Mitochondrial Calcium Uptake Pathways As a Potential Therapeutic Target

Total Page:16

File Type:pdf, Size:1020Kb

Mitochondrial Calcium Uptake Pathways As a Potential Therapeutic Target Mitochondrial calcium uptake pathways as a potential therapeutic target. Julia Marie Hill A thesis submitted for the degree of Doctor of Philosophy Department of Cell and Developmental Biology University College London January 2016 I dedicate this thesis to Neil and Jill Hill, who have always encouraged me to strive, and have always had confidence in me. 2 Declaration I, Julia Marie Hill, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. January, 2016 Julia Marie Hill 3 Acknowledgements I would like to thank Professor Michael Duchen and Professor Gyorgy Szabadkai for their supervision and guidance throughout my studies and research. Thank you especially to Gyuri for his extensive practical as well as theoretical knowledge, for doing experiments alongside me when necessary, and encouraging me when I was disheartened. I would also like to thank Eisai for funding my PhD. Without funding I would certainly not have been able to undertake a PhD. A big thank you is owed to all members of the Duchen and Szabadkai labs, past and present. Drs Zhi Yao, Will Kotiadis, Goncalo Pereira, Nicoletta Plotegher, Tom Briston, Laura Osellame and Jose Vicencio for teaching me many of the techniques I have used in the lab, in addition to their good advice and friendship. Thanks especially to Zhi, Will and Goncalo for your enduring patience and assistance. Many, many thanks also go to Bobby Bentham, Stephanie Sundier, Jenny Sharpe, Gauri Bhosale, Pedro Guedes Dias, Greg Keen and Neta Amior for making my time here not only bearable but enjoyable, it wouldn’t have been anywhere near as fun without you. Thank you to Sam Ranasinghe, for keeping the confocals working, and coming to the rescue whenever they weren’t. I extend my thanks also to Dr Gareth Pryce and Professor David Baker of the Blizard Institute at Queen Mary’s, and to Professor David Selwood of the Wolfson Institute for Biomedical Research for their collaboration, and for putting me in touch with their fascinating research. Thanks especially to Gareth for all those days spent together mashing up livers, and for not giving up when it wasn’t working. Thank you also to Dr Sean Davidson and Dr Dan Bromage for supplying me with CypD-/- mice from their colony at no cost and no inconvenience. I would also like to express my gratitude to UCL’s Biological Services and Biosciences Stores for their underappreciated hard work and consistent cheerfulness. On a personal note, I want to thank my friends and family who have supported me throughout the PhD. These are too numerous to name, but special thanks go to Ernestas Sirka, my fabulous flatmate of the last three years, for putting up with me all this time, and being there through it all. 4 Abstract It has been known since the 1960’s that mitochondria have a huge capacity to take up and accumulate calcium from the cytosol, regulating energy production, autophagy, and mitochondrial morphology. Dysfunctional mitochondrial calcium homeostasis is also involved in the pathology of many disease states. Therefore, mitochondrial calcium handling represents an interesting therapeutic target. In this thesis I aimed to investigate related therapeutic avenues and further understand the role of mitochondrial calcium handling machinery. When mitochondrial calcium uptake exceeds the calcium buffering capacity of the mitochondrial matrix, the mitochondrial permeability transition pore (mPTP) opens in the inner mitochondrial membrane. Pore opening causes mitochondrial depolarisation, energetic collapse, swelling, rupture, and cell death. Using isolated mitochondria, I screened a range of novel mitochondrial targeted derivatives of the canonical mPTP inhibitor, cyclosporin A (CsA), to assess their efficacy as mPTP inhibitors, and as potential therapeutics for neurological disease. Two compounds were found to be more effective than CsA at low concentrations, and one was selected for further study. The compound’s target was investigated and found to be Cyclophilin D, and it’s effect on various mitochondrial parameters was assessed, and it was found to be non-toxic ex vivo and in vitro. The molecular identity of the mitochondrial calcium uniporter (MCU) was only recently discovered, followed by discovery of several associated proteins – MCUb, MICU1, MICU2, MICU3, EMRE, and MCUR1. I developed a screen using the bioluminescent protein aequorin to identify mitochondrial specific inhibitors of the MCU, and I developed a stable cell line in which the MCU protein was knocked down, in order to further examine the role of MCU and investigate the effect of reduced mitochondrial calcium uptake on mitochondrial and cellular properties. While mitochondrial calcium uptake was significantly reduced upon stimulation in these cells, cytosolic calcium, oxygen consumption, cell growth and mitochondrial morphology were not affected. I also investigated the protein expression level of the components of the MCU complex in the rat brain throughout development. 5 Publications Some of the figures and ideas presented in this thesis have been published in the following reports: 1. Hill J.M., De Stefani D., Jones A.W., Ruiz A., Rizzuto R., & Szabadkai G., (2014) Measuring baseline Ca2+ levels in subcellular compartments using genetically engineered fluorescent indicators. Methods Enzymol, 543, 47-72. Doi: 10.1016/B978-0-12-801329-8.00003-9. 2. Warne J, Pryce G, Hill JM, Shi X, Lennerås F, Puentes F, et al. Selective Inhibition of the Mitochondrial Permeability Transition Pore Protects against Neurodegeneration in Experimental Multiple Sclerosis. J Biol Chem 2016; 291(9): 4356-73. 3. Hill J. M., Kriston-Vizi J., Kettler R., Szabadkai G. Developing a screening strategy for mitochondrial specific inhibitors. In preparation. 6 Contents Contents Page Declaration………………………………………………………………………………………………………. 3 Acknowledgements………………………………………………………………………………………….. 4 Abstract……………………………………………………………………………………………………………. 5 Publications……………………………………………………………………………………………………… 6 Contents…………………………………………………………………………………………………………… 7 List of Figures…………………………………………………………………………………………………… 10 List of Tables…………………………………………………………………………………………………….. 13 Abbreviations…………………………………………………………………………………………………… 14 Materials…………………………………………………………………………………………………………. 19 Chapter 1: Introduction……………………………………………..……………………………………. 23 Mitochondria……………………………………………………………………………………………………. 23 Mitochondria and Ca2+ handling………………………………………………………………………. 27 Physiological roles of mitochondrial Ca2+ homeostasis…………………………………. 28 Mitochondrial Ca2+ in apoptosis and necrosis………………………………………………. 30 The Mitochondrial Ca2+ uptake complex…………………………………………………………… 32 MCU…………………………………………………………………………………………………………….. 32 MCUb…………………………………………………………………………………………………………… 36 MICU1…………………………………………………………………………………………………………. 37 MICU2 and MICU3……………………………………………………………………………………….. 40 EMRE…………………………………………………………………………………………………………… 42 MCUR1……………………………………………………………………………………………………….. 43 Solute Carrier 25A23……………………………………………………………………………………. 45 Involvement of other proteins in mitochondrial Ca2+ uptake………………………… 46 The mitochondrial permeability transition pore……………………………………………….. 48 Mechanism of mPTP opening………………………………………………………………………. 48 mPTP and cell fate……………………………………………………………………………………….. 50 Molecular identity of mPTP……………………………………………………………………….... 51 7 Cyclophilin D……………………………………………………………………………………………. 51 A multiprotein complex: VDAC, ANT and TSPO………………………………………... 52 The phosphate carrier……………………………………………………………………………… 53 ATP synthase……………………………………………………………………………………………. 53 Spastic paraplegia 7…………………………………………………………………………………. 56 Mitochondrial Ca2+ as a therapeutic target……………………………………………………….. 57 Roles of mitochondrial Ca2+ overload in neurodegenerative disease……………. 57 Role of mPTP in neurodegenerative disease…………………………………………………. 59 Aims…………………………………………………………………………………………………………………. 61 Chapter 2: Targeting the Mitochondrial Permeability Transition Pore……………. 62 Introduction……………..………………………………………………………………………………………. 62 Existing inhibitors of mPTP…………………………………………………………………………… 62 Methods………………………………………………………………………………………………………….. 67 Results…………………………………………………………………………………………………………….. 73 Initial assessment of compounds…………………………………………………………………. 73 Investigation of JW47 efficacy and target…………………………………………………….. 75 Investigation of the effect of JW47 on mitochondrial parameters……………….. 77 Investigation of second generation compounds…………………………………………… 79 Summary……………………………………………………………………………………………………… 80 Discussion…………………………………………………………………………………………………………. 82 Chapter 3: Developing an Aequorin-based Screening Approach to Identify Inhibitors of MCU ……………………………………………………………………………………………. 89 Introduction……………………………………………………………………………………………………… 89 Mitochondria as drug targets……………………………………………………………………….. 89 Existing MCU-targeting compounds……………………………………………………………… 90 Aequorin………………………………………………………………………………………………………. 91 Designing an aequorin based screening approach………………………………………… 93 Methods…………………………………………………………………………………………………………… 95 Results……………………………………………………………………………………………………………… 100 Initial Screening of the NINDs-2 compound library………………………………………. 100 Reconfirming screening results…………………………………………………………………….. 105 Investigating the effect of compounds on other mitochondrial parameters…. 108 8 Summary……………………………………………………………………………………………………… 110 Discussion…………………………………………………………………………………………………………. 111 Chapter 4: Investigating the role of the MCU in vitro………………………………………. 115 Introduction………………………………………………………………………………………………………
Recommended publications
  • Integrating Complementary Medicine Into Cardiovascular Medicine
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of the American College of Cardiology Vol. 46, No. 1, 2005 © 2005 by the American College of Cardiology Foundation ISSN 0735-1097/05/$30.00 Published by Elsevier Inc. doi:10.1016/j.jacc.2005.05.031 ACCF COMPLEMENTARY MEDICINE EXPERT CONSENSUS DOCUMENT Integrating Complementary Medicine Into Cardiovascular Medicine A Report of the American College of Cardiology Foundation Task Force on Clinical Expert Consensus Documents (Writing Committee to Develop an Expert Consensus Document on Complementary and Integrative Medicine) WRITING COMMITTEE MEMBERS JOHN H. K. VOGEL, MD, MACC, Chair STEVEN F. BOLLING, MD, FACC BRIAN OLSHANSKY, MD, FACC REBECCA B. COSTELLO, PHD KENNETH R. PELLETIER, MD(HC), PHD ERMINIA M. GUARNERI, MD, FACC CYNTHIA M. TRACY, MD, FACC MITCHELL W. KRUCOFF, MD, FACC, FCCP ROBERT A. VOGEL, MD, FACC JOHN C. LONGHURST, MD, PHD, FACC TASK FORCE MEMBERS ROBERT A. VOGEL, MD, FACC, Chair JONATHAN ABRAMS, MD, FACC SANJIV KAUL, MBBS, FACC JEFFREY L. ANDERSON, MD, FACC ROBERT C. LICHTENBERG, MD, FACC ERIC R. BATES, MD, FACC JONATHAN R. LINDNER, MD, FACC BRUCE R. BRODIE, MD, FACC* ROBERT A. O’ROURKE, MD, FACC† CINDY L. GRINES, MD, FACC GERALD M. POHOST, MD, FACC PETER G. DANIAS, MD, PHD, FACC* RICHARD S. SCHOFIELD, MD, FACC GABRIEL GREGORATOS, MD, FACC* SAMUEL J. SHUBROOKS, MD, FACC MARK A. HLATKY, MD, FACC CYNTHIA M. TRACY, MD, FACC* JUDITH S. HOCHMAN, MD, FACC* WILLIAM L. WINTERS, JR, MD, MACC* *Former members of Task Force; †Former chair of Task Force The recommendations set forth in this report are those of the Writing Committee and do not necessarily reflect the official position of the American College of Cardiology Foundation.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2012/0190743 A1 Bain Et Al
    US 2012O190743A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0190743 A1 Bain et al. (43) Pub. Date: Jul. 26, 2012 (54) COMPOUNDS FOR TREATING DISORDERS Publication Classification OR DISEASES ASSOCATED WITH (51) Int. Cl NEUROKININ 2 RECEPTORACTIVITY A6II 3L/23 (2006.01) (75) Inventors: Jerald Bain, Toronto (CA); Joel CD7C 69/30 (2006.01) Sadavoy, Toronto (CA); Hao Chen, 39t. ii; C Columbia, MD (US); Xiaoyu Shen, ( .01) Columbia, MD (US) A6IPI/00 (2006.01) s A6IP 29/00 (2006.01) (73) Assignee: UNITED PARAGON A6IP II/00 (2006.01) ASSOCIATES INC., Guelph, ON A6IPI3/10 (2006.01) (CA) A6IP 5/00 (2006.01) A6IP 25/00 (2006.01) (21) Appl. No.: 13/394,067 A6IP 25/30 (2006.01) A6IP5/00 (2006.01) (22) PCT Filed: Sep. 7, 2010 A6IP3/00 (2006.01) CI2N 5/071 (2010.01) (86). PCT No.: PCT/US 10/48OO6 CD7C 69/33 (2006.01) S371 (c)(1) (52) U.S. Cl. .......................... 514/552; 554/227; 435/375 (2), (4) Date: Apr. 12, 2012 (57) ABSTRACT Related U.S. Application Data Compounds, pharmaceutical compositions and methods of (60) Provisional application No. 61/240,014, filed on Sep. treating a disorder or disease associated with neurokinin 2 4, 2009. (NK) receptor activity. Patent Application Publication Jul. 26, 2012 Sheet 1 of 12 US 2012/O190743 A1 LU 1750 15OO 1250 OOO 750 500 250 O O 20 3O 40 min SampleName: EM2OO617 Patent Application Publication Jul. 26, 2012 Sheet 2 of 12 US 2012/O190743 A1 kixto CFUgan <tro CFUgan FIG.2 Patent Application Publication Jul.
    [Show full text]
  • Upregulation of Peroxisome Proliferator-Activated Receptor-Α And
    Upregulation of peroxisome proliferator-activated receptor-α and the lipid metabolism pathway promotes carcinogenesis of ampullary cancer Chih-Yang Wang, Ying-Jui Chao, Yi-Ling Chen, Tzu-Wen Wang, Nam Nhut Phan, Hui-Ping Hsu, Yan-Shen Shan, Ming-Derg Lai 1 Supplementary Table 1. Demographics and clinical outcomes of five patients with ampullary cancer Time of Tumor Time to Age Differentia survival/ Sex Staging size Morphology Recurrence recurrence Condition (years) tion expired (cm) (months) (months) T2N0, 51 F 211 Polypoid Unknown No -- Survived 193 stage Ib T2N0, 2.41.5 58 F Mixed Good Yes 14 Expired 17 stage Ib 0.6 T3N0, 4.53.5 68 M Polypoid Good No -- Survived 162 stage IIA 1.2 T3N0, 66 M 110.8 Ulcerative Good Yes 64 Expired 227 stage IIA T3N0, 60 M 21.81 Mixed Moderate Yes 5.6 Expired 16.7 stage IIA 2 Supplementary Table 2. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of an ampullary cancer microarray using the Database for Annotation, Visualization and Integrated Discovery (DAVID). This table contains only pathways with p values that ranged 0.0001~0.05. KEGG Pathway p value Genes Pentose and 1.50E-04 UGT1A6, CRYL1, UGT1A8, AKR1B1, UGT2B11, UGT2A3, glucuronate UGT2B10, UGT2B7, XYLB interconversions Drug metabolism 1.63E-04 CYP3A4, XDH, UGT1A6, CYP3A5, CES2, CYP3A7, UGT1A8, NAT2, UGT2B11, DPYD, UGT2A3, UGT2B10, UGT2B7 Maturity-onset 2.43E-04 HNF1A, HNF4A, SLC2A2, PKLR, NEUROD1, HNF4G, diabetes of the PDX1, NR5A2, NKX2-2 young Starch and sucrose 6.03E-04 GBA3, UGT1A6, G6PC, UGT1A8, ENPP3, MGAM, SI, metabolism
    [Show full text]
  • Neurotransmitters-Drugs Andbrain Function.Pdf
    Neurotransmitters, Drugs and Brain Function. Edited by Roy Webster Copyright & 2001 John Wiley & Sons Ltd ISBN: Hardback 0-471-97819-1 Paperback 0-471-98586-4 Electronic 0-470-84657-7 Neurotransmitters, Drugs and Brain Function Neurotransmitters, Drugs and Brain Function. Edited by Roy Webster Copyright & 2001 John Wiley & Sons Ltd ISBN: Hardback 0-471-97819-1 Paperback 0-471-98586-4 Electronic 0-470-84657-7 Neurotransmitters, Drugs and Brain Function Edited by R. A. Webster Department of Pharmacology, University College London, UK JOHN WILEY & SONS, LTD Chichester Á New York Á Weinheim Á Brisbane Á Singapore Á Toronto Neurotransmitters, Drugs and Brain Function. Edited by Roy Webster Copyright & 2001 John Wiley & Sons Ltd ISBN: Hardback 0-471-97819-1 Paperback 0-471-98586-4 Electronic 0-470-84657-7 Copyright # 2001 by John Wiley & Sons Ltd. Bans Lane, Chichester, West Sussex PO19 1UD, UK National 01243 779777 International ++44) 1243 779777 e-mail +for orders and customer service enquiries): [email protected] Visit our Home Page on: http://www.wiley.co.uk or http://www.wiley.com All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1P0LP,UK, without the permission in writing of the publisher. Other Wiley Editorial Oces John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, USA WILEY-VCH Verlag GmbH, Pappelallee 3, D-69469 Weinheim, Germany John Wiley & Sons Australia, Ltd.
    [Show full text]
  • GABA Receptors
    D Reviews • BIOTREND Reviews • BIOTREND Reviews • BIOTREND Reviews • BIOTREND Reviews Review No.7 / 1-2011 GABA receptors Wolfgang Froestl , CNS & Chemistry Expert, AC Immune SA, PSE Building B - EPFL, CH-1015 Lausanne, Phone: +41 21 693 91 43, FAX: +41 21 693 91 20, E-mail: [email protected] GABA Activation of the GABA A receptor leads to an influx of chloride GABA ( -aminobutyric acid; Figure 1) is the most important and ions and to a hyperpolarization of the membrane. 16 subunits with γ most abundant inhibitory neurotransmitter in the mammalian molecular weights between 50 and 65 kD have been identified brain 1,2 , where it was first discovered in 1950 3-5 . It is a small achiral so far, 6 subunits, 3 subunits, 3 subunits, and the , , α β γ δ ε θ molecule with molecular weight of 103 g/mol and high water solu - and subunits 8,9 . π bility. At 25°C one gram of water can dissolve 1.3 grams of GABA. 2 Such a hydrophilic molecule (log P = -2.13, PSA = 63.3 Å ) cannot In the meantime all GABA A receptor binding sites have been eluci - cross the blood brain barrier. It is produced in the brain by decarb- dated in great detail. The GABA site is located at the interface oxylation of L-glutamic acid by the enzyme glutamic acid decarb- between and subunits. Benzodiazepines interact with subunit α β oxylase (GAD, EC 4.1.1.15). It is a neutral amino acid with pK = combinations ( ) ( ) , which is the most abundant combi - 1 α1 2 β2 2 γ2 4.23 and pK = 10.43.
    [Show full text]
  • Bovine Coccidiosis - a Review
    PEER REVIEWED Bovine Coccidiosis - A Review DL Step, DVM, DACVIM; RN Streeter, DVM, MS, DACVIM; JG Kirkpatrick, DVM, DABVP Department of Veterinary Clinical Sciences, Boren Veterinary Teaching Hospital, Oklahoma State University, Stillwater, OK 74078 Abstract mune en hiver meme dans les cas de confinement. Les :feces peuvent contenir des oocystes meme lorsque les Coccidians are protozoa! parasites that are host animaux ne montrent pas de signes cliniques de sorte specific, transmitted by the fecal-oral route and cause qu'un diagnostic de coccidiose doit se baser sur les signes enteritis. Economically significant species discussed in cliniques et exclure les autres maladies. L'identification this paper that cause disease in cattle belong to the ge­ post-mortem de coccidies aide a supporter le diagnostic. nus Eimeria. Young animals are more susceptible to Les elements de regie qui reduisent le stress et clinical disease than older cattle. Coccidiosis is fre­ previennent la contamination de l'eau et de la nourriture quently observed in stressed, overcrowded and confined sont importants pour prevenir la coccidiose. Les conditions, however, .the disease can occur on pasture. programmes de controle efficaces incluent souvent The disease can occur any time of the year but is more !'utilisation de nourriture et d'eau medicamentes. Les prevalent during winter months, even in confinement agents antimicrobiens couramment utilises aux Etats­ operations. Animals may pass oocysts in their feces with­ Unis pour le controle et la prevention de coccidiose out clinical disease, therefore, a diagnosis of coccidiosis incluent entre autres le monensin, le lasalocide, le is based on clinical signs and ruling out other diseases.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2015/0025060A1 Tamarkin Et Al
    US 2015.0025060A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0025060A1 Tamarkin et al. (43) Pub. Date: Jan. 22, 2015 (54) FOAMABLE COMPOSITIONS AND KITS (30) Foreign Application Priority Data COMPRISING ONE ORMORE OF A CHANNEL AGENT, ACHOLINERGICAGENT, Oct. 25, 2002 (IL) .......................................... 1524.86 A NITRC OXDE DONOR AND RELATED AGENTS AND THEIR USES Publication Classification (71) Applicant: Foamix Pharmaceuticals Ltd., Rehovot (51) Int. Cl. (IL) A613 L/554 (2006.01) A 6LX3 L/505 (2006.01) (72) Inventors: Dov Tamarkin, Macabim (IL); Meir A647/10 (2006.01) Eini, Ness Ziona (IL); Doron Friedman, A613 L/4422 (2006.01) Karmei Yosef (IL); Tal Berman, Rishon (52) U.S. Cl. Le Ziyyon (IL); Alex Besonov, Rehovot CPC ........... A6 IK3I/554 (2013.01); A61 K3I/4422 (IL) (2013.01); A61 K3I/505 (2013.01); A61 K 47/10 (2013.01) (21) Appl. No.: 14/448,670 USPC ....................... 514/211.03: 514/356; 514/275 (22) Filed: Jul. 31, 2014 (57) ABSTRACT Related U.S. Application Data The present invention relates to a foamable therapeutic com position comprising: (a) a therapeutically effective concen (63) Continuation of application No. 1 1/767,442, filed on tration of at least one active agent selected from the group Jun. 22, 2007, which is a continuation-in-part of appli consisting of a channel agent, a cholinergic agent, and a nitric cation No. 10/911.367, filed on Aug. 4, 2004, said oxide donor; and (b) a foamable carrier comprising: application No. 1 1/767,442 is a continuation-in-part of i.
    [Show full text]
  • FROM MELANCHOLIA to DEPRESSION a HISTORY of DIAGNOSIS and TREATMENT Thomas A
    1 FROM MELANCHOLIA TO DEPRESSION A HISTORY OF DIAGNOSIS AND TREATMENT Thomas A. Ban International Network for the History of Neuropsychopharmacology 2014 2 From Melancholia to Depression A History of Diagnosis and Treatment1 TABLE OF CONTENTS Introduction 2 Diagnosis and classifications of melancholia and depression 7 From Galen to Robert Burton 7 From Boissier de Sauvages to Karl Kahlbaum 8 From Emil Kraepelin to Karl Leonhard 12 From Adolf Meyer to the DSM-IV 17 Treatment of melancholia and depression 20 From opium to chlorpromazine 21 Monoamine Oxidase Inhibitors 22 Monoamine Re-uptake Inhibitors 24 Antidepressants in clinical use 26 Clinical psychopharmacology of antidepressants 30 Composite Diagnostic Evaluation of Depressive Disorders 32 The CODE System 32 CODE –DD 33 Genetics, neuropsychopharmacology and CODE-DD 36 Conclusions 37 References 37 INTRODUCTION Descriptions of what we now call melancholia or depression can be found in many ancient documents including The Old Testament, The Book of Job, and Homer's Iliad, but there is virtually 1 The text of this E-Book was prepared in 2002 for a presentation in Mexico City. The manuscript was not updated. 3 no reliable information on the frequency of “melancholia” until the mid-20th century (Kaplan and Saddock 1988). Between 1938 and 1955 several reports indicated that the prevalence of depression in the general population was below 1%. Comparing these figures, as shown in table 1, with figures in the 1960s and ‘70s reveals that even the lowest figures in the psychopharmacological era (from the 1960s) are 7 to 10 times greater than the highest figures before the introduction of antidepressant drugs (Silverman 1968).
    [Show full text]
  • NINDS Custom Collection II
    ACACETIN ACEBUTOLOL HYDROCHLORIDE ACECLIDINE HYDROCHLORIDE ACEMETACIN ACETAMINOPHEN ACETAMINOSALOL ACETANILIDE ACETARSOL ACETAZOLAMIDE ACETOHYDROXAMIC ACID ACETRIAZOIC ACID ACETYL TYROSINE ETHYL ESTER ACETYLCARNITINE ACETYLCHOLINE ACETYLCYSTEINE ACETYLGLUCOSAMINE ACETYLGLUTAMIC ACID ACETYL-L-LEUCINE ACETYLPHENYLALANINE ACETYLSEROTONIN ACETYLTRYPTOPHAN ACEXAMIC ACID ACIVICIN ACLACINOMYCIN A1 ACONITINE ACRIFLAVINIUM HYDROCHLORIDE ACRISORCIN ACTINONIN ACYCLOVIR ADENOSINE PHOSPHATE ADENOSINE ADRENALINE BITARTRATE AESCULIN AJMALINE AKLAVINE HYDROCHLORIDE ALANYL-dl-LEUCINE ALANYL-dl-PHENYLALANINE ALAPROCLATE ALBENDAZOLE ALBUTEROL ALEXIDINE HYDROCHLORIDE ALLANTOIN ALLOPURINOL ALMOTRIPTAN ALOIN ALPRENOLOL ALTRETAMINE ALVERINE CITRATE AMANTADINE HYDROCHLORIDE AMBROXOL HYDROCHLORIDE AMCINONIDE AMIKACIN SULFATE AMILORIDE HYDROCHLORIDE 3-AMINOBENZAMIDE gamma-AMINOBUTYRIC ACID AMINOCAPROIC ACID N- (2-AMINOETHYL)-4-CHLOROBENZAMIDE (RO-16-6491) AMINOGLUTETHIMIDE AMINOHIPPURIC ACID AMINOHYDROXYBUTYRIC ACID AMINOLEVULINIC ACID HYDROCHLORIDE AMINOPHENAZONE 3-AMINOPROPANESULPHONIC ACID AMINOPYRIDINE 9-AMINO-1,2,3,4-TETRAHYDROACRIDINE HYDROCHLORIDE AMINOTHIAZOLE AMIODARONE HYDROCHLORIDE AMIPRILOSE AMITRIPTYLINE HYDROCHLORIDE AMLODIPINE BESYLATE AMODIAQUINE DIHYDROCHLORIDE AMOXEPINE AMOXICILLIN AMPICILLIN SODIUM AMPROLIUM AMRINONE AMYGDALIN ANABASAMINE HYDROCHLORIDE ANABASINE HYDROCHLORIDE ANCITABINE HYDROCHLORIDE ANDROSTERONE SODIUM SULFATE ANIRACETAM ANISINDIONE ANISODAMINE ANISOMYCIN ANTAZOLINE PHOSPHATE ANTHRALIN ANTIMYCIN A (A1 shown) ANTIPYRINE APHYLLIC
    [Show full text]
  • Pharmacy and Poisons (Third and Fourth Schedule Amendment) Order 2017
    Q UO N T FA R U T A F E BERMUDA PHARMACY AND POISONS (THIRD AND FOURTH SCHEDULE AMENDMENT) ORDER 2017 BR 111 / 2017 The Minister responsible for health, in exercise of the power conferred by section 48A(1) of the Pharmacy and Poisons Act 1979, makes the following Order: Citation 1 This Order may be cited as the Pharmacy and Poisons (Third and Fourth Schedule Amendment) Order 2017. Repeals and replaces the Third and Fourth Schedule of the Pharmacy and Poisons Act 1979 2 The Third and Fourth Schedules to the Pharmacy and Poisons Act 1979 are repealed and replaced with— “THIRD SCHEDULE (Sections 25(6); 27(1))) DRUGS OBTAINABLE ONLY ON PRESCRIPTION EXCEPT WHERE SPECIFIED IN THE FOURTH SCHEDULE (PART I AND PART II) Note: The following annotations used in this Schedule have the following meanings: md (maximum dose) i.e. the maximum quantity of the substance contained in the amount of a medicinal product which is recommended to be taken or administered at any one time. 1 PHARMACY AND POISONS (THIRD AND FOURTH SCHEDULE AMENDMENT) ORDER 2017 mdd (maximum daily dose) i.e. the maximum quantity of the substance that is contained in the amount of a medicinal product which is recommended to be taken or administered in any period of 24 hours. mg milligram ms (maximum strength) i.e. either or, if so specified, both of the following: (a) the maximum quantity of the substance by weight or volume that is contained in the dosage unit of a medicinal product; or (b) the maximum percentage of the substance contained in a medicinal product calculated in terms of w/w, w/v, v/w, or v/v, as appropriate.
    [Show full text]
  • Tanibirumab (CUI C3490677) Add to Cart
    5/17/2018 NCI Metathesaurus Contains Exact Match Begins With Name Code Property Relationship Source ALL Advanced Search NCIm Version: 201706 Version 2.8 (using LexEVS 6.5) Home | NCIt Hierarchy | Sources | Help Suggest changes to this concept Tanibirumab (CUI C3490677) Add to Cart Table of Contents Terms & Properties Synonym Details Relationships By Source Terms & Properties Concept Unique Identifier (CUI): C3490677 NCI Thesaurus Code: C102877 (see NCI Thesaurus info) Semantic Type: Immunologic Factor Semantic Type: Amino Acid, Peptide, or Protein Semantic Type: Pharmacologic Substance NCIt Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor tyrosine kinase expressed by endothelial cells, while VEGF is overexpressed in many tumors and is correlated to tumor progression. PDQ Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor
    [Show full text]
  • Vimpat, INN-Lacosamide
    European Medicines Agency Evaluation of Medicines for Human Use Doc.Ref.: EMEA/460925/2008 ASSESSMENT REPORT FOR Vimpat International Nonproprietary Name: lacosamide Procedure No. EMEA/H/C/000863 Assessment Report as adopted by the CHMP with all information of a commercially confidential nature deleted. 7 Westferry Circus, Canary Wharf, London, E14 4HB, UK Tel. (44-20) 74 18 84 00 Fax (44-20) 75 23 70 51 E-mail: [email protected] http://www.emea.europa.eu © European Medicines Agency, 2008. Reproduction is authorised provided the source is acknowledged TABLE OF CONTENTS Page 1. BACKGROUND INFORMATION ON THE PROCEDURE........................................... 3 1.1 Submission of the dossier ........................................................................................................ 3 1.2 Steps taken for the assessment of the product.......................................................................... 3 2 SCIENTIFIC DISCUSSION................................................................................................. 4 2.1 Introduction.............................................................................................................................. 4 2.2 Quality aspects......................................................................................................................... 4 2.3 Non-clinical aspects............................................................................................................... 11 2.4 Clinical aspects .....................................................................................................................
    [Show full text]