System Center Endpoint Protection for Mac
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A the Hacker
A The Hacker Madame Curie once said “En science, nous devons nous int´eresser aux choses, non aux personnes [In science, we should be interested in things, not in people].” Things, however, have since changed, and today we have to be interested not just in the facts of computer security and crime, but in the people who perpetrate these acts. Hence this discussion of hackers. Over the centuries, the term “hacker” has referred to various activities. We are familiar with usages such as “a carpenter hacking wood with an ax” and “a butcher hacking meat with a cleaver,” but it seems that the modern, computer-related form of this term originated in the many pranks and practi- cal jokes perpetrated by students at MIT in the 1960s. As an example of the many meanings assigned to this term, see [Schneier 04] which, among much other information, explains why Galileo was a hacker but Aristotle wasn’t. A hack is a person lacking talent or ability, as in a “hack writer.” Hack as a verb is used in contexts such as “hack the media,” “hack your brain,” and “hack your reputation.” Recently, it has also come to mean either a kludge, or the opposite of a kludge, as in a clever or elegant solution to a difficult problem. A hack also means a simple but often inelegant solution or technique. The following tentative definitions are quoted from the jargon file ([jargon 04], edited by Eric S. Raymond): 1. A person who enjoys exploring the details of programmable systems and how to stretch their capabilities, as opposed to most users, who prefer to learn only the minimum necessary. -
1.Computer Virus Reported (1) Summary for This Quarter
Attachment 1 1.Computer Virus Reported (1) Summary for this Quarter The number of the cases reported for viruses*1 in the first quarter of 2013 decreased from that of the fourth quarter of 2012 (See Figure 1-1). As for the number of the viruses detected*2 in the first quarter of 2013, W32/Mydoom accounted for three-fourths of the total (See Figure 1-2). Compared to the fourth quarter of 2012, however, both W32/Mydoom and W32/Netsky showed a decreasing trend. When we looked into the cases reported for W32/Netsky, we found that in most of those cases, the virus code had been corrupted, for which the virus was unable to carry out its infection activity. So, it is unlikely that the number of cases involving this virus will increase significantly in the future As for W32/IRCbot, it has greatly decreased from the level of the fourth quarter of 2012. W32/IRCbot carries out infection activities by exploiting vulnerabilities within Windows or programs, and is often used as a foothold for carrying out "Targeted Attack". It is likely that that there has been a shift to attacks not using this virus. XM/Mailcab is a mass-mailing type virus that exploits mailer's address book and distributes copies of itself. By carelessly opening this type of email attachment, the user's computer is infected and if the number of such users increases, so will the number of the cases reported. As for the number of the malicious programs detected in the first quarter of 2013, Bancos, which steals IDs/Passwords for Internet banking, Backdoor, which sets up a back door on the target PC, and Webkit, which guides Internet users to a maliciously-crafted Website to infect with another virus, were detected in large numbers. -
F-1 Attachment F ACCESSING the FCC NETWORK USING WINDOWS
Attachment F ACCESSING THE FCC NETWORK USING WINDOWS 3.1 OR 3.11 This attachment describes how to access the FCC Network from a system that is running the Microsoft Windows 3.1 or Windows for Workgroups 3.11 operating system. This involves using the FCC-supplied Point-to-Point Protocol (PPP) Dialer. This attachment summarizes the hardware and software required for the PPP Dialer, then describes the procedures for performing the following tasks: C Downloading the Dialer files from the Internet or the FCC Bulletin Board C Extracting the Dialer from the downloaded files C Installing the Dialer application C Configuring PPP C Establishing a PPP connection The attachment also describes how to troubleshoot and uninstall the PPP Dialer application, and tells how to get help from the FCC. Conventions The instructions in this attachment use the following typographical conventions: bold Represents objects on the screen that you click with the mouse pointer, including buttons, Internet links, icons, tabs, menu items (e.g., Cancel button, Auctions link, Save option in the File menu). italic Represents field names or areas of a screen (e.g., Licensee Name field, Applicant Information area of a screen). bold italic Represents characters that you must type exactly as they appear in the instructions. For example, if you are instructed to type http://www.fcc.gov, you should type all of the characters shown in bold italic exactly as they are printed. SMALL CAPS Represents keys on the keyboard (e.g., ENTER, CTRL, ESC). F-1 Hardware and Software Requirements Applicants who want to connect to the FCC Network using the FCC PPP Dialer will need the following hardware and software. -
Detecting Botnets Using File System Indicators
Detecting botnets using file system indicators Master's thesis University of Twente Author: Committee members: Peter Wagenaar Prof. Dr. Pieter H. Hartel Dr. Damiano Bolzoni Frank Bernaards LLM (NHTCU) December 12, 2012 Abstract Botnets, large groups of networked zombie computers under centralised control, are recognised as one of the major threats on the internet. There is a lot of research towards ways of detecting botnets, in particular towards detecting Command and Control servers. Most of the research is focused on trying to detect the commands that these servers send to the bots over the network. For this research, we have looked at botnets from a botmaster's perspective. First, we characterise several botnet enhancing techniques using three aspects: resilience, stealth and churn. We see that these enhancements are usually employed in the network communications between the C&C and the bots. This leads us to our second contribution: we propose a new botnet detection method based on the way C&C's are present on the file system. We define a set of file system based indicators and use them to search for C&C's in images of hard disks. We investigate how the aspects resilience, stealth and churn apply to each of the indicators and discuss countermeasures botmasters could take to evade detection. We validate our method by applying it to a test dataset of 94 disk images, 16 of which contain C&C installations, and show that low false positive and false negative ratio's can be achieved. Approaching the botnet detection problem from this angle is novel, which provides a basis for further research. -
Interaction Dialer Installation and Configuration Guide
Interaction Dialer Installation and Configuration Guide 2018 R4 Last updated June 6, 2018 (See Change Log for summary of changes.) Abstract This document explains how to install Interaction Dialer. Interaction Dialer is a set of client/server extensions that add predictive dialing and campaign management capabilities to the PureConnect platform. iii Copyright and Trademark Information Interactive Intelligence, Interactive Intelligence Customer Interaction Center, Interaction Administrator, Interaction Attendant, Interaction Client, Interaction Designer, Interaction Tracker, Interaction Recorder, Interaction Mobile Office, Interaction Center Platform, Interaction Monitor, Interaction Optimizer, and the “Spirograph” logo design are registered trademarks of Genesys Telecommunications Laboratories, Inc. Customer Interaction Center, EIC, Interaction Fax Viewer, Interaction Server, ION, Interaction Voicemail Player, Interactive Update, Interaction Supervisor, Interaction Migrator, and Interaction Screen Recorder are trademarks of Genesys Telecommunications Laboratories, Inc. The foregoing products are ©1997-2017 Genesys Telecommunications Laboratories, Inc. All rights reserved. Interaction Dialer and Interaction Scripter are registered trademarks of Genesys Telecommunications Laboratories, Inc. The foregoing products are ©2000-2017 Genesys Telecommunications Laboratories, Inc. All rights reserved. Messaging Interaction Center and MIC are trademarks of Genesys Telecommunications Laboratories, Inc. The foreg oing p rodu cts are ©2001-2017 Genesys -
Computer Viruses, in Order to Detect Them
Behaviour-based Virus Analysis and Detection PhD Thesis Sulaiman Amro Al amro This thesis is submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy Software Technology Research Laboratory Faculty of Technology De Montfort University May 2013 DEDICATION To my beloved parents This thesis is dedicated to my Father who has been my supportive, motivated, inspired guide throughout my life, and who has spent every minute of his life teaching and guiding me and my brothers and sisters how to live and be successful. To my Mother for her support and endless love, daily prayers, and for her encouragement and everything she has sacrificed for us. To my Sisters and Brothers for their support, prayers and encouragements throughout my entire life. To my beloved Family, My Wife for her support and patience throughout my PhD, and my little boy Amro who has changed my life and relieves my tiredness and stress every single day. I | P a g e ABSTRACT Every day, the growing number of viruses causes major damage to computer systems, which many antivirus products have been developed to protect. Regrettably, existing antivirus products do not provide a full solution to the problems associated with viruses. One of the main reasons for this is that these products typically use signature-based detection, so that the rapid growth in the number of viruses means that many signatures have to be added to their signature databases each day. These signatures then have to be stored in the computer system, where they consume increasing memory space. Moreover, the large database will also affect the speed of searching for signatures, and, hence, affect the performance of the system. -
Recommended Practice for Securing Control Systems Modems
Recommended Practice for Securing Control System Modems January 2008 ABSTRACT This paper addresses an often overlooked “backdoor” into critical infrastructure control systems created by modem connections. A modem’s connection to the public telephone system is similar to a corporate network connection to the Internet. By tracing typical attack paths into the system, this paper provides the reader with an analysis of the problem and then guides the reader through methods to evaluate existing modem security. Following the analysis, a series of methods for securing modems is provided. These methods are correlated to well-known networking security methods. iii ACKNOWLEDGEMENT This document was developed for the U.S. Department of Homeland Security to provide guidance for modem security for control systems. The author team consisted of subject matter expertise from the Idaho National Laboratory (James Davidson & Jason Wright) For additional information or comments, please send inquires to the Control Systems Security Program at [email protected]. iv CONTENTS ABSTRACT.................................................................................................................................................iii ACKNOWLEDGEMENT ........................................................................................................................... iv ACRONYMS..............................................................................................................................................vii 1. INTRODUCTION............................................................................................................................. -
2007 Threat Report | 2008 Threat and Technology Forecast Executive Summary
2007 Threat Report | 2008 Threat and Technology Forecast Executive Summary Last year, Trend Micro’s 2006 Annual Roundup As we highlight the threats that made rounds and 2007 Forecast (The Trend of Threats Today) in 2007, it will become clear that all of these predicted the full emergence of Web threats predictions have indeed materialized, and some as the prevailing security threat in 2007. Web in an interesting fashion. threats include a broad array of threats that The shifting threat landscape demands a move operate through the Internet, typically comprise away from the traditional concept of malicious more than one fi le component, spawn a large code. Digital threats today cover more ground number of variants, and target a relatively smaller than ever. They may come to a user through audience. This was predicted to continue the simply having a vulnerable PC, visiting trusted “high focus/low spread” themes seen by some Web sites that are silently compromised, clicking attacks in 2006. an innocent-looking link, or by belonging to a Trend Micro also predicted that the growth and network that is under attack by a Distributed expansion of botnets during 2007 would be Denial of Service attacker. mostly based on new methods, ingenious social In the following roundup, Trend Micro summarizes engineering, and the exploitation of software the threats, malware trends, and security vulnerabilities. The roundup also indicated highlights seen during 2007. Real-life victims of that crimeware would continue to increase and these security threats include interest groups, become the prevailing threat motivation in 2007 individuals, organizations, and on some occasions and onwards. -
Cybercrime and Cyber-Security Issues Associated with China: Some Economic and Institutional Considerations
Cybercrime and Cyber-security Issues Associated with China: Some Economic and Institutional Considerations By: Nir Kshetri Kshetri, Nir (2013). “Cybercrime and Cyber-security Issues Associated with China: Some Economic and Institutional Considerations" Electronic Commerce Research 13 (1): 41-69. The original publication is available at: http://link.springer.com/article/10.1007%2Fs10660-013-9105-4 ***Reprinted with permission. No further reproduction is authorized without written permission from Springer Verlag. This version of the document is not the version of record. Figures and/or pictures may be missing from this format of the document. *** Abstract: China is linked to cybercrimes of diverse types, scales, motivations and objectives. The Chinese cyberspace thus provides an interesting setting for the study of cybercrimes. In this paper, we first develop typology, classification and characterization of cybercrimes associated with China, which would help us understand modus operandi, structures, profiles and personal characteristics of cybercrime organizations and potential perpetrators, the signature aspects and goals of cybercrimes, the nature and backgrounds of the criminal groups involved, characteristics of potential targets for criminal activities, the nature and extent of the damage inflicted on the victims and the implications to and responses elicited from various actors. We then examine this issue from developmental and international political economy angles. Specifically, we delineate salient features of China’s politics, culture, human capital and technological issues from the standpoint of cyber-security and analyze emerging international relations and international trade issues associated with this phenomenon. Our analysis indicates that China’s global ambition, the shift in the base of regime legitimacy from MarxLeninism to economic growth, the strong state and weak civil society explain the distinctive pattern of the country’s cyber-attack and cyber- security landscapes. -
Cybercrime Presentation
Cybercrime ‐ Marshall Area Chamber of October 10, 2017 Commerce CYBERCRIME Marshall Area Chamber of Commerce October 10, 2017 ©2017 RSM US LLP. All Rights Reserved. About the Presenter Jeffrey Kline − 27 years of information technology and information security experience − Master of Science in Information Systems from Dakota State University − Technology and Management Consulting with RSM − Located in Sioux Falls, South Dakota • Rapid Assessment® • Data Storage SME • Virtual Desktop Infrastructure • Microsoft Windows Networking • Virtualization Platforms ©2017 RSM US LLP. All Rights Reserved. RSM US LLP 1 Cybercrime ‐ Marshall Area Chamber of October 10, 2017 Commerce Content - Outline • History and introduction to cybercrimes • Common types and examples of cybercrime • Social Engineering • Anatomy of the attack • What can you do to protect yourself • Closing thoughts ©2017 RSM US LLP. All Rights Reserved. INTRODUCTION TO CYBERCRIME ©2017 RSM US LLP. All Rights Reserved. RSM US LLP 2 Cybercrime ‐ Marshall Area Chamber of October 10, 2017 Commerce Cybercrime Cybercrime is any type of criminal activity that involves the use of a computer or other cyber device. − Computers used as the tool − Computers used as the target ©2017 RSM US LLP. All Rights Reserved. Long History of Cybercrime John Draper uses toy whistle from Cap’n Crunch cereal 1971 box to make free phone calls Teller at New York Dime Savings Bank uses computer to 1973 funnel $1.5 million into his personal bank account First convicted felon of a cybercrime – “Captain Zap” 1981 who broke into AT&T computers UCLA student used a PC to break into the Defense 1983 Department’s international communication system Counterfeit Access Device and Computer Fraud and 1984 Abuse Act was passed ©2017 RSM US LLP. -
The Android Platform Security Model∗
The Android Platform Security Model∗ RENÉ MAYRHOFER, Google and Johannes Kepler University Linz JEFFREY VANDER STOEP, Google CHAD BRUBAKER, Google NICK KRALEVICH, Google Android is the most widely deployed end-user focused operating system. With its growing set of use cases encompassing communication, navigation, media consumption, entertainment, finance, health, and access to sensors, actuators, cameras, or microphones, its underlying security model needs to address a host of practical threats in a wide variety of scenarios while being useful to non-security experts. The model needs to strike a difficult balance between security, privacy, and usability for end users, assurances for app developers, and system performance under tight hardware constraints. While many of the underlying design principles have implicitly informed the overall system architecture, access control mechanisms, and mitigation techniques, the Android security model has previously not been formally published. This paper aims to both document the abstract model and discuss its implications. Based on a definition of the threat model and Android ecosystem context in which it operates, we analyze how the different security measures in past and current Android implementations work together to mitigate these threats. There are some special cases in applying the security model, and we discuss such deliberate deviations from the abstract model. CCS Concepts: • Security and privacy → Software and application security; Domain-specific security and privacy architectures; Operating systems security; • Human-centered computing → Ubiquitous and mobile devices. Additional Key Words and Phrases: Android, security, operating system, informal model 1 INTRODUCTION Android is, at the time of this writing, the most widely deployed end-user operating system. -
Vmwatcher.Pdf
Stealthy Malware Detection and Monitoring through VMM-Based “Out-of-the-Box” 12 Semantic View Reconstruction XUXIAN JIANG North Carolina State University XINYUAN WANG George Mason University and DONGYAN XU Purdue University An alarming trend in recent malware incidents is that they are armed with stealthy techniques to detect, evade, and subvert malware detection facilities of the victim. On the defensive side, a fundamental limitation of traditional host-based antimalware systems is that they run inside the very hosts they are protecting (“in-the-box”), making them vulnerable to counter detection and subversion by malware. To address this limitation, recent solutions based on virtual machine (VM) technologies advocate placing the malware detection facilities outside of the protected VM (“out-of- the-box”). However, they gain tamper resistance at the cost of losing the internal semantic view of the host, which is enjoyed by “in-the-box” approaches. This poses a technical challenge known as the semantic gap. In this article, we present the design, implementation, and evaluation of VMwatcher—an “out- of-the-box” approach that overcomes the semantic gap challenge. A new technique called guest view casting is developed to reconstruct internal semantic views (e.g., files, processes, and ker- nel modules) of a VM nonintrusively from the outside. More specifically, the new technique casts semantic definitions of guest OS data structures and functions on virtual machine monitor (VMM)- level VM states, so that the semantic view can be reconstructed. Furthermore, we extend guest view casting to reconstruct details of system call events (e.g., the process that makes the system This work was supported in part by the US National Science Foundation (NSF) under Grants CNS-0716376, CNS-0716444 and CNS-0546173.