Thesis Wagner 2019.P

Total Page:16

File Type:pdf, Size:1020Kb

Thesis Wagner 2019.P Identification of process-relevant kinases in human amniotic production cells Dissertation zur Erlangung des Doktorgrades Dr. rer. nat. der Fakultät für Naturwissenschaften der Universität Ulm Vorgelegt von Andreas Wagner aus Bad Köstritz 2019 Die vorliegende Arbeit wurde im Institut für Angewandte Biotechnologie der Hochschule Biberach unter der Anleitung von Herr Prof. Dr. Jürgen Hannemann durchgeführt. Amtierender Dekan: Prof. Dr. Peter Dürre Erstgutachter: Prof. Dr. Jürgen Hannemann Zweitgutachter: Prof. Dr. Bernd Eikmanns Wahlprüfer: Prof. Kerstin Otte Wahlprüfer: Prof. Dierk Niessing Tag der Promotion: 17. Juni 2019 Diese Arbeit wurde durch ein Promotionsstipendium nach dem Landesgraduiertenförderungsgesetz (LGFG) des Landes Baden- Württemberg finanziert und im Rahmen des kooperativen Promotionskollegs (KPK) „Pharmazeutische Biotechnologie“ der Universität Ulm und der Hochschule Biberach durchgeführt. Teile dieser Arbeit wurden bereits in den folgenden Artikel publiziert: Fischer, Simon, Andreas Wagner, Aron Kos, Armaz Aschrafi, René Handrick, Juergen Hannemann, and Kerstin Otte. 2013. “Breaking Limitations of Complex Culture Media: Functional Non-Viral MiRNA Delivery into Pharmaceutical Production Cell Lines.” Journal of Biotechnology 168: 589–600. “It’s a dangerous business, Frodo, going out of your door,” he used to say. “You step into the Road, and if you don’t keep your feet, there is no knowing where you might be swept to” Frodo Baggins, citing his uncle Bilbo Baggins The Lord of the Rings – The Fellowship of the Ring J.R.R. Tolkien Content I Content Content ..................................................................................................................................................... I Abbreviations ......................................................................................................................................... III Abstract .................................................................................................................................................. VI 1 Introduction ..................................................................................................................................... 1 1.1 Recombinant protein production in mammalian cell systems ............................................... 1 1.1.1 CEVEC’s amniocyte production cell technology .............................................................. 1 1.2 Protein expression optimization strategies ............................................................................. 2 1.2.1 Bioprocess development ................................................................................................. 2 1.2.2 Cell line development ...................................................................................................... 3 1.3 Phosphorylation as regulatory element and potential target for cell line development ..... 10 1.3.1 The human kinome and its relevance in biotechnological applications ....................... 10 1.3.2 Phosphorylation as an element for regulation of protein activity ................................ 12 1.4 Aim of this thesis ................................................................................................................... 14 2 Materials and Methods ................................................................................................................. 15 2.1 Cell culture ............................................................................................................................. 15 2.1.1 Cell lines, culture media and routine cell culture procedure ........................................ 15 2.1.2 Cryopreservation and thawing ...................................................................................... 15 2.1.3 Generation of CAP®-SEAP minipools and single cell cloning ......................................... 16 2.1.4 Establishment of stable cell pools ................................................................................. 16 2.1.5 Establishment of the siRNA screening procedure ......................................................... 17 2.1.6 High-throughput, high-content siRNA screening in recombinant CAP® cells ................ 21 2.1.7 Ectopic ERN1 overexpression ........................................................................................ 25 2.2 Analytical methods ................................................................................................................ 26 2.2.1 Trypan blue exclusion viability assay and cell count ..................................................... 26 2.2.2 Quantitative flow cytometry ......................................................................................... 27 2.2.3 Cell lysis and sample preparation for SDS-PAGE ........................................................... 32 2.2.4 BCA Assay ...................................................................................................................... 32 2.2.5 SDS-PAGE ....................................................................................................................... 32 2.2.6 Western Blot .................................................................................................................. 32 2.2.7 SEAP Reporter Assay ..................................................................................................... 33 2.2.8 Quantification of antibody concentration via HPLC ...................................................... 34 2.2.9 Statistic and functional analysis .................................................................................... 34 Content II 2.3 Molecular biology .................................................................................................................. 36 2.3.1 DNA plasmids ................................................................................................................ 36 2.3.2 Preparation of plasmid DNA .......................................................................................... 38 2.3.3 Total RNA extraction ..................................................................................................... 38 2.3.4 cDNA synthesis from total RNA samples ....................................................................... 38 2.3.5 Quantitative Real-Time PCR .......................................................................................... 39 3 Results ........................................................................................................................................... 40 3.1 Establishment of a high-throughput high-content RNAi screening platform with recombinant CAP®-SEAP cells .................................................................................................................................. 40 3.1.1 Establishment of a reliable siRNA transfection protocol for CAP® cells ........................ 40 3.1.2 Quality of the functional controls in the RNAi screening .............................................. 47 3.2 Identification of bioprocess-relevant kinases ....................................................................... 52 3.2.1 Overview of the results of the primary siRNA screening in CAP®-SEAP cells ................ 52 3.2.2 Functional analysis in silico............................................................................................ 59 3.2.3 Validation of selected targets in CAP®-IgG .................................................................... 68 3.3 Molecular analysis of putative cell engineering targets ........................................................ 72 3.3.1 STK24, DAPK3 and ERN1 are expressed in CAP® producer cells .................................... 72 3.3.2 Down-regulation of STK24 and DAPK3 to improve productivity ................................... 73 3.3.3 Cell line engineering – Ectopic expression of ERN1 ...................................................... 76 4 Discussion ...................................................................................................................................... 81 4.1 Suitability of the RNAi screening platform to identify process-relevant kinases .................. 81 4.2 Identification of bioprocess relevant kinases ........................................................................ 83 4.2.1 Proliferation and Viability .............................................................................................. 84 4.2.2 Recombinant protein productivity ................................................................................ 87 4.3 Cell line engineering with STK24, DAPK3 and ERN1 .............................................................. 94 4.4 Conclusion and Outlook ........................................................................................................ 98 5 References ..................................................................................................................................... 99 6 Appendix ...................................................................................................................................... 120 6.1 Supplementary material ...................................................................................................... 120 6.2 Content of Figures ............................................................................................................... 144 6.3 Content of Tables ................................................................................................................ 151 6.4 Online
Recommended publications
  • Gene Symbol Gene Description ACVR1B Activin a Receptor, Type IB
    Table S1. Kinase clones included in human kinase cDNA library for yeast two-hybrid screening Gene Symbol Gene Description ACVR1B activin A receptor, type IB ADCK2 aarF domain containing kinase 2 ADCK4 aarF domain containing kinase 4 AGK multiple substrate lipid kinase;MULK AK1 adenylate kinase 1 AK3 adenylate kinase 3 like 1 AK3L1 adenylate kinase 3 ALDH18A1 aldehyde dehydrogenase 18 family, member A1;ALDH18A1 ALK anaplastic lymphoma kinase (Ki-1) ALPK1 alpha-kinase 1 ALPK2 alpha-kinase 2 AMHR2 anti-Mullerian hormone receptor, type II ARAF v-raf murine sarcoma 3611 viral oncogene homolog 1 ARSG arylsulfatase G;ARSG AURKB aurora kinase B AURKC aurora kinase C BCKDK branched chain alpha-ketoacid dehydrogenase kinase BMPR1A bone morphogenetic protein receptor, type IA BMPR2 bone morphogenetic protein receptor, type II (serine/threonine kinase) BRAF v-raf murine sarcoma viral oncogene homolog B1 BRD3 bromodomain containing 3 BRD4 bromodomain containing 4 BTK Bruton agammaglobulinemia tyrosine kinase BUB1 BUB1 budding uninhibited by benzimidazoles 1 homolog (yeast) BUB1B BUB1 budding uninhibited by benzimidazoles 1 homolog beta (yeast) C9orf98 chromosome 9 open reading frame 98;C9orf98 CABC1 chaperone, ABC1 activity of bc1 complex like (S. pombe) CALM1 calmodulin 1 (phosphorylase kinase, delta) CALM2 calmodulin 2 (phosphorylase kinase, delta) CALM3 calmodulin 3 (phosphorylase kinase, delta) CAMK1 calcium/calmodulin-dependent protein kinase I CAMK2A calcium/calmodulin-dependent protein kinase (CaM kinase) II alpha CAMK2B calcium/calmodulin-dependent
    [Show full text]
  • Wo 2010/075007 A2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 1 July 2010 (01.07.2010) WO 2010/075007 A2 (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12Q 1/68 (2006.01) G06F 19/00 (2006.01) kind of national protection available): AE, AG, AL, AM, C12N 15/12 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (21) International Application Number: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/US2009/067757 HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (22) International Filing Date: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, 11 December 2009 ( 11.12.2009) ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (25) Filing Language: English SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, (26) Publication Language: English TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 12/3 16,877 16 December 2008 (16.12.2008) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, (71) Applicant (for all designated States except US): DODDS, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, W., Jean [US/US]; 938 Stanford Street, Santa Monica, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, CA 90403 (US).
    [Show full text]
  • Androgen Receptor Binding Sites Identified by a GREF GATA Model
    doi:10.1016/j.jmb.2005.09.009 J. Mol. Biol. (2005) 353, 763–771 COMMUNICATION Androgen Receptor Binding Sites Identified by a GREF_GATA Model Katsuaki Masuda1, Thomas Werner2, Shilpi Maheshwari1 Matthias Frisch2, Soyon Oh1, Gyorgy Petrovics1, Klaus May2 Vasantha Srikantan1, Shiv Srivastava1 and Albert Dobi1* 1Center for Prostate Disease Changes in transcriptional regulation can be permissive for tumor Research, Department of progression by allowing for selective growth advantage of tumor cells. Surgery, Uniformed Services Tumor suppressors can effectively inhibit this process. The PMEPA1 gene, a University, Rockville, MD potent inhibitor of prostate cancer cell growth is an androgen-regulated 20852, USA gene. We addressed the question of whether or not androgen receptor can directly bind to specific PMEPA1 promoter upstream sequences. To test this 2Genomatix Software GmbH hypothesis we extended in silico prediction of androgen receptor binding D-80339 Munich, Germany sites by a modeling approach and verified the actual binding by in vivo chromatin immunoprecipitation assay. Promoter upstream sequences of highly androgen-inducible genes were examined from microarray data of prostate cancer cells for transcription factor binding sites (TFBSs). Results were analyzed to formulate a model for the description of specific androgen receptor binding site context in these sequences. In silico analysis and subsequent experimental verification of the selected sequences suggested that a model that combined a GREF and a GATA TFBS was sufficient for predicting a class of functional androgen receptor binding sites. The GREF matrix family represents androgen receptor, glucocorticoid receptor and progesterone receptor binding sites and the GATA matrix family represents GATA binding protein 1–6 binding sites.
    [Show full text]
  • Genome-Wide Association Study of Multiplex Schizophrenia Pedigrees
    Article Genome-Wide Association Study of Multiplex Schizophrenia Pedigrees Douglas F. Levinson, M.D. Anthony O’Neill, M.D. in the primary European-ancestry analyses). Association was tested for single SNPs and Jianxin Shi, Ph.D. George N. Papadimitriou, M.D. genetic pathways. Polygenic scores based Kai Wang, Ph.D. Dimitris Dikeos, M.D. on family study results were used to predict case-control status in the Schizophrenia Sang Oh, M.Sc. Wolfgang Maier, M.D. Psychiatric GWAS Consortium (PGC) data set, and consistency of direction of effect Brien Riley, Ph.D. Bernard Lerer, M.D. with the family study was determined for Ann E. Pulver, Ph.D. Dominique Campion, M.D., top SNPs in the PGC GWAS analysis. Within- family segregation was examined for Dieter B. Wildenauer, Ph.D. Ph.D. schizophrenia-associated rare CNVs. Claudine Laurent, M.D., Ph.D. David Cohen, M.D., Ph.D. Results: No genome-wide significant asso- Maurice Jay, M.D. ciations were observed for single SNPs or for Bryan J. Mowry, M.D., pathways. PGC case and control subjects F.R.A.N.Z.C.P. Ayman Fanous, M.D. had significantly different genome-wide Pablo V. Gejman, M.D. Peter Eichhammer, M.D. polygenic scores (computed by weighting their genotypes by log-odds ratios from the 2 Michael J. Owen, Ph.D., Jeremy M. Silverman, Ph.D. family study) (best p=10 17, explaining F.R.C.Psych. 0.4% of the variance). Family study and Nadine Norton, Ph.D. PGC analyses had consistent directions for Kenneth S. Kendler, M.D.
    [Show full text]
  • Caractérisation Moléculaire De La Modulation Spatio- Temporelle Des Fonctions Du Phagosome
    Université de Montréal Caractérisation moléculaire de la modulation spatio- temporelle des fonctions du phagosome Par Guillaume Goyette Département de pathologie et biologie cellulaire Faculté de médecine Thèse présentée à la faculté des études supérieures En vue de l’obtention du grade Philosophiae Doctor (Ph.D.) en pathologie et biologie cellulaire 24 avril 2009 © Guillaume Goyette 2009 Library and Archives Bibliothèque et Canada Archives Canada Published Heritage Direction du Branch Patrimoine de l’édition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre référence ISBN: 978-0-494-59973-0 Our file Notre référence ISBN: 978-0-494-59973-0 NOTICE: AVIS: The author has granted a non- L’auteur a accordé une licence non exclusive exclusive license allowing Library and permettant à la Bibliothèque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par télécommunication ou par l’Internet, prêter, telecommunication or on the Internet, distribuer et vendre des thèses partout dans le loan, distribute and sell theses monde, à des fins commerciales ou autres, sur worldwide, for commercial or non- support microforme, papier, électronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L’auteur conserve la propriété du droit d’auteur ownership and moral rights in this et des droits moraux qui protège cette thèse. Ni thesis. Neither the thesis nor la thèse ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent être imprimés ou autrement printed or otherwise reproduced reproduits sans son autorisation.
    [Show full text]
  • Strand Breaks for P53 Exon 6 and 8 Among Different Time Course of Folate Depletion Or Repletion in the Rectosigmoid Mucosa
    SUPPLEMENTAL FIGURE COLON p53 EXONIC STRAND BREAKS DURING FOLATE DEPLETION-REPLETION INTERVENTION Supplemental Figure Legend Strand breaks for p53 exon 6 and 8 among different time course of folate depletion or repletion in the rectosigmoid mucosa. The input of DNA was controlled by GAPDH. The data is shown as ΔCt after normalized to GAPDH. The higher ΔCt the more strand breaks. The P value is shown in the figure. SUPPLEMENT S1 Genes that were significantly UPREGULATED after folate intervention (by unadjusted paired t-test), list is sorted by P value Gene Symbol Nucleotide P VALUE Description OLFM4 NM_006418 0.0000 Homo sapiens differentially expressed in hematopoietic lineages (GW112) mRNA. FMR1NB NM_152578 0.0000 Homo sapiens hypothetical protein FLJ25736 (FLJ25736) mRNA. IFI6 NM_002038 0.0001 Homo sapiens interferon alpha-inducible protein (clone IFI-6-16) (G1P3) transcript variant 1 mRNA. Homo sapiens UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 15 GALNTL5 NM_145292 0.0001 (GALNT15) mRNA. STIM2 NM_020860 0.0001 Homo sapiens stromal interaction molecule 2 (STIM2) mRNA. ZNF645 NM_152577 0.0002 Homo sapiens hypothetical protein FLJ25735 (FLJ25735) mRNA. ATP12A NM_001676 0.0002 Homo sapiens ATPase H+/K+ transporting nongastric alpha polypeptide (ATP12A) mRNA. U1SNRNPBP NM_007020 0.0003 Homo sapiens U1-snRNP binding protein homolog (U1SNRNPBP) transcript variant 1 mRNA. RNF125 NM_017831 0.0004 Homo sapiens ring finger protein 125 (RNF125) mRNA. FMNL1 NM_005892 0.0004 Homo sapiens formin-like (FMNL) mRNA. ISG15 NM_005101 0.0005 Homo sapiens interferon alpha-inducible protein (clone IFI-15K) (G1P2) mRNA. SLC6A14 NM_007231 0.0005 Homo sapiens solute carrier family 6 (neurotransmitter transporter) member 14 (SLC6A14) mRNA.
    [Show full text]
  • Molecular Cytogenetics Biomed Central
    Molecular Cytogenetics BioMed Central Research Open Access MODY-like diabetes associated with an apparently balanced translocation: possible involvement of MPP7 gene and cell polarity in the pathogenesis of diabetes Elizabeth J Bhoj1, Stefano Romeo1,2, Marco G Baroni2, Guy Bartov3, Roger A Schultz3,5 and Andrew R Zinn*1,4 Address: 1McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA, 2Department of Medical Sciences, Endocrinology, University of Cagliari, Cagliari, Italy, 3Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA , 4Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA and 5Signature Genomic Laboratories, LLC, Spokane, WA, USA Email: Elizabeth J Bhoj - [email protected]; Stefano Romeo - [email protected]; Marco G Baroni - [email protected]; Guy Bartov - [email protected]; Roger A Schultz - [email protected]; Andrew R Zinn* - [email protected] * Corresponding author Published: 13 February 2009 Received: 26 September 2008 Accepted: 13 February 2009 Molecular Cytogenetics 2009, 2:5 doi:10.1186/1755-8166-2-5 This article is available from: http://www.molecularcytogenetics.org/content/2/1/5 © 2009 Bhoj et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Characterization of disease-associated balanced translocations has led to the discovery of genes responsible for many disorders, including syndromes that include various forms of diabetes mellitus.
    [Show full text]
  • Potent Lipolytic Activity of Lactoferrin in Mature Adipocytes
    Biosci. Biotechnol. Biochem., 77 (3), 566–571, 2013 Potent Lipolytic Activity of Lactoferrin in Mature Adipocytes y Tomoji ONO,1;2; Chikako FUJISAKI,1 Yasuharu ISHIHARA,1 Keiko IKOMA,1;2 Satoru MORISHITA,1;3 Michiaki MURAKOSHI,1;4 Keikichi SUGIYAMA,1;5 Hisanori KATO,3 Kazuo MIYASHITA,6 Toshihide YOSHIDA,4;7 and Hoyoku NISHINO4;5 1Research and Development Headquarters, Lion Corporation, 100 Tajima, Odawara, Kanagawa 256-0811, Japan 2Department of Supramolecular Biology, Graduate School of Nanobioscience, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan 3Food for Life, Organization for Interdisciplinary Research Projects, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan 4Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyou-ku, Kyoto 602-8566, Japan 5Research Organization of Science and Engineering, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan 6Department of Marine Bioresources Chemistry, Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minatocho, Hakodate, Hokkaido 041-8611, Japan 7Kyoto City Hospital, 1-2 Higashi-takada-cho, Mibu, Nakagyou-ku, Kyoto 604-8845, Japan Received October 22, 2012; Accepted November 26, 2012; Online Publication, March 7, 2013 [doi:10.1271/bbb.120817] Lactoferrin (LF) is a multifunctional glycoprotein resistance, high blood pressure, and dyslipidemia. To found in mammalian milk. We have shown in a previous prevent progression of metabolic syndrome, lifestyle clinical study that enteric-coated bovine LF tablets habits must be improved to achieve a balance between decreased visceral fat accumulation. To address the energy intake and consumption. In addition, the use of underlying mechanism, we conducted in vitro studies specific food factors as helpful supplements is attracting and revealed the anti-adipogenic action of LF in pre- increasing attention.
    [Show full text]
  • Microrna Regulation and Human Protein Kinase Genes
    MICRORNA REGULATION AND HUMAN PROTEIN KINASE GENES REQUIRED FOR INFLUENZA VIRUS REPLICATION by LAUREN ELIZABETH ANDERSEN (Under the Direction of Ralph A. Tripp) ABSTRACT Human protein kinases (HPKs) have profound effects on cellular responses. To better understand the role of HPKs and the signaling networks that influence influenza replication, a siRNA screen of 720 HPKs was performed. From the screen, 17 “hit” HPKs (NPR2, MAP3K1, DYRK3, EPHA6, TPK1, PDK2, EXOSC10, NEK8, PLK4, SGK3, NEK3, PANK4, ITPKB, CDC2L5, CALM2, PKN3, and HK2) were validated as important for A/WSN/33 influenza virus replication, and 6 HPKs (CDC2L5, HK2, NEK3, PANK4, PLK4 and SGK3) identified as important for A/New Caledonia/20/99 influenza virus replication. Meta-analysis of the hit HPK genes identified important for influenza virus replication showed a level of overlap, most notably with the p53/DNA damage pathway. In addition, microRNAs (miRNAs) predicted to target the validated HPK genes were determined based on miRNA seed site predictions from computational analysis and then validated using a panel of miRNA agonists and antagonists. The results identify miRNA regulation of hit HPK genes identified, specifically miR-148a by targeting CDC2L5 and miR-181b by targeting SGK3, and suggest these miRNAs also have a role in regulating influenza virus replication. Together these data advance our understanding of miRNA regulation of genes critical for virus replication and are important for development novel influenza intervention strategies. INDEX WORDS: Influenza virus,
    [Show full text]
  • Homologs of Genes Expressed in Caenorhabditis Elegans Gabaergic
    Hammock et al. Neural Development 2010, 5:32 http://www.neuraldevelopment.com/content/5/1/32 RESEARCH ARTICLE Open Access Homologs of genes expressed in Caenorhabditis elegans GABAergic neurons are also found in the developing mouse forebrain Elizabeth AD Hammock1,2*, Kathie L Eagleson3, Susan Barlow4,6, Laurie R Earls4,7, David M Miller III2,4,5, Pat Levitt3* Abstract Background: In an effort to identify genes that specify the mammalian forebrain, we used a comparative approach to identify mouse homologs of transcription factors expressed in developing Caenorhabditis elegans GABAergic neurons. A cell-specific microarray profiling study revealed a set of transcription factors that are highly expressed in embryonic C. elegans GABAergic neurons. Results: Bioinformatic analyses identified mouse protein homologs of these selected transcripts and their expression pattern was mapped in the mouse embryonic forebrain by in situ hybridization. A review of human homologs indicates several of these genes are potential candidates in neurodevelopmental disorders. Conclusions: Our comparative approach has revealed several novel candidates that may serve as future targets for studies of mammalian forebrain development. Background As with other cell types, the diversity of GABAergic Proper forebrain patterning and cell-fate specification neurons has its basis in different developmental origins, lay the foundation for complex behaviors. These neuro- with timing and location of birth playing key roles in developmental events in large part depend on a series of cell fate [1,6-8]. gene expression refinements (reviewed in [1]) that com- Despite the phenotypic variety of GABAergic neurons, mit cells to express certain phenotypic features that all use GABA as a neurotransmitter.
    [Show full text]
  • Analysis of Molecular Events Involved in Chondrogenesis and Somitogenesis by Global Gene Expression Profiling
    Technische Universit¨at Munc¨ hen GSF-Forschungszentrum Neuherberg Analysis of Molecular Events Involved in Chondrogenesis and Somitogenesis by Global Gene Expression Profiling Matthias Wahl Vollst¨andiger Abdruck der von der Fakult¨at Wissenschaftszentrum Weihen- stephan fur¨ Ern¨ahrung, Landnutzung und Umwelt der Technischen Univer- sit¨at Munc¨ hen zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. A. Gierl Prufer¨ der Dissertation: 1. Hon.-Prof. Dr. R. Balling, Technische Uni- versit¨at Carlo-Wilhelmina zu Braunschweig 2. Univ.-Prof. Dr. W. Wurst Die Dissertation wurde am 29. Oktober 2003 bei der Technischen Univer- sit¨at Munc¨ hen eingereicht und durch die Fakult¨at Wissenschaftszentrum Wei- henstephan fur¨ Ern¨ahrung, Landnutzung und Umwelt am 14. Januar 2004 angenommen. ii Zusammenfassung Um die molekularen Mechanismen, welche Knorpelentwicklung und Somito- genese steuern, aufzukl¨aren, wurde eine globale quantitative Genexpressions- analyse unter Verwendung von SAGE (Serial Analysis of Gene Expression) an der knorpelbildenden Zelllinie ATDC5 und an somitischem Gewebe, pr¨apariert von E10.5 M¨ausen, durchgefuhrt.¨ Unter insgesamt 43,656 von der murinen knorpelbildenden Zelllinie ATDC5 gewonnenen SAGE Tags (21,875 aus uninduzierten Zellen und 21,781 aus Zellen, die fur¨ 6h mit BMP4 induziert wurden) waren 139 Transkripte un- terschiedlich in den beiden Bibliotheken repr¨asentiert (P 0.05). 95 Tags ≤ konnten einzelnen UniGene Eintr¨agen zugeordnet werden
    [Show full text]
  • MAPK Pathway and B Cells Overactivation in Multiple Sclerosis Revealed by Phosphoproteomics and Genomic Analysis
    MAPK pathway and B cells overactivation in multiple sclerosis revealed by phosphoproteomics and genomic analysis Ekaterina Kotelnikovaa,b,c, Narsis A. Kianid,e, Dimitris Messinisf, Inna Pertsovskayaa, Vicky Pliakaf,g, Marti Bernardo-Faurah, Melanie Rinasi, Gemma Vilaa, Irati Zubizarretaa, Irene Pulido-Valdeolivasa, Theodore Sakellaropoulosg, Wolfgang Faiglej, Gilad Silberbergd,e, Mar Massok, Pernilla Stridhl, Janina Behrensm,n, Tomas Olssonl, Roland Martinj, Friedemann Paulm,n,o, Leonidas G. Alexopoulosf,g, Julio Saez-Rodriguezh,i,p,q, Jesper Tegnerd,e,r,s,t, and Pablo Villosladaa,1 aCenter of Neuroimmunology, Institut d’Investigacions Biomèdiques August Pi Sunyer, Barcelona 08036, Spain; bKharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127051, Russia; cClarivate Analytics, Barcelona 08025, Spain; dUnit of Computational Medicine, Department of Medicine, Karolinska Institutet, Solna, Stockholm SE-171 76, Sweden; eCenter for Molecular Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden; fProtatOnce, Athens 15343, Greece; gDepartment of Mechanical Engineering, National Technical University of Athens, Athens 15780, Greece; hEuropean Bioinformatics Institute, European Molecular Biology Laboratory, Hinxton CB10 1SD, United Kingdom; iJoint Research Centre for Computational Biomedicine, Rheinisch-Westfälische Technische Hochschule - Aachen University Hospital, Aachen 52074, Germany; jDepartment of Neurology, University of Zurich, Zurich 8091, Switzerland; kBionure Farma SL, Barcelona 08028,
    [Show full text]