfield (1996) points out, it's this very ability that might lead a viewer of a graphic display to be as easily misled as informed by the contents of the graphic. A slight alteration of the color scheme or classification method of a map, for example, might produce two different graphics that appear to tell two very different stories -- even though they represent the exact same data. Thus it is crucial that GIS users be aware of the power of a graphic image to communicate ideas and of the considerations necessary to design an effective on-screen visual display. This unit will outline some guidelines, developed by cartographers over many decades, which will assist you in the logical design of easily understood GIS display.
    [Show full text]
  • Chapter 6 Thematic Maps 6.2 Data Analysis
    Chapter 6 Thematic maps 6.2 Data analysis Ferjan Ormeling, the Netherlands (see also section 4.3.2, where the production of a thematic map is described from first concept to final map) 6.1 Spatial concepts In thematic mapping, we visualise data on the basis of spatial concepts, like density, ratio, percentages, index Figure 6.3 Graphic variables (from Kraak & Ormeling, numbers or trends, and of procedures like averaging. To Cartography, visualization of spatial data, 2010). make things comparable, we relate them to standard units like square kilometres, or we convert them to quantity (see also section 4.3.4). Differences in tint or standard situations. In order to compare average value (like the lighter and darker shade of a colour) are Figure 6.2 Data analysis (drawing A. Lurvink). temperatures measured at different latitudes, we first experienced in the sense of a hierarchy, with the darker assess the height above sea level of the stations where tints representing higher relative amounts and the Before we can map data, we have to analyse their the temperatures were measured, and then we reduce lighter tints representing lower relative amounts. If we characteristics. We have to check whether the data them to sea level (for every 100 metres of height leave out the examples of symbol grain and symbol represent different qualities (nominal data) or can be difference with the sea level there is 1⁰C decrease in orientation (see figure 6.3), that are hardly applied in ordered (like in cold-tepid-warm-hot, or in hamlet- average temperature). thematic mapping, we find that differences in colour hue village-town-city-metropolis), so that they would be (see also section 4.3.5) are experienced as nominal or called ordinal data.
    [Show full text]
  • Design Principles for Origin-Destination Flow Maps Bernhard Jenny A,B, Daniel M
    CARTOGRAPHY AND GEOGRAPHIC INFORMATION SCIENCE, 2016 http://dx.doi.org/10.1080/15230406.2016.1262280 Design principles for origin-destination flow maps Bernhard Jenny a,b, Daniel M. Stephen b, Ian Muehlenhaus c, Brooke E. Marstonb, Ritesh Sharma d, Eugene Zhangd and Helen Jennyb aSchool of Science, Geospatial Science, RMIT University, Melbourne, Australia; bCollege of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, USA; cDepartment of Geography, University of Wisconsin Madison, USA; dSchool of Electrical Engineering and Computer Science, Oregon State University, Corvallis, USA ABSTRACT ARTICLE HISTORY Origin-destination flow maps are often difficult to read due to overlapping flows. Cartographers Received 11 September 2016 have developed design principles in manual cartography for origin-destination flow maps to Accepted 15 November 2016 reduce overlaps and increase readability. These design principles are identified and documented KEYWORDS using a quantitative content analysis of 97 geographic origin-destination flow maps without Origin-destination flow branching or merging flows. The effectiveness of selected design principles is verified in a user maps; movement mapping; study with 215 participants. Findings show that (a) curved flows are more effective than straight graph drawing; cartographic flows, (b) arrows indicate direction more effectively than tapered line widths, and (c) flows design principles; aesthetic between nodes are more effective than flows between areas. These findings, combined with criteria;
    [Show full text]
  • 59 GEOGRAPHIC INFORMATION SYSTEMS Marc Van Kreveld
    59 GEOGRAPHIC INFORMATION SYSTEMS Marc van Kreveld INTRODUCTION Geographic information systems (GIS) facilitate the input, storage, manipulation, analysis, and visualization of geographic data. Geographic data generally has a location, size, shape, and various attributes, and may have a temporal component as well. Geographical analysis is important for a GIS. It includes combining different spatial themes, relating the dependency of phenomena to distance, interpolating, studying trends and patterns, and more. Without analysis, a GIS could be called a spatial database. Not all aspects of GIS are relevant to computational geometry. Human-computer interaction, and legal aspects of GIS, are also considered part of GIS research. This chapter focuses primarily on those aspects that are susceptible to algorithms re- search. Even here, the approach taken within GIS research is different from the approach a computational geometer would take, with much less initial abstraction of the problem, and less emphasis on theoretical efficiency. The GIS research field is multi-disciplinary: it includes researchers from geography, geodesy, cartography, and computer science. The research areas geodesy, surveying, photogrammetry, and remote sensing primarily deal with the data input, storage, and correction aspects of GIS. Cartography mainly concentrates on the visualization aspects. Section 59.1 deals with spatial data structures important to GIS. Section 59.2 discusses the most common spatial analysis methods. Section 59.3 discusses the vi- sualization of spatial data, in particular automated cartography. Section 59.4 deals with Digital Elevation Models (DEMs) and their algorithms. Section 59.5 discusses algorithmic results on trajectory data. Section 59.6 overviews miscellaneous other occurrences of geometric algorithms in GIS.
    [Show full text]
  • The Role of Generalization in Thematic Mapping
    International Journal of Geo-Information Article A Change of Theme: The Role of Generalization in Thematic Mapping Paulo Raposo 1,* , Guillaume Touya 2 and Pia Bereuter 3 1 Faculty ITC, The University of Twente, 7514 AE Enschede, The Netherlands 2 LASTIG, Univ Gustave Eiffel, IGN, ENSG, F-94160 Saint-Mande, France; [email protected] 3 Fachhochschule Nordwestschweiz, 5210 Windisch, Switzerland; [email protected] * Correspondence: [email protected] Received: 22 February 2020; Accepted: 29 May 2020 ; Published: 4 June 2020 Abstract: Cartographic generalization research has focused almost exclusively in recent years on topographic mapping, and has thereby gained an incorrect reputation for having to do only with reference or positional data. The generalization research community needs to broaden its scope to include thematic cartography and geovisualization. Generalization is not new to these areas of cartography, and has in fact always been involved in thematic geographic visualization, despite rarely being acknowledged. We illustrate this involvement with several examples of famous, public-audience thematic maps, noting the generalization procedures involved in drawing each, both across their basemap and thematic layers. We also consider, for each map example we note, which generalization operators were crucial to the formation of the map’s thematic message. The many incremental gains made by the cartographic generalization research community while treating reference data can be brought to bear on thematic cartography in the same way they were used implicitly on the well-known thematic maps we highlight here as examples. Keywords: generalization; thematic maps; geovisualization 1. Introduction People outside the discipline and students early in their studies are often surprised to learn that mapmakers willfully filter and modify the information included on any given map in the interest of clarifying the overall message.
    [Show full text]
  • A Framework for the Visual Representation of Spatial Information on the Web
    Design Research Society DRS Digital Library DRS Biennial Conference Series DRS2004 - Futureground Nov 17th, 12:00 AM A Framework for the Visual Representation of Spatial Information on the Web. Chun-Wen Chen National Yunlin University of Science and Technology Manlai You National Yunlin University of Science and Technology Sang-Chia Chiou National Yunlin University of Science and Technology Follow this and additional works at: https://dl.designresearchsociety.org/drs-conference-papers Citation Chen, C., You, M., and Chiou, S. (2004) A Framework for the Visual Representation of Spatial Information on the Web., in Redmond, J., Durling, D. and de Bono, A (eds.), Futureground - DRS International Conference 2004, 17-21 November, Melbourne, Australia. https://dl.designresearchsociety.org/drs- conference-papers/drs2004/researchpapers/44 This Research Paper is brought to you for free and open access by the Conference Proceedings at DRS Digital Library. It has been accepted for inclusion in DRS Biennial Conference Series by an authorized administrator of DRS Digital Library. For more information, please contact [email protected]. A Framework for the Visual Representation of Spatial Information on the Web. Chun-Wen Chen Map is a natural way to represent spatial information. Nowadays it’s also very popular to get map service on the Web. Although such maps are mainly to provide Manlai You information about places for people’s daily life, they may not be well designed to fulfill the functions. Most electronic maps on the Web, or so-called Web maps, follow Sang-Chia Chiou the forms of traditional topographic maps, not like the pictorial maps in our daily life.
    [Show full text]
  • The Language of Maps. Pathway in Geography Series, Title No. 1. INSTITUTION National Council for Geographic Education
    DOCUMENT RESUME ED 383 621 SO 024 982 AUTHOR Gersmehl, Philip J. TITLE The Language of Maps. Pathway in Geography Series, Title No. 1. INSTITUTION National Council for Geographic Education. REPORT NO ISBN-0-9627379-3-3 PUB DATE 91 NOTE 207p.; Restriction on the copying of pages for classroom use. AVAILABLE FROMNational Council for Geographic Education, 16-A Leonard Hall, Indiana University of Pennsylvania, Indiana, PA 15705 ($15). PUB TYPE Guides Classroom Use Instructional Materials (For Learner) (051) -- Guides Classroom Use Teaching Guides (For Teacher) (052) EDRS PRICE MFOI/PC09 Plus Postage. DESCRIPTORS *Cartography; Demography; Earth Science; Elementary Secondary Education; Geographic Location; *Geography; Instructional Materials; *Locational Skills (Social Studies); *Maps; *Map Skills; Study Skills; *Topography ABSTRACT This book of instructional materials is intended to support the teaching and learning of themes, concepts and skills in geography at all levels of instruction. Divided into five parts, part 1 of this Teacher's manual, "CommUnicating Basic Spatial Ideas," offers the following: (1) "Introduction";(2) "Location"; (3) "Distance"; (4) "Direction"; (5) "Area and Volume";(6) "Scale"; (7) "The Global Grid"; (8) "Map Projections";(9) "The Universal Transverse Mercator Grid"; and (10) "The United States Public land Survey." Part 2, "Depicting the Shape of the Land," includes: (1) "A Topographic Map Primer"; (2) "Topographic Map Symbols"; (3) "Elevation";(4) "Slope"; (5) "Profiles";(6) "Routes"; (7) "Topographic Positions"; and (8) "Sample Quiz Questions." Part 3, "Interpreting Topographic Maps," lists the following: (1) "Landforms"; (2) "Drainage Patterns"; (3) "Forest Cover"; (4) "Survey Systems"; (5) "Transportation Patterns";(6) "Rural Settlement Patterns"; (7) "Urban Street Patterns"; (8) "Industrial Features"; (9) "Mining Features"; (10) "Placenames and Cultural Features"; and (11) "Sample Quiz Questions." A transition lesson, "Extracting Themes from Topomaps," leads to Part 4, "Reading Thematic Maps.
    [Show full text]