SFSO Map Chapter

Total Page:16

File Type:pdf, Size:1020Kb

SFSO Map Chapter UNITED NATIONS STATISTICAL COMMISSION CRP.1 and ECONOMIC COMMISSION FOR EUROPE ENGLISH ONLY CONFERENCE OF EUROPEAN STATISTICIANS UNECE Work Session on Communication and Dissemination of Statistics (13-15 May 2009, Warsaw, Poland) Guidelines on the Presentation of Statistical Maps Prepared by Thomas Schulz, Swiss Federal Statistical Office 1. Why use maps? An introduction All numbers that statistics meticulously measure and the findings of its many surveys and censuses do not happen just somewhere, in an empty space. They might take “place” in a specific country, in a region, in a city, in a commune, in a city block, in a building, or at some precise spot on earth – but all of them have one thing in common: a spatial relation, which is stored in statistical databases. Sometimes, this relation is more apparent, while using sophisticated spatial data bases in a geography department. Sometimes, this dimension is but one out of many dimensions in a general publication database. In fact, geography has always played an important role in the collection and dissemination of statistical data. It has even contributed to the emergence of the modern day census. With new technologies for convenient spatial data collection and storage and an increasing awareness of an interested public that uses navigational tools and Internet applications like Google Earth basically every day and at ease, geography has gone beyond scientific inventories and school books. You only need to switch on your T.V. or browse the Internet for election results, weather forecasts or the last aviation accident – geographic location and knowledge are part of our life and thus belong into every statistical publication. Maps and atlases convey geography and describe these spatial relationships. When carefully designed and adequately presented, they are more than just a decorative element in a publication. They serve as valuable decision-making tools for experts, politicians and the general public alike and meet a growing demand in all parts of society. Just as the adage “a picture is worth a thousand words” portrays, it can be stated that “a map is often worth a thousand numbers”. In our visual era, maps can become a very powerful means in the information process and have advantages over other elements of statistical dissemination. 1 The power of maps: 4 elements of statistical publications showing the same topic. Source: Swiss Federal Statistical Office (FSO). Apart from showing spatial patterns and locations (their primary function), which might not be apparent from looking at data tables alone, they are very concise and easy to comprehend. They help to understand an ever growing volume of information – at a glimpse, within seconds of watching it. Maps are a synopsis. They sum up voluminous data from tables. They translate long and complicated textual explanations. And they can integrate dozens of graphs (e.g. pie charts or age pyramids) for single regions or periods into one clear image. During the age of paper publications, maps have often been neglected by statisticians for not portraying exact numbers. This disadvantage has been overcome by modern electronic displays. Nowadays, interactive maps and mapping tools allow everyone to retrieve the actual data “behind the map” by clicking on or passing over tinted areas with a mouse. And multimedia animations have opened every possibility to combine time and space in map time series as well. Characteristics and purposes of map use in statistics Maps can serve various purposes in the preparation of censuses and surveys as well as in analysis and reporting of the results. They can be an inventory and support description, exploration, analysis, confirmation, tabulation or decoration. If at least one of the following applies to your situation, the usage of a map in a publication should be considered: • Maps locate statistical results and give a clear image of the spatial distribution of a phenomenon. Where was the highest temperature recorded last summer? In which county did the Democratic Party get its best results 2008? • Maps enable comparisons and answer multiple questions: between different areas in one map, between different topics in different maps, between variables for the same area in one map or between time periods. Has the population density increased in my district over the last 50 years? Have other districts been affected differently over time? • Maps confirm and validate statistical findings. Is it true that our population is aging, as the report says? • Maps and geographic information systems store spatial knowledge. • Maps support textual and tabular information that are only difficult to explain. • Maps have a synoptic character and summarize large amounts of information. They reduce complexity. It can not be assumed that any reader will ever go through a table 2 with 5000 population data values for a large country like the U.K. or Germany? There is less value in the rows of numbers shown by a table than possibly in one single map. Here, users can easily detect patterns and clusters of high and low concentrations. • Maps convey a concept or an idea. They are a democratic means, easy to understand and can help to better communicate a whole statistical programme and thus contribute to the overall acceptance of for example a population census. • Maps are colourful and have a general positive image. They appeal to the user’s curiosity and attract attention to a publication. They are hung up walls or handed over as gifts in the form of paper or DVD atlases. Situations when not to use a map Nevertheless, there are circumstances when maps should be omitted in publications. This is the case, when there are other favourable solutions that can portray the same information. Or when technical restraints (space, colour, electronic technologies used) hinder the map from communicating properly. Some examples: Not suited for map display: Data only on national level. Source: FSO. • Data is available only for one or a small amount of spatial units. For example, it is not advisable to create a map if the number for the gross domestic product exists only for the whole country, without any regional breakdown. This is, unless one has other country data to compare it with and can put it into an international context. Good example: Graphs for 26 cantons exist and can be converted into a map. Source: Swiss Federal Statistical Office (FSO). 3 • There is no significant variation in the data. When figures for almost all districts show that the death rate last year has only been between 1 and 1.5%, then it is fairly stable all over the country. Specific spatial patterns for analysis will not be found. • The user groups have not been defined or it can not be assumed that potential users understand maps or graphs easily. Sometimes also accessibility (esp. for visually impaired persons) can be a reason to do without maps. • The publication will only appear in black & white. Maps do only unfold their real power once they can use colours. We live in a digital age, and this should apparently no longer be a problem for Internet and electronic dissemination. Surprisingly, even on the Internet, many black & white maps can be found. • There is not enough space in a publication. Maps portray space and they do need space themselves. Containing a hundred regions or more, they can take up to half a page in an A4 publication. If you have only a few centimetres left at the bottom of a page or 200 pixels in width on your web page, then maps should not be integrated. Bad example – where a map is not the best solution: Proportion of native Hawaiian and other Pacific Islanders in the total population of the United States (map below). Not even 10% of the counties contain detectable information. 90% of the map is virtually empty. Apart from one single county (green), all other areas belong in one class (0.1 – 0.9%) and can not be differentiated visually. Solutions: use a table for the few counties or a regional map for the Western part of the Unites States. Source: U.S. Census Bureau, Mapping Census 2000. 4 2. Maps and Atlases A short functional classification Maps are one of the oldest means of communication. Over time, a large variety of different styles and methods have been developed by cartographers and other scientist. They can be classified according to scale, function, design, production technology, or the way they are used in a publication. In general, there exist two functional types of maps: • General reference (topographic) maps : support orientation in space and show locations of a variety of different features, such as water bodies, mountains, coastlines, roads. They help readers to detect the boundaries of specific geographic areas, such as provinces, cities, counties or health regions. • Thematic (statistical) maps : are used to show the spatial distribution of one or more geographic attributes. A thematic map is always designed to serve some purpose and answer specific questions. Readers can view all imaginable data themes in thematic maps such as political, social, cultural, economic, agricultural or natural phenomena that exist on the earth’s surface or even below or above in space (e.g. lunar maps). General reference maps are used in statistics only for the preparation of censuses or the attribution of data – whenever something has to be oriented in space. Parts of their content are also used as base information for thematic maps. Maps that display statistical data are more relevant for publications and called thematic maps . In fact, statistics and censuses have largely stimulated the development of new methods in thematic mapping. The terms statistical and thematic maps can be used almost synonymously. It is estimated that 85% of the existing maps are thematic maps.
Recommended publications
  • Research Initiative 7 Visualization of the Quality of Spatial Information Closing Report
    National Center for Geographic NCGIA Information and Analysis ________________________________________________ Research Initiative 7 Visualization of the Quality of Spatial Information Closing Report By M. Kate Beard University of Maine - Orono Barbara P. Buttenfield State University of New York - Buffalo William A. Mackaness University of Maine - Orono May 1994 1 Closing Report—NCGIA Research Initiative 7: Visualization of the Quality of Spatial Information M. K. Beard, B. P. Buttenfield, and W. A. Mackaness Table Of Contents ABSTRACT...................................................................................................................4 OVERVIEW OF THE INITIATIVE ..........................................................................4 Scope of the Initiative.....................................................................................4 Objectives for the Initiative...........................................................................5 Organization and Preparation of the Initiative.........................................6 THE SPECIALIST MEETING.....................................................................................6 Data Quality Components..............................................................................7 Representational Issues..................................................................................7 Data Models and Data Quality Management Issues.................................7 Evaluation Paradigms.....................................................................................8
    [Show full text]
  • Force-Directed Layout of Origin-Destination Flow Maps
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2017 http://dx.doi.org/10.1080/13658816.2017.1307378 ARTICLE Force-directed layout of origin-destination flow maps Bernhard Jenny a,b,c, Daniel M. Stephen c, Ian Muehlenhaus d, Brooke E. Marstonc, Ritesh Sharma e, Eugene Zhange and Helen Jennyc aFaculty of Information Technology, Monash University, Melbourne, Australia; bSchool of Science – Geospatial Sciences, RMIT University, Melbourne, Australia; cCollege of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA; dDepartment of Geography, University of Wisconsin Madison, Madison, WI, USA; eSchool of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, USA ABSTRACT ARTICLE HISTORY This paper introduces a force-directed layout method for creating Received 7 November 2016 origin-destination flow maps. Design principles derived from man- Accepted 13 March 2017 ual cartography and automated graph drawing to increase read- fl KEYWORDS ability of ow maps and graph layouts are taken into account. The Origin-destination flow origin-destination flow maps produced with our algorithm show maps; graph drawing; flows with quadratic Bézier curves that reduce flow-on-flow and cartographic design flow-on-node overlaps, and avoid sharp or irregular bends in flow principles; map design lines. A survey of expert cartographers found that flow maps created with our automated method are similar in quality to manually produced flow maps. 1. Introduction Flow maps visualize movement and not only demonstrate which places have been affected by movement but also the type, direction, and volume of movement. They are efficient tools for identifying spatial patterns and answer questions about geo- graphic phenomena.
    [Show full text]
  • Using Cluster Analysis Methods for Multivariate Mapping of Traflc Accidents of the World and Also in Turkey
    Open Geosci. 2018; 10:772–781 Research Article Open Access Huseyin Zahit Selvi* and Burak Caglar Using cluster analysis methods for multivariate mapping of traflc accidents https://doi.org/10.1515/geo-2018-0060 of the world and also in Turkey. The increase in motor- Received January 25, 2018; accepted August 30, 2018 vehicle ownership is very high in Turkey with 1,272,589 new vehicles registered just in 2015 [1]. When data of Abstract: Many factors affect the occurrence of traffic ac- Turkey for the last 5 years are analysed, it is seen that cidents. The classification and mapping of the different there have been more than 1,000,000 traffic accidents, attributes of the resulting accident are important for the 145,000 of them ended up with death and injury, and prevention of accidents. Multivariate mapping is the vi- nearly 1,060,000 of them resulted in financial damage. sual exploration of multiple attributes using a map or data Due to these accidents 4000 people lose their life on av- reduction technique. More than one attribute can be vi- erage and nearly 250,000 people are injured. sually explored and symbolized using numerous statis- Many factors such as driving mistakes, the number tical classification systems or data reduction techniques. of vehicles, lack of infrastructure etc. influence the occur- In this sense, clustering analysis methods can be used rence of traffic accidents. Many studies were conducted to for multivariate mapping. This study aims to compare the determine the effects of various factors on traffic accidents. multivariate maps produced by the K-means method, K- In this context: Bil et al.
    [Show full text]
  • Cartographic Generalization of Digital Terrain Models
    INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1.The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You willa find good image of the page in the adjacent frame. 3. When a map, drawingor chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again — beginning below the first row and continuing on until complete. 4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation.
    [Show full text]
  • Msc Thesis Gert-Jan Boos
    Centre for Geo-Information Thesis Report GIRS-2013-15 The usability of 3D techniques for multivariate thematic mapping Gert-Jan Boos October 2013 October I II The usability of 3D techniques for multivariate thematic mapping Gert-Jan Boos Registration number 87 01 28 099 100 Supervisors: Dr.ir. Ron van Lammeren A thesis submitted in partial fulfilment of the degree of Master of Science at Wageningen University and Research Centre, The Netherlands. October 2013 Wageningen, The Netherlands Thesis code number: GRS-80436 Thesis Report: GIRS-2013-15 Wageningen University and Research Centre Laboratory of Geo-Information Science and Remote Sensing III IV PREFACE My interest for 3D visualizations started when I worked with ESRI’s CityEngine. This software allows to efficiently model a 3D urban environment using procedural rules. My goal was to learn more about this software and to write a tutorial that could be used by other MGI students. At the same time when I did this assignment as Capita Selecta I was already looking for a suitable thesis topic. When I was discussing CityEngine with Ron van Lammeren he asked me if this program could also be used for the creation of 3D thematic maps. We decided that this question was a good starting point for this thesis. Later when I went through the literature I decided that it would be more feasible to delimit the research and to focus on the 3D cartogram. This was necessary because the available knowledge on the use of 3D for multivariate thematic visualization was limited. The final research compares the 3D cartogram (as well as the cartogram and the value-by-alpha) with the choropleth technique.
    [Show full text]
  • THE FLUID CITY by MEHMET EMRAH DURULAN Submitted To
    THE FLUID CITY by MEHMET EMRAH DURULAN Submitted to the Graduate School of Arts and Social Sciences in partial fulfillment of the requirements for the degree of Master of Arts Sabancı University Spring 2006 THE FLUID CITY APPROVED BY: Elif Emine Ayiter …………………………. (Dissertation Supervisor) Murat Germen …………………………. Selim Balcısoy …………………………. DATE OF APPROVAL: …………………………. © Mehmet Emrah Durulan 2006 All Rights Reserved ABSTRACT Maps are abstract objects symbolically representing actual places and objects. Information richness or a multivariate map indicates relationships within itself, thus enabling comparison to add the meaningfulness of the map. This thesis describes the conceptualization, design, and implementation of a multilayered, public, and dynamic 3D map system that allows users to participate in its construction through collection and input of the data needed for the task. In aiming to provide a historic framework for the project "The Fluid City", a brief history of cartography and types of maps, geographic information systems, digital elevation models, information visualization techniques for geographic and elevation data, as well as a survey history of Istanbul and her historic maps are briefly explained. The project proposes an alternative reading of the city of Istanbul, her dreams, and the personal mythologies of her many inhabitants. iv ÖZET Haritalar yeryüzü mekanlarını ve nesnelerini sembolik öğelerden yararlanarak sunan soyut araçlardır. Bilgi zengini ya da çok değişkenli haritalar, sunduğu nesneler arasındaki ilişkileri
    [Show full text]
  • Visual Search Processes and the Multivariate Point Symbol. By
    Visual Search Processes and the Multivariate Point Symbol. By: Nelson, Elisabeth S., Dow, David, Lukinbeal, Christopher, Farley, Ray Nelson, E, Dow, D, Lukinbeal, C, & Farley, R 1997, 'Visual Search Processes and the Multivariate Point Symbol', Cartographica, 34(4) p. 19-33 Made available courtesy of University of Toronto Press: http://www.utpjournals.com/ ***Reprinted with permission. No further reproduction is authorized without written permission from University of Toronto Press. This version of the document is not the version of record. Figures and/or pictures may be missing from this format of the document.*** ***Note: Footnotes and endnotes indicated with parentheses Abstract: This study reviews the major theories of visual search processes and applies some of their concepts to searching for multivariate point symbols in a map environment. The act of searching a map for information is a primary activity undertaken during map-reading. The complexity of this process will vary, of course, with symbol design and map content. Multivariate symbols, for example, will be more difficult to search for efficiently than univariate symbols. The purpose of this research was to examine the cognitive processes used by map readers when searching for multivariate point symbols on a map. The experiment used Chernoff Faces as the test symbol, and a symbol-detection task to assess how accurately and how efficiently target symbols composed of different combinations of facial features could be detected. Of particular interest was assessing the role that different combinations of symbol dimensions and different combinations of symbol parts played in moderating search efficiency. Subject reaction times and error rates were used to evaluate the efficiency of the searches.
    [Show full text]
  • Chapter 6 Thematic Maps 6.2 Data Analysis
    Chapter 6 Thematic maps 6.2 Data analysis Ferjan Ormeling, the Netherlands (see also section 4.3.2, where the production of a thematic map is described from first concept to final map) 6.1 Spatial concepts In thematic mapping, we visualise data on the basis of spatial concepts, like density, ratio, percentages, index Figure 6.3 Graphic variables (from Kraak & Ormeling, numbers or trends, and of procedures like averaging. To Cartography, visualization of spatial data, 2010). make things comparable, we relate them to standard units like square kilometres, or we convert them to quantity (see also section 4.3.4). Differences in tint or standard situations. In order to compare average value (like the lighter and darker shade of a colour) are Figure 6.2 Data analysis (drawing A. Lurvink). temperatures measured at different latitudes, we first experienced in the sense of a hierarchy, with the darker assess the height above sea level of the stations where tints representing higher relative amounts and the Before we can map data, we have to analyse their the temperatures were measured, and then we reduce lighter tints representing lower relative amounts. If we characteristics. We have to check whether the data them to sea level (for every 100 metres of height leave out the examples of symbol grain and symbol represent different qualities (nominal data) or can be difference with the sea level there is 1⁰C decrease in orientation (see figure 6.3), that are hardly applied in ordered (like in cold-tepid-warm-hot, or in hamlet- average temperature). thematic mapping, we find that differences in colour hue village-town-city-metropolis), so that they would be (see also section 4.3.5) are experienced as nominal or called ordinal data.
    [Show full text]
  • Design Principles for Origin-Destination Flow Maps Bernhard Jenny A,B, Daniel M
    CARTOGRAPHY AND GEOGRAPHIC INFORMATION SCIENCE, 2016 http://dx.doi.org/10.1080/15230406.2016.1262280 Design principles for origin-destination flow maps Bernhard Jenny a,b, Daniel M. Stephen b, Ian Muehlenhaus c, Brooke E. Marstonb, Ritesh Sharma d, Eugene Zhangd and Helen Jennyb aSchool of Science, Geospatial Science, RMIT University, Melbourne, Australia; bCollege of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, USA; cDepartment of Geography, University of Wisconsin Madison, USA; dSchool of Electrical Engineering and Computer Science, Oregon State University, Corvallis, USA ABSTRACT ARTICLE HISTORY Origin-destination flow maps are often difficult to read due to overlapping flows. Cartographers Received 11 September 2016 have developed design principles in manual cartography for origin-destination flow maps to Accepted 15 November 2016 reduce overlaps and increase readability. These design principles are identified and documented KEYWORDS using a quantitative content analysis of 97 geographic origin-destination flow maps without Origin-destination flow branching or merging flows. The effectiveness of selected design principles is verified in a user maps; movement mapping; study with 215 participants. Findings show that (a) curved flows are more effective than straight graph drawing; cartographic flows, (b) arrows indicate direction more effectively than tapered line widths, and (c) flows design principles; aesthetic between nodes are more effective than flows between areas. These findings, combined with criteria;
    [Show full text]
  • Beyond Graduated Circles: Varied Point Symbols for Representing Quantitative Data on Maps
    6 cartographic perspectives Number 29, Winter 1998 Beyond Graduated Circles: Varied Point Symbols for Representing Quantitative Data on Maps Cynthia A. Brewer Graduated point symbols are viewed as an appropriate choice for many Department of Geography thematic maps of data associated with point locations. Areal quantitative Pennsylrnnia State University data, reported by such enumeration units as countries, are frequently presented with choropleth maps but are also well suited to point symbol U11iversity Park, PA 16802 representations. Our objective is to provide an ordered set of examples of the many point-symbol forms used on maps by showing symbols with Andrew J. Campbell linear, areal, and volumetric scaling on repeated small maps of the same Vance Air Force Base data set. Bivariate point symbols are also demonstrated with emphasis on the distinction between symbols appropriate for comparison (sepa­ Enid, OK 73705 rate symbols) and those appropriate for proportional relationships (segmented symbols). In this paper, the variety of point symbol use is described, organized, and encourage, as is research on these varied symbols and their multivariate forms. INTRODUCTION uch cartographic research has been conducted on apparent-value M scaling and percepti ons of graduated point symbols. However, discussion of practical subjective elements of point symbol design and construction is limited, especially fo r the wide variety of point symbols for representing multivariate relationships that are now feasible with modern computing and output. The primary purpose of the paper is to suggest innovative graduated symbol designs and to examine useful combinations for comparing variables and representing proportional relationships. This paper was inspired by the bivariate symbol designs of hundreds of students that have taken introductory cartography courses with Cindy Brewer (at San Diego State and Penn State).
    [Show full text]
  • Geo-Analyst , ISSN 2249-2909 2014 89
    Geo-Analyst , ISSN 2249-2909 2014 EMERGING TRENDS IN THEMATIC MAPPING-METHODS AND MATERIALS Dr. Pratima Rohatgi* Abstract Present paper deals with the methods and materials of thematic mapping, a graphical representation of structural characteristics of geographical phenomena, with focus on recent trends. Thematic mapping involves two important transformations; the alteration of the unmapped data into a set of graphic marks that are placed on the map and readers registering these marks and deducing the spatial information from them. Special care with cartographic skill is essential for preparation of different types of thematic maps. With increasing dependency on electronic media and availability of finer resolution data, large scale thematic maps are becoming more common. Multivariate and dynamic maps are out placing the single element and static maps, which in turn is throwing more challenges to the readers as well as makers. Key words: Thematic map, Cartographic Generalization, Dynamic maps, Introduction The graphic representation of the geographic setting is a map .Maps drawn with the objective to show the distribution of a single attribute or the relationship among several are known as Thematic maps. International Cartographic Association defines the Thematic Map as “a map designed to demonstrate particular features or concepts”. It is also called a special purpose map. Thematic maps range from satellite cloud cover images to shaded image of average annual income. Map dealing with the same phenomena can be called general purpose map if the objective is to show the locational aspect of that phenomena and thematic map if their focus attention is on the structural characteristics of geographical distribution which include distance & directional relationships, spatial variation and interrelationships of some geographic distribution.
    [Show full text]
  • Arcgis® 9 Using Arcmap Copyright © 2000–2005 ESRI All Rights Reserved
    ArcGIS® 9 Using ArcMap Copyright © 2000–2005 ESRI All rights reserved. Printed in the United States of America. The information contained in this document is the exclusive property of ESRI. This work is protected under United States copyright law and other international copyright treaties and conventions. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or by any information storage or retrieval system, except as expressly permitted in writing by ESRI. All requests should be sent to Attention: Contracts Manager, ESRI, 380 New York Street, Redlands, CA 92373-8100, USA. The information contained in this document is subject to change without notice. DATA CREDITS Quick-Start Tutorial Data: Wilson, North Carolina. Population Density—Conterminous United States Map: U.S. Department of Census. The African Landscape Map: Major Habitat Types—Conservation Science Program, WWF-US; Rainfall—ArcAtlas™, ESRI, Redlands, California; Population data from EROS Data Center USGS/UNEP. Amazonia Map: Conservation International. Forest Buffer Zone—100 Meters Map: U.S. Forest Service (Tongass Region). Horn of Africa Map: Basemap data from ArcWorld™ (1:3M), ESRI, Redlands, California; DEM and Hillshade from EROS Data Center USGS/UNEP. Mexico: ESRI Data & Maps CDs, ESRI, Redlands, California. Mexico: 1990 Population: ESRI Data & Maps CDs, ESRI, Redlands, California. Population Density in Florida (2001): ESRI Data & Maps CDs, ESRI, Redlands, California. Rhode Island, the Smallest State in the United States: Elevation data from the USGS, EROS Data Center; other data from ESRI Data & Maps CDs, ESRI, Redlands, California. Countries of the European Union: Member States and Candidate Country information from EUROPA (The European Union On-Line); ESRI Data & Maps CDs, ESRI, Redlands, California.
    [Show full text]