Muscles of the Lower Extremity

Total Page:16

File Type:pdf, Size:1020Kb

Muscles of the Lower Extremity Muscles of the Lower Extremity MUSCLE INNERVATION MAIN ACTIONS MUSCLE GROUP Abductor digiti minimi Lateral plantar nerve Abducts and flexes 5th digit Foot - Layer 1 Abductor hallucis Medial plantar nerve Abducts and flexes 1st digit Foot - Layer 1 Adductor brevis Obturator nerve Adducts thigh at hip, weak hip flexor Thigh - Medial Adducts 1st digit, maintains Adductor hallucis Deep branch of lateral plantar nerve Foot - Layer 3 transverse arch of foot Adductor longus Obturator nerve (anterior division) Adducts thigh at hip Thigh - Medial Adductor part: obturator nerve Adductor part: adducts and flexes Adductor magnus Hamstring part: sciatic nerve (tibial thigh Thigh - Medial division) Hamstring part: extends thigh Pulls suprapatellar bursa superiorly Articularis genus Femoral nerve Thigh - Anterior with extension of knee Long head: sciatic nerve (tibial division) (L5–S2) Flexes and laterally rotates leg, Biceps femoris Thigh - Posterior Short head: sciatic nerve (common extends thigh at hip fibular division) Abduct 2nd through 4th toes, flex Dorsal interossei (four muscles) Lateral plantar nerve metatarsophalangeal joints, and Foot - Layer 4 extend phalanges Aids the extensor digitorum longus in Extensor digitorum brevis and extending of 4 medial digits at the Deep fibular nerve Foot - Dorsum extensor hallucis brevis metatarsophalangeal and interphalangeal joints Extends lateral four digits and Extensor digitorum longus Deep fibular nerve Leg - Anterior dorsiflexes foot at ankle Extends great toe, dorsiflexes foot at Extensor hallucis longus Deep fibular nerve Leg - Anterior ankle Everts foot and weakly plantarflexes Fibularis peroneus brevis Superficial fibular nerve Leg - Lateral foot at ankle Everts foot and weakly plantarflexes Fibularis peroneus longus Superficial fibular nerve Leg - Lateral foot at ankle Dorsiflexes foot at ankle and aids in Fibularis peroneus tertius Deep fibular nerve Leg - Anterior eversion of foot Superficial branch of lateral plantar Flexor digiti minimi brevis Flexes proximal phalanx of 5th digit Foot - Layer 3 nerve Flexor digitorum brevis Medial plantar nerve Flexes 2nd through 5th digits Foot - Layer 1 Flexes lateral four digits and Flexor digitorum longus Tibial nerve plantarflexes foot at ankle; supports Leg - Posterior longitudinal arches of foot Flexor hallucis brevis Medial plantar nerve Flexes proximal phalanx of 1st digit Foot - Layer 3 Flexes all joints of great toe, weakly Flexor hallucis longus Tibial nerve Leg - Posterior plantarflexes foot at ankle Plantarflexes foot at ankle joint, Gastrocnemius Tibial nerve assists in flexion of knee joint, raises Leg - Posterior heel during walking Extends flexed thigh, assists in lateral Gluteus maximus Inferior gluteal nerve Gluteal region rotation, and abducts thigh Abducts and medially rotates thigh at Gluteus medius Superior gluteal nerve hips; steadies pelvis on leg when Gluteal region opposite leg is raised Abducts and medially rotates thigh at Gluteus minimus Superior gluteal nerve hips; steadies pelvis on leg when Gluteal region opposite leg is raised Adducts thigh, flexes and medially Gracilis Obturator nerve Thigh - Medial rotates leg Page 1 of 2 Muscles of the Lower Extremity MUSCLE INNERVATION MAIN ACTIONS MUSCLE GROUP Flexes hip and stabilizes hip joint; acts Iliacus Femoral nerve Posterior abdominal wall with psoas major Flexes thigh at hips and stabilizes hip Iliacus (Iliopsoas) Femoral nerve Thigh - Anterior joint, acts with psoas major Laterally rotates extended thigh at Inferior gamellus Nerve to quadratus femoris Gluteal region the hip Flexes proximal phalanges at MTP Medial one: medial plantar nerve Lumbricals joint, extends phalanges at PIP and Foot - Layer 2 Lateral three : lateral plantar nerve DIP joints Laterally rotates thigh, stabilizes head Obturator externus Obturator nerve Thigh - Medial of femur in acetabulum Laterally rotates extended thigh, Obturator internus Nerve to obturator internus Gluteal region abducts flexed thigh at hip Femoral nerve and sometimes Pectineus Adducts and flexes thigh at hip Thigh - Medial obturator nerve Laterally rotates extended thigh, Piriformis Ventral rami of L5, S1, S2 Gluteal region abducts flexed thigh at hip Adduct digits (2–4) and flex Plantar interossei (three muscles) Lateral plantar nerve metatarsophalangeal joint and extend Foot - Layer 4 phalanges Plantaris Tibial nerve Weakly assists gastrocnemius Leg - Posterior Weakly flexes knee and unlocks it by Popliteus Tibial nerve (L4–S1) Leg - Posterior rotating femur on fixed tibia Acting superiorly with iliacus, flexes hip; acting inferiorly, flexes vertebral Ventral rami of first four lumbar Psoas major column laterally; used to balance Posterior abdominal wall nerves trunk in sitting position; acting inferiorly with iliacus, flexes trunk Acting superiorly with iliacus, flexes hip; acting inferiorly, flexes vertebral Psoas major (Iliopsoas) Ventral rami of first lumbar nerve column laterally; used to balance Thigh - Anterior trunk in sitting position; acting inferiorly with iliacus, flexes trunk Quadratus femoris Nerve to quadratus femoris Laterally rotates thigh at hip Gluteal region Corrects for oblique pull of flexor Quadratus plantae Lateral plantar nerve digitorum longus tendon, thus assists Foot - Layer 2 in flexion of toes Extends leg at knee joint and flexes Rectus femoris (quadriceps) Femoral nerve Thigh - Anterior thigh at hip joint Abducts, laterally rotates, and flexes Sartorius Femoral nerve Thigh - Anterior thigh; flexes knee joint Semimembranosus Sciatic nerve (tibial division) Flexes leg, extends thigh Thigh - Posterior Semitendinosus Sciatic nerve (tibial division) Flexes leg, extends thigh Thigh - Posterior Plantarflexes foot at ankle, stabilizes Soleus Tibial nerve Leg - Posterior leg over foot Laterally rotates extended thigh at Superior gemellus Nerve to obturator internus Gluteal region the hip Abducts, medially rotates, and flexes Tensor fasciae latae Superior gluteal nerve thigh at hip; helps to keep knee Gluteal region extended Dorsiflexes foot at ankle and inverts Tibialis anterior Deep fibular nerve Leg - Anterior foot Plantarflexes foot at ankle and inverts Tibialis posterior Tibial nerve Leg - Posterior foot Vastus intermedius (quadriceps) Femoral nerve Extends leg at knee joint Thigh - Anterior Vastus lateralis (quadriceps) Femoral nerve Extends leg at knee joint Thigh - Anterior Vastus medialis (quadriceps) Femoral nerve Extends leg at knee joint Thigh - Anterior Page 2 of 2.
Recommended publications
  • Knee Flow Chart Acute
    Symptom chart for acute knee pain START HERE Did the knee pain begin Does the knee joint You may have a fracture or Stop what you are doing immediately and go to a hospital emergency room YES YES suddenly, with an injury, appear deformed, or dislocated patella. or an orthopedic surgeon specializing in knee problems. slip, fall, or collision? out of position? If possible, splint the leg to limit the movement of the knee until you reach NO the doctor. Do not put any weight on the knee. Use a wheelchair, a cane, or NO crutch to prevent putting any weight on the leg, which might cause further damage to the joint. GO TO FLOW CHART #2 Go to an orthopedic surgeon Stop what you are doing. Continuing activity despite the feeling that the knee ON CHRONIC KNEE Did you hear a “pop” YES immediately, you may have is unstable can cause additional damage to other ligaments, meniscus , and PROBLEMS THAT DEVELOP and does your knee feel torn your anterior cruciate, or cartilage. Try ice on the knee to control swelling. Take anti-in ammatories OR WORSEN OVER TIME. unstable or wobbly? other ligaments in the knee. like Advil or Nuprin until your doctor’s appointment. About a third of ligament tears get better with exercises, a third may need a brace, and a third may need sur gery. NO Use R•I•C•E for sore knees Does your knee hurt YES You may have damaged the articular Try anti-in ammatories, as directed on the bottle, for two days to reduce R: Rest as you bend it? cartilage on the bottom of the the chronic in ammation.
    [Show full text]
  • Total HIP Replacement Exercise Program 1. Ankle Pumps 2. Quad
    3 sets of 10 reps (30 ea) 2 times a day Total HIP Replacement Exercise Program 5. Heel slides 1. Ankle Pumps Bend knee and pull heel toward buttocks. DO NOT GO Gently point toes up towards your nose and down PAST 90* HIP FLEXION towards the surface. Do both ankles at the same time or alternating feet. Perform slowly. 2. Quad Sets Slowly tighten thigh muscles of legs, pushing knees down into the surface. Hold for 10 count. 6. Short Arc Quads Place a large can or rolled towel (about 8”diameter) under the leg. Straighten knee and leg. Hold straight for 5 count. 3. Gluteal Sets Squeeze the buttocks together as tightly as possible. Hold for a 10 count. 7. Knee extension - Long Arc Quads Slowly straighten operated leg and try to hold it for 5 sec. Bend knee, taking foot under the chair. 4. Abduction and Adduction Slide leg out to the side. Keep kneecap pointing toward ceiling. Gently bring leg back to pillow. May do both legs at the same time. Copywriter VHI Corp 3 sets of 10 reps (30 ea) 2 times a day Total HIP Replacement Exercise Program 8. Standing Stair/Step Training: Heel/Toe Raises: 1. The “good” (non-operated) leg goes Holding on to an immovable surface. UP first. Rise up on toes slowly 2. The “bad” (operated) leg goes for a 5 count. Come back to foot flat and lift DOWN first. toes from floor. 3. The cane stays on the level of the operated leg. Resting positions: To Stretch your hip to neutral position: 1.
    [Show full text]
  • Human Functional Anatomy 213 the Ankle and Foot In
    2 HUMAN FUNCTIONAL ANATOMY 213 JOINTS OF THE FOOT THE ANKLE AND FOOT IN LOCOMOTION THE HINDFOOT -(JOINTS OF THE TALUS) THIS WEEKS LAB: Forearm and hand TROCHLEAR The ankle, and distal tibiofibular joints READINGS BODY The leg and sole of foot Subtalar joint (Posterior talocalcaneal) 1. Stern – Core concepts – sections 99, 100 and 101 (plus appendices) HEAD 2. Faiz and Moffat – Anatomy at a Glance – Sections 50 and 51 Talocalcaneonavicular 3. Grants Method:- The bones and sole of foot & Joints of the lower limb & Transverse tarsal joints or any other regional textbook - similar sections IN THIS LECTURE I WILL COVER: Joints related to the talus Ankle Subtalar Talocalcaneonavicular THE MID FOOT Transverse tarsal Other tarsal joints THE FOREFOOT Toe joints METATARSAL AND PHALANGEAL Ligaments of the foot JOINTS (same as in the hand) Arches of the foot Except 1st metatarsal and Hallux Movements of the foot & Compartments of the leg No saddle joint at base is 1st metatarsal The ankle in Locomotion Metatarsal head is bound by deep Ankle limps transverse metatarsal ligament 1. Flexor limp Toes are like fingers 2. Extensor limp Same joints, Lumbricals, Interossei, Extensor expansion Axis of foot (for abduction-adduction) is the 2nd toe. 3 4 JOINTS OF THE FOOT JOINTS OF THE FOOT (2 joints that allow inversion and eversion) DISTAL TIBIOFIBULAR SUBTALAR (Posterior talocalcaneal) JOINT Syndesmosis (fibrous joint like interosseous membrane) Two (or three) talocalcaneal joints Posterior is subtalar Fibres arranged to allow a little movement Anterior (and middle) is part of the talocalcaneonavicular. With a strong interosseus ligament running between them (tarsal sinus) THE TALOCALCANEONAVICULAR JOINT The head of the talus fits into a socket formed from the: The anterior talocalcaneal facets.
    [Show full text]
  • Hip Extensor Mechanics and the Evolution of Walking and Climbing Capabilities in Humans, Apes, and Fossil Hominins
    Hip extensor mechanics and the evolution of walking and climbing capabilities in humans, apes, and fossil hominins Elaine E. Kozmaa,b,1, Nicole M. Webba,b,c, William E. H. Harcourt-Smitha,b,c,d, David A. Raichlene, Kristiaan D’Aoûtf,g, Mary H. Brownh, Emma M. Finestonea,b, Stephen R. Rossh, Peter Aertsg, and Herman Pontzera,b,i,j,1 aGraduate Center, City University of New York, New York, NY 10016; bNew York Consortium in Evolutionary Primatology, New York, NY 10024; cDepartment of Anthropology, Lehman College, New York, NY 10468; dDivision of Paleontology, American Museum of Natural History, New York, NY 10024; eSchool of Anthropology, University of Arizona, Tucson, AZ 85721; fInstitute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, United Kingdom; gDepartment of Biology, University of Antwerp, 2610 Antwerp, Belgium; hLester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, IL 60614; iDepartment of Anthropology, Hunter College, New York, NY 10065; and jDepartment of Evolutionary Anthropology, Duke University, Durham, NC 27708 Edited by Carol V. Ward, University of Missouri-Columbia, Columbia, MO, and accepted by Editorial Board Member C. O. Lovejoy March 1, 2018 (received for review September 10, 2017) The evolutionary emergence of humans’ remarkably economical their effects on climbing performance or tested whether these walking gait remains a focus of research and debate, but experi- traits constrain walking and running performance. mentally validated approaches linking locomotor
    [Show full text]
  • Iliopsoas Tendonitis/Bursitis Exercises
    ILIOPSOAS TENDONITIS / BURSITIS What is the Iliopsoas and Bursa? The iliopsoas is a muscle that runs from your lower back through the pelvis to attach to a small bump (the lesser trochanter) on the top portion of the thighbone near your groin. This muscle has the important job of helping to bend the hip—it helps you to lift your leg when going up and down stairs or to start getting out of a car. A fluid-filled sac (bursa) helps to protect and allow the tendon to glide during these movements. The iliopsoas tendon can become inflamed or overworked during repetitive activities. The tendon can also become irritated after hip replacement surgery. Signs and Symptoms Iliopsoas issues may feel like “a pulled groin muscle”. The main symptom is usually a catch during certain movements such as when trying to put on socks or rising from a seated position. You may find yourself leading with your other leg when going up the stairs to avoid lifting the painful leg. The pain may extend from the groin to the inside of the thigh area. Snapping or clicking within the front of the hip can also be experienced. Do not worry this is not your hip trying to pop out of socket but it is usually the iliopsoas tendon rubbing over the hip joint or pelvis. Treatment Conservative treatment in the form of stretching and strengthening usually helps with the majority of patients with iliopsoas bursitis. This issue is the result of soft tissue inflammation, therefore rest, ice, anti- inflammatory medications, physical therapy exercises, and/or injections are effective treatment options.
    [Show full text]
  • Tibialis Posterior Tendon Transfer Corrects the Foot Drop Component
    456 COPYRIGHT Ó 2014 BY THE JOURNAL OF BONE AND JOINT SURGERY,INCORPORATED Tibialis Posterior Tendon Transfer Corrects the Foot DropComponentofCavovarusFootDeformity in Charcot-Marie-Tooth Disease T. Dreher, MD, S.I. Wolf, PhD, D. Heitzmann, MSc, C. Fremd, M.C. Klotz, MD, and W. Wenz, MD Investigation performed at the Division for Paediatric Orthopaedics and Foot Surgery, Department for Orthopaedic and Trauma Surgery, Heidelberg University Clinics, Heidelberg, Germany Background: The foot drop component of cavovarus foot deformity in patients with Charcot-Marie-Tooth disease is commonly treated by tendon transfer to provide substitute foot dorsiflexion or by tenodesis to prevent the foot from dropping. Our goals were to use three-dimensional foot analysis to evaluate the outcome of tibialis posterior tendon transfer to the dorsum of the foot and to investigate whether the transfer works as an active substitution or as a tenodesis. Methods: We prospectively studied fourteen patients with Charcot-Marie-Tooth disease and cavovarus foot deformity in whom twenty-three feet were treated with tibialis posterior tendon transfer to correct the foot drop component as part of a foot deformity correction procedure. Five patients underwent unilateral treatment and nine underwent bilateral treatment; only one foot was analyzed in each of the latter patients. Standardized clinical examinations and three-dimensional gait analysis with a special foot model (Heidelberg Foot Measurement Method) were performed before and at a mean of 28.8 months after surgery. Results: The three-dimensional gait analysis revealed significant increases in tibiotalar and foot-tibia dorsiflexion during the swing phase after surgery. These increases were accompanied by a significant reduction in maximum plantar flexion at the stance-swing transition but without a reduction in active range of motion.
    [Show full text]
  • Peroneus Longus Tendon Regeneration After Anterior Cruciate Ligament Reconstruction with Magnetic Resonance Imaging Evaluation
    Scientific Foundation SPIROSKI, Skopje, Republic of Macedonia Open Access Macedonian Journal of Medical Sciences. 2020 Nov 14; 8(A):916-920. https://doi.org/10.3889/oamjms.2020.5487 eISSN: 1857-9655 Category: A - Basic Sciences Section: Sports Medicine Peroneus Longus Tendon Regeneration after Anterior Cruciate Ligament Reconstruction with Magnetic Resonance Imaging Evaluation Sholahuddin Rhatomy1,2*, Bambang Kisworo3, Bunarwan Prihargono4, Faiz Alam Rashid1, Nolli Kressoni5 1Department of Orthopaedics and Traumatology, Dr. Soeradji Tirtonegoro General Hospital, Klaten, Indonesia; 2Department of Orthopaedics and Traumatology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia; 3Department of Orthopaedics and Traumatology, Panti Rapih Hospital, Yogyakarta, Indonesia; 4Department of Orthopaedics and Traumatology, Karanganyar General Hospital, Karanganyar, Indonesia; 5Department of Radiology, Indriati Hospital, Sukoharjo, Indonesia Abstract Edited by: Slavica Hristomanova-Mitkovska BACKGROUND: Peroneus longus graft can be recommended as a superior graft over hamstring in anterior cruciate Citation: Rhatomy S, Kisworo B, Prihargono B, Rashid FA, Kressoni N. Peroneus Longus Tendon ligament (ACL) reconstruction. There are many studies concerning hamstring tendon regeneration, but there are few Regeneration after Anterior Cruciate Ligament studies on the regeneration of the peroneus longus tendon after ACL reconstruction. Reconstruction with Magnetic Resonance Imaging Evaluation. Open Access Maced J
    [Show full text]
  • Piriformis Syndrome: the Literal “Pain in My Butt” Chelsea Smith, PTA
    Piriformis Syndrome: the literal “pain in my butt” Chelsea Smith, PTA Aside from the monotony of day-to-day pains and annoyances, piriformis syndrome is the literal “pain in my butt” that may not go away with sending the kids to grandmas and often takes the form of sciatica. Many individuals with pain in the buttock that radiates down the leg are experiencing a form of sciatica caused by irritation of the spinal nerves in or near the lumbar spine (1). Other times though, the nerve irritation is not in the spine but further down the leg due to a pesky muscle called the piriformis, hence “piriformis syndrome”. The piriformis muscle is a flat, pyramidal-shaped muscle that originates from the front surface of the sacrum and the joint capsule of the sacroiliac joint (SI joint) and is located deep in the gluteal tissue (2). The piriformis travels through the greater sciatic foramen and attaches to the upper surface of the greater trochanter (or top of the hip bone) while the sciatic nerve runs under (and sometimes through) the piriformis muscle as it exits the pelvis. Due to this close proximity between the piriformis muscle and the sciatic nerve, if there is excessive tension (tightness), spasm, or inflammation of the piriformis muscle this can cause irritation to the sciatic nerve leading to symptoms of sciatica (pain down the leg) (1). Activities like sitting on hard surfaces, crouching down, walking or running for long distances, and climbing stairs can all increase symptoms (2) with the most common symptom being tenderness along the piriformis muscle (deep in the gluteal region) upon palpation.
    [Show full text]
  • Knee Joint Distraction Compared with Total Knee Arthroplasty a RANDOMISED CONTROLLED TRIAL
    KNEE Knee joint distraction compared with total knee arthroplasty A RANDOMISED CONTROLLED TRIAL J. A. D. van der Woude, Aims K. Wiegant, Knee joint distraction (KJD) is a relatively new, knee-joint preserving procedure with the R. J. van Heerwaarden, goal of delaying total knee arthroplasty (TKA) in young and middle-aged patients. We S. Spruijt, present a randomised controlled trial comparing the two. P. J. E m ans , Patients and Methods S. C. Mastbergen, The 60 patients ≤ 65 years with end-stage knee osteoarthritis were randomised to either F. P. J. G. Lafeber KJD (n = 20) or TKA (n = 40). Outcomes were assessed at baseline, three, six, nine, and 12 months. In the KJD group, the joint space width (JSW) was radiologically assessed, From UMC Utrecht, representing a surrogate marker of cartilage thickness. Utrecht, The Netherlands Results In total 56 patients completed their allocated treatment (TKA = 36, KJD = 20). All patient reported outcome measures improved significantly over one year (p < 0.02) in both groups. J. A. D. van der Woude, MD, At one year, the TKA group showed a greater improvement in only one of the 16 patient- PhD, Resident in Orthopaedic Surgery, Limb and Knee related outcome measures assessed (p = 0.034). Outcome Measures in Rheumatology- Reconstruction Unit, Department of Orthopaedic Osteoarthritis Research Society International clinical response was 83% after TKA and 80% Surgery after KJD. A total of 12 patients (60%) in the KJD group sustained pin track infections. In the R. J. van Heerwaarden, MD, PhD, Orthopaedic Surgeon, KJD group both mean minimum (0.9 mm, standard deviation (SD) 1.1) and mean JSW (1.2 mm, Limb and Knee Reconstruction Unit, Department of SD 1.1) increased significantly (p = 0.004 and p = 0.0003).
    [Show full text]
  • Rehabilitation of Soft Tissue Injuries of the Hip and Pelvis T
    Donald and Barbara Zucker School of Medicine Journal Articles Academic Works 2014 Rehabilitation of soft tissue injuries of the hip and pelvis T. F. Tyler Northwell Health T. Fukunaga Hofstra Northwell School of Medicine J. Gellert Follow this and additional works at: https://academicworks.medicine.hofstra.edu/articles Recommended Citation Tyler TF, Fukunaga T, Gellert J. Rehabilitation of soft tissue injuries of the hip and pelvis. 2014 Jan 01; 9(6):Article 1396 [ p.]. Available from: https://academicworks.medicine.hofstra.edu/articles/1396. Free full text article. This Article is brought to you for free and open access by Donald and Barbara Zucker School of Medicine Academic Works. It has been accepted for inclusion in Journal Articles by an authorized administrator of Donald and Barbara Zucker School of Medicine Academic Works. INVITED CLINICAL COMMENTARY REHABILITATION OF SOFT TISSUE INJURIES OF THE HIP AND PELVIS Timothy F. Tyler MS, PT, ATC1 Takumi Fukunaga DPT, ATC, CSCS1 Joshua Gellert DPT IJSPT ABSTRACT Soft tissue injuries of the hip and pelvis are common among athletes and can result in significant time loss from sports participation. Rehabilitation of athletes with injuries such as adductor strain, iliopsoas syn- drome, and gluteal tendinopathy starts with identification of known risk factors for injury and comprehen- sive evaluation of the entire kinetic chain. Complex anatomy and overlapping pathologies often make it difficult to determine the primary cause of the pain and dysfunction. The purpose of this clinical commen- tary is to present an impairment-based, stepwise progression in evaluation and treatment of several com- mon soft tissue injuries of the hip and pelvis.
    [Show full text]
  • Sensory Conduction in Medial and Lateral Plantar Nerves
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.51.2.188 on 1 February 1988. Downloaded from Journal ofNeurology, Neurosurgery, and Psychiatry 1988;51:188-191 Sensory conduction in medial and lateral plantar nerves S N PONSFORD From the Department of Clinical Neurophysiology, Walsgrave Hospital, Coventry, UK SUMMARY A simple and reliable method of recording medial and lateral plantar nerve sensory action potentials is described. Potentials are recorded with surface electrodes at the ankle using surface electrodes stimulating orthodromically at the sole. The normal values obtained are higher in amplitude than those obtained by the method described by Guiloff and Sherratt and are detectable in older subjects aged over 80 years. The procedure is valuable in the diagnosis of early peripheral neuropathy, mononeuritig multiplex; tarsal tunnel syndrome and in differentiation between pre and post ganglionic L5 SI lesions. The value of medial plantar sensory action potential EL53051 applied to the sole just lateral to the first meta-guest. Protected by copyright. (SAP) recording in the diagnosis of peripheral neuro- tarsal, the anode level with metatarsophalangeal joint, the pathy and investigation of root or individual nerve cathode thus overlying the first common digital nerve sub- lesions involving the leg or foot was clearly estab- serving contiguous surfaces ofthe great and second toes. For the lateral plantar, the stimulator was placed between the lished by Guiloff and Sherratt.1 However, their fourth and fifth metatarsals, the anode-again level with the method of stimulating at the big toe and recording at metatarsophalangeal joint, overlying the fourth common the ankle gives potentials of relatively small ampli- digital nerve supplying contiguous surfaces of the fourth and tude (mean amplitude 2-3 pv, range 0-8- 1).
    [Show full text]
  • A Cadaver Research
    Journal of Arthroscopy and Joint Surgery 6 (2019) 114e116 Contents lists available at ScienceDirect Journal of Arthroscopy and Joint Surgery journal homepage: www.elsevier.com/locate/jajs Tensile strength comparison between hamstring tendon, patellar tendon, quadriceps tendon and peroneus longus tendon: A cadaver research * Krisna Y. Phatama a, , Mohamad Hidayat a, Edi Mustamsir a, Ananto Satya Pradana a, Brian Dhananjaya b, Surya Iman Muhammad b a Orthopaedic and Traumatology Department, Lower Extremity and Adult Reconstruction Division, Saiful Anwar Hospital, Jalan Jaksa Agung Suprapto No.2, Klojen, Kota Malang, Jawa Timur, 65112, Indonesia b Orthopaedic and Traumatology Department, Saiful Anwar Hospital, Jalan Jaksa Agung Suprapto No. 2, Klojen, Kota Malang, Jawa Timur, 65112, Indonesia article info abstract Article history: Knee ligament injury is a frequent occurrence. Ligament reconstruction using tendon graft is the best Received 6 December 2018 therapy recommendation in the case of severe knee ligament injury. Tendon graft that is oftenly used are Accepted 15 February 2019 hamstring tendon, patellar tendon (BPTB), quadriceps tendon and peroneus longus tendon have been Available online 19 February 2019 proposed as tendon graft donor. Biomechanically, tensile strength from tendon graft is the main factor that greatly contributes to the success of ligament reconstruction procedure. Numerous researches have Keywords: been done to calculate tensile strengths of hamstring and patellar tendon, but there has not been a Ligament reconstruction research done yet on the comparison of the tensile strengths of peroneus longus tendon, hamstring, Tendon graft Tensile strength patellar tendon and quadriceps tendon. This research will strive to record the tensile strengths of per- oneus longus tendon, hamstring, patellar tendon and quadriceps tendon as well as their comparison.
    [Show full text]