Universidade Estadual De Campinas Instituto De Filosofia E Ciências Humanas

Total Page:16

File Type:pdf, Size:1020Kb

Universidade Estadual De Campinas Instituto De Filosofia E Ciências Humanas UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE FILOSOFIA E CIÊNCIAS HUMANAS Alina Mikhailovna Gilmanova Cavalcante Pathway development in solar energy: a comparative study between Brazil and China Desenvolvimento de energia solar: estudo comparativo entre Brasil e China CAMPINAS 2018 Alina Mikhailovna Gilmanova Cavalcante Pathway development in solar energy: a comparative study between Brazil and China Desenvolvimento de energia solar: estudo comparativo entre Brasil e China Tese apresentada ao Instituto de Filosofia e Ciências Humanas da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção do título de Doutora em Ciências Sociais. Thesis presented to the Institute of Philosophy and Human Sciences of the University of Campinas in partial fulfilment of the requirements for the degree of Doctor in the area of Social Science. Supervisor/Orientador: Valeriano Mendes Ferreira Costa ESTE EXEMPLAR CORRESPONDE À VERSÃO FINAL DA DISSERTAÇÃO DEFENDIDA PELA ALUNA ALINA MIKHAILOVNA GILMANOVA CAVALCANTE e ORIENTADA PELO PROF. VALERIANO MENDES FERREIRA COSTA. CAMPINAS 2018 UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE FILOSOFIA E CIÊNCIAS HUMANAS A Comissão Julgadora dos trabalhos de Defesa de Dissertação de Doutorado, composta pelos Professores Doutores a seguir descritos, em sessão pública realizada em 27 de fevereiro de 2018, considerou a candidata Alina Mikhailovna Gilmanova Cavalcante aprovada. Prof. Dr. Valeriano Mendes Ferreira Costa Prof. Dr. Thomas Patrick Dwyer Profa. Dr. Leila da Costa Ferreira Prof. Dr. Luiz Enrique Vieira de Souza Prof. Dr. Rafael Amaral Shayani A Ata de Defesa, assinada pelos membros da Comissão Examinadora, consta no processo de vida acadêmica da aluna. This work is dedicated to my mum, Glfya and to my husband, João Paulo – the two most important people in my life. Acknowledgments Firstly, I would like to express my sincere gratitude to my advisor Professor Valeriano Costa for his continuous support throughout my Ph.D, for his patience, motivation, and immense knowledge. His advices on the research as well as on my career have been priceless. Besides my advisor, I would like to thank the rest of my thesis committee: Professor Thomas Patrick Dwyer, Professor Leila da Costa Ferreira, Professor Luiz Enrique Vieira de Souza, Professor Rafael Amaral Shayani for advising and supporting me throughout the four years of my PhD program. I am beholden to Professor Liu Dehua – Director of China Latin America Joint Laboratory for Clean Energy and Climate Change, for inviting me to China, helping me with accommodation and supporting my research in China. Moreover, Jiao Jiwen from Tsinghua Solar Company was my adviser in China and I am thankful for his time, advice and the information he has shared with me. Moreover, I would like to thank Professor Wang Zhifeng for introducing me to Chinese Concentrated power sector and helping me in China with my research. I am grateful for the scholarship provided by Santander bank which enabled me to spend three months in China in 2016, as well as for the CNPq scholarship, which I received for four years. Moreover, I’m grateful to Professor Antonio C. P. Brasil Junior for helping me with my research and hosting me at the University of Brasília. My sincere thanks also go to all my interviewees in China and Brazil, who took time from their busy schedules to meet with me and who I have listed in the interview list at the end of the thesis. However, special thanks go to my colleagues from different areas, who took the time to read and comment my thesis: Cristiano Augusto Trein, Ivonice Campos, Marcos de Paiva, Xie Xixuan, Alena Profit, Sara Lindberg and Gregory Vincke. Thank you very much for your valuable input and comments! Special thanks to my dear family in Campinas, who welcomed me so warmly to Brazil, especially to my new Brazilian mum and dad — Selma and João Cavalcante. I would also like to thank all of my friends in Beijing Lucia Anderson and Alena Profit who made my journey in Beijing unforgettable! Finally, but by no means least, my thanks go to Solène Marié for taking the time to proofread my thesis and for being my friend at the same time. Resumo A energia solar é a fonte energética mais abundante, sendo a do tipo Fotovoltaica em franco desenvolvimento frente às demais tecnologias energéticas que podem fornecer energia descentralizada em todas as partes do mundo. Embora o Brasil e a China estejam se tornando atores-chave na arena das energias renováveis, eles têm uma situação completamente diferente quanto ao desenvolvimento da energia solar. O objetivo deste projeto de pesquisa de doutorado é analisar o desenvolvimento da energia fotovoltaica no Brasil e na China, em busca de responder à seguinte pergunta: por que na China a energia solar se desenvolveu rapidamente, enquanto no Brasil não? O estudo utiliza a combinação de método comparativo e perspectiva cosmopolita que enquadram a comparação de caminhos de desenvolvimento de energia solar em ambos os países, com o objetivo de preencher as lacunas entre estudos sociais e ambientais, político-econômico internacional e energia renovável. Os setores de energia solar brasileira e chinesa, em sua interligação com o mercado global de energia renovável, portanto, são apresentados como uma contribuição para os estudos comparativos, bem como um caso empírico para a sociologia da globalização. As descobertas finais demonstraram que o desenvolvimento da energia solar no Brasil e na China está condicionado aos caminhos de desenvolvimento do setor nacional de energia, aos interesses estatais, bem como à sua inserção no comércio mundial globalizado. Além das análises de mercado e perspectivas governamentais do setor de energia solar, o estudo analisa como ambas sociedades a concebem. As ideias formam a identidade do conceito solar, que depois se traduz em política pública. A tecnologia PV propõe um enorme potencial de transformação social que os países emergentes precisam e, redefinindo a ideia por trás do conceito é possível redirecionar o caminho de desenvolvimento da tecnologia. Finalmente, foram identificados os motores e barreiras do desenvolvimento de energia solar em ambos os países e algumas propostas apresentadas para uma maior cooperação entre eles. Palavras-chave: Brasil; China; energia fotovoltaica; política de energia renovável; sociologia da globalização. Abstract The sun is the most abundant source of energy and Photovoltaics is one of the fastest developing technologies which can provide it in a decentralised way to every part of the world. Though Brazil and China are key actors in the renewable energy arena, they present completely different situations regarding the development of solar energy. The purpose of this PhD research is to analyse the development of photovoltaic energy in Brazil and China, looking to answer the question: why has solar energy rapidly developed in China and not in Brazil? This study uses a combination of the comparative method and of the cosmopolitism theory to frame the comparison of solar energy development paths in both countries. It aims to bridge the gap between social and environmental studies, economics, international politics and renewable energy studies. Brazilian and Chinese solar energy sectors in their interconnectedness with the global renewable energy market, therefore, are presented as contributions to comparative studies, as well as empirical cases within sociology of globalisation. The findings demonstrate that solar energy development in Brazil and China is conditioned by the development paths of the national energy sectors, to State interests, as well as to their insertion in world trade. Along with market analyses and government perspectives on the solar energy sector, the study analyses the ideas which the societies have about solar energy. The ideas form the identity of the concept of solar energy, which is then translated into public policy. PV technology offers huge potential for social transformation which these emerging countries need and by redefining the idea behind the concept, it’s possible to redirect the development path of the technology. Finally, the drivers and barriers of solar energy development in both countries have been identified and practical recommendations have been elaborated for further cooperation between the countries. Key words: Brazil; China; photovoltaic energy; comparative study; sociology of globalisation. Abbreviation List ADB Asian Development Bank ABSOLAR Brazilian Association of Photovoltaic Solar Energy BNDE Brazilian National Development Bank (1952-1982) Brazilian National Bank for Socioeconomic Development (since BNDES 1982) BRL Brazilian real CO2 Carbon dioxide CCEE Chamber of Commercialization of Electric Energy CDB China Development Bank CNERC China National Renewable Energy Centre CYN Chinese Yuan Renminbi CSO Civil Society Organisations CSP Concentrated Solar Power COP Conference of Parties CNPE Council for National Energy Policies DG Decentralized Generation ONS Electric System National Operator EPE Energy Research Enterprise FIT Feed in Tariff FYP Five Years Plan FDI Foreign Direct Investments GW Gigawatt GONGO Government Organized Non-Governmental Organization GHG Greenhouse Gas PROINFA Incentive Program for Alternative Sources of Electricity IEA International Energy Agency IRENA International Renewable Energy Agency kWp Kilowatt peak kWh Kilowatt per hour LS Large Scale LCOE Levelized Costs of Electricity MW Megawatt MWp Megawatt peak MWh Megawatt per hour MME Ministry of Mines and Energy ANEEL
Recommended publications
  • Can Brazil Replicate China's Successful Solar Industry?
    Can Brazil replicate China’s successful solar industry? He Nuoshu and Fabio Couto Jr. A solar power station in Xuzhou, Jiangsu province, southeast China (Image: Zhiyong Fu / Greenpeace) China’s booming solar market offers many lessons for other emerging economies This report examines the shared experiences of China and Brazil in both nations’ efforts to develop domestic solar industries. The report, which synthesises two articles and includes policy recommendations borrowed from the Chinese experience, first appeared on Diálogo Chino and is published in partnership with Instituto Clima e Sociedade (ICS). History China’s solar power sector started to boom in recent years – not only in manufacturing, but also in domestic installations – thanks to strong government backing and a favourable policy environment. The rate of growth has stunned the world, as has the falling cost, beating expectations even of industry insiders. By the end of 2015, China had 43 gigawatts of installed solar power, and had overtaken Germany, another country that saw strong industrial policy supporting solar power, as the global leader. Last year, eight of the top-10 solar PV module manufacturers were Chinese. But the history is a longer one. The Chinese government has supported research and development (R&D) on solar PV since the 1950s, mainly for its uses in space. A PV module manufacturing industry developed during the 1990s. It remained small and of variable quality but became a crucial part of providing energy access to remote communities. The Brightness Programme, launched in 1996, was the first national policy to bring electricity access to off-grid areas of western China using renewable energy.
    [Show full text]
  • Large-Scale Solar Photovoltaic Impact Assessment in the Context of the Brazilian Environmental and Energy Planning
    LARGE-SCALE SOLAR PHOTOVOLTAIC IMPACT ASSESSMENT IN THE CONTEXT OF THE BRAZILIAN ENVIRONMENTAL AND ENERGY PLANNING Gardenio Diogo Pimentel da Silva Dissertação de Mestrado apresentada ao Programa de Pós-graduação em Planejamento Energético, COPPE, da Universidade Federal do Rio de Janeiro, como parte dos requisitos necessários à obtenção do título de Mestre em Planejamento Energético. Orientador(es): David Alves Castelo Branco Alessandra Magrini Rio de Janeiro Feverreiro de 2019 LARGE-SCALE SOLAR PHOTOVOLTAIC IMPACT ASSESSMENT IN THE CONTEXT OF THE BRAZILIAN ENVIRONMENTAL AND ENERGY PLANNING Gardenio Diogo Pimentel da Silva DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA (COPPE) DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIAS EM PLANEJAMENTO ENERGÉTICO. Examinada por: ________________________________________________ Prof. Dr. David Alves Castelo Branco, DSc. ________________________________________________ Prof. Dr. Alessandra Magrini, DSc. ________________________________________________ Prof. Dr. Betina Susanne Hoffmann, DSc. ________________________________________________ Prof. Dr. Ricardo Abranches Felix Cardoso Júnior, DSc. RIO DE JANEIRO, RJ - BRASIL FEVERREIRO DE 2019 Da Silva, Gardenio Diogo Pimentel Large-scale solar photovoltaic impact assessment in the context of the Brazilian environmental and energy planning/ Gardenio Diogo Pimentel da Silva. XIV, 89 p.: il.; 29,7 cm. Orientador: David Alves Castelo Branco e Alessandra Magrini Dissertação (mestrado) – UFRJ/ COPPE/ Programa de Planejamento Energético, 2019. Referências Bibliográficas: p. 92-96. 1. 1. Environmental Impact Assessment. 2. Regulation and energy planning. 3. Multicriteria decision-making analysis. I. Branco, David Alves Castelo; Magrini, Alessandra. II. Universidade Federal do Rio de Janeiro, COPPE, Programa de Engenharia Civil.
    [Show full text]
  • Regulatory Framework Analysis of the Solar Photovoltaic Energy in Brazil: Successes and Delays of a Renewable Energy Policy
    Regulatory framework analysis of the solar photovoltaic energy in Brazil: successes and delays of a renewable energy policy Matteo Cervelli Master in International Studies Supervisor: Prof. Catarina Roseta Palma, Associate Professor, Department of Economics, Iscte Business School October, 2020 Regulatory framework analysis of the solar photovoltaic energy in Brazil: successes and delays of a renewable energy policy Matteo Cervelli Master in International Studies Supervisor: Prof. Catarina Roseta Palma, Associate Professor, Department of Economics, Iscte Business School October, 2020 Acknowledgments I would like to express my gratidute firtsly to professor Catarina Roseta Palma who guided me and supported throughout this long and challenging project, contributing to this thesis with a major effort. I would also like to thank the help provided by all of the partipants of this study and thank each one of you for offering valuable data which I used in my study. Secondly, I wish to show my appreciation to all the teaching and research staff in the ISCTE as well as in the departament of Environamental Science of the Universidade Federal Fluminense. The assistance provided was greatly appreciated. A special thanks goes out to my master’s colleagues and my great friend Ingrid with whom I have shared moments of deep anxiety but also of big excitement. I wish to extend my special thanks to my friends who have always been a major source of support when things got bad. To my lovely wife, Bruna, I have been extremely lucky to have meet you in my life. Our destiny has been incredibly generous in bring us together.
    [Show full text]
  • Financing the Transition to Renewable Energy in the European Union
    Bi-regional economic perspectives EU-LAC Foundation Miguel Vazquez, Michelle Hallack, Gustavo Andreão, Alberto Tomelin, Felipe Botelho, Yannick Perez and Matteo di Castelnuovo. iale Luigi Bocconi Financing the transition to renewable energy in the European Union, Latin America and the Caribbean Financing the transition to renewable energy in European Union, Latin America and Caribbean EU-LAC / Università Commerc EU-LAC FOUNDATION, AUGUST 2018 Große Bleichen 35 20354 Hamburg, Germany www.eulacfoundation.org EDITION: EU-LAC Foundation AUTHORS: Miguel Vazquez, Michelle Hallack, Gustavo Andreão, Alberto Tomelin, Felipe Botelho, Yannick Perez and Matteo di Castelnuovo GRAPHIC DESIGN: Virginia Scardino | https://www.behance.net/virginiascardino PRINT: Scharlau GmbH DOI: 10.12858/0818EN Note: This study was financed by the EU-LAC Foundation. The EU-LAC Foundation is funded by its members, and in particular by the European Union. The contents of this publication are the sole responsibility of the authors and cannot be considered as the point of view of the EU- LAC Foundation, its member states or the European Union. This book was published in 2018. This publication has a copyright, but the text may be used free of charge for the purposes of advocacy, campaigning, education, and research, provided that the source is properly acknowledged. The co- pyright holder requests that all such use be registered with them for impact assessment purposes. For copying in any other circumstances, or for reuse in other publications, or for translation and adaptation,
    [Show full text]
  • Exercise About Ecological Footprint
    UNIVERSIDADE FEDERAL DA BAHIA – UFBA ESCOLA POLITÉCNICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA INDUSTRIAL – PEI Pieter de Jong. Forecasting, integration, and storage of renewable energy generation in the Northeast of Brazil SALVADOR – 2017 i Pieter de Jong. Forecasting, integration, and storage of renewable energy generation in the Northeast of Brazil Thesis submitted to the Postgraduate Program in Industrial Engineering (PEI), Polytechnic School, Federal University of Bahia, as a requirement to obtain a Doctorate of Industrial Engineering. Supervisors: Prof. Dr. Ednildo Andrade Torres Prof. Dr. Asher Kiperstok. Co-supervisor: Dr. Roger Dargaville. Tese apresentada ao Programa de Pós-Graduação em Engenharia Industrial (PEI), Escola Politécnica, Universidade Federal da Bahia, como um requisito para obtenção do grau de Doutor em Engenharia Industrial. Orientadores: Prof. Dr. Ednildo Andrade Torres Prof. Dr. Asher Kiperstok. Coorientador: Dr. Roger Dargaville. SALVADOR – 2017 ii de Jong, Pieter Forecasting, integration, and storage of renewable energy generation in the Northeast of Brazil / Pieter de Jong. – Salvador, 2017. 190 f. : il. color. Orientadores: Prof. Dr. Ednildo Andrade Torres, Prof. Dr. Asher Kiperstok. Coorientador: Dr. Roger Dargaville. Tese (Doutorado - Programa de Pós-Graduação em Engenharia Industrial) – Universidade Federal da Bahia, Escola Politécnica, 2017. 1. Renewable energy. 2. Wind power. 3. Solar power. 4. Hydroelectricity. 5. Integration. 6. Forecasting. I. Torres, Ednildo Andrade. II. Kiperstok, Asher. III. Dargaville, Roger. IV. Título. iii iv Acknowledgments: I wish to thank the following persons and institutions: My supervisors Prof. Dr. Ednildo Andrade Torres and Prof. Dr. Asher Kiperstok for their guidance along the project. My co-supervisor Dr. Roger Dargaville for providing valuable feedback. Dr.
    [Show full text]
  • Powering the Blue Economy: Exploring Opportunities for Marine Renewable Energy in Maritime Markets
    ™ Exploring Opportunities for Marine Renewable Energy in Maritime Markets April 2019 This report is being disseminated by the U.S. Department of Energy (DOE). As such, this document was prepared in compliance with Section 515 of the Treasury and General Government Appropriations Act for fiscal year 2001 (Public Law 106-554) and information quality guidelines issued by DOE. Though this report does not constitute “influential” information, as that term is defined in DOE’s information quality guidelines or the Office of Management and Budget’s Information Quality Bulletin for Peer Review, the study was reviewed both internally and externally prior to publication. For purposes of external review, the study benefited from the advice and comments of nine energy industry stakeholders, U.S. Government employees, and national laboratory staff. NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.
    [Show full text]
  • Towards Sustainable Renewable Energy Investment and Deployment Trade-O S and Opportunities with Water Resources and the Environment
    Towards sustainable renewable energy investment and deployment Trade-os and opportunities with water resources and the environment The required increase in renewable energy is closely related to broader questions of natural resource management and therefore interlinked to the sectors of water, agro-forestry and ecosystems - the “nexus”. The potential impacts of renewable energy expansion on other sectors can be positive (synergies based on complementarity of interests, to multiply beneÿts) or negative (trade-o° s, based on poor planning, generating undesired e° ects). At the level of transboundary basins, both types of impacts can spread across borders, thus necessitating a regional dialogue over renewable energy development. The purpose of this publication is to support renewable energy policy-makers in identifying and addressing synergies and trade-o° s by guiding them through the three parallel “tracks” of the renewable energy development process: strategic planning (long term); policy design and adoption (medium term); and project development (immediate, short term). This approach aims to help policy-makers in: broadening cooperation across sectors; exploring ÿnancing and partnership opportunities; maximizing the beneÿts of renewables and reducing their negative impact on the environment. This publication builds on the results of two types of multi-stakeholder dialogues that have been carried out with the support of the United Nations Economic Commission for Europe (UNECE): the Renewable Energy Hard Talks aimed at identifying barriers and policy response to renewable energy deployment; and the Water-Food-Energy-Ecosystem Nexus Assessments (carried out under the Convention on the Protection and Use of Transboundary Watercourses and International Lakes, also known as Water Convention) aimed at supporting cross-sectoral and transboundary cooperation.
    [Show full text]
  • Conceptual and Preliminary Design of a Long Endurance Electric UAV
    Conceptual and Preliminary Design of a Long Endurance Electric UAV Luís Miguel Almodôvar Parada Thesis to obtain the Master of Science Degree in Aerospace Engineering Supervisor: Prof. André Calado Marta Examination Committee Chairperson: Prof. Filipe Szolnoky Ramos Pinto Cunha Supervisor: Prof. André Calado Marta Member of the Committee: Dr. José Lobo do Vale November 2016 ii Pela minha fam´ılia, por ter permanecido. iii iv Acknowledgments First of all, I would like to express my gratitude to my thesis supervisor, professor Andre´ Calado Marta, for all technical guidance, patience and moral support throughout the period of time it took me to write this document. Moving on to the extracurricular plan, a word of appreciation is due to the Autonomous Section of Applied Aeronautics (S3A). It was thanks to the work developed at this hands-on organization of students that I started gaining interest in model aircraft, which made me look at this thesis subject twice. Furthermore, I want to thank a few friends and acquaintances that helped me through my academic life. Borrowed class notes, car rides, sleepless nights working for course projects, miraculous pieces of code, etc... all genuine contributions mattered. Finally, I must dedicate this work to my family, the foundation that allowed me to harvest a higher education level. To my parents, for supporting me financially and emotionally, while respecting my decisions and daily struggles. To my grandparents, for diligently nurturing me over the years with all the resilience they could possibly seed. And last but not least, to my brother and to my sister, for being the best distractions of my life.
    [Show full text]
  • Compatibility Between Crops and Solar Panels: an Overview from Shading Systems
    sustainability Review Compatibility between Crops and Solar Panels: An Overview from Shading Systems Raúl Aroca-Delgado 1, José Pérez-Alonso 1, Ángel Jesús Callejón-Ferre 1,* ID and Borja Velázquez-Martí 2 1 Department of Engineering, University of Almería, Agrifood Campus of International Excellence (CeiA3), s/n, 04120 La Cañada, Almería, Spain; [email protected] (R.A.-D.); [email protected] (J.P.-A.) 2 Departamento de Ingeniería Rural y Agroalimentaria, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-950-214-236 Received: 14 January 2018; Accepted: 6 March 2018; Published: 8 March 2018 Abstract: The use of alternative energy in agricultural production is desired by many researchers, especially for protected crops that are grown in greenhouses with photovoltaic panels on the roofs. These panels allow for the passage of varying levels of sunlight according to the needs of each type of crop. In this way, sustainable and more economic energy can be generated than that offered by fossil fuels. The objective of this work is to review the literature regarding the applications of selective shading systems with crops, highlighting the use of photovoltaic panels. In this work, shading systems have been classified as bleaching, mesh, screens, and photovoltaic modules. The search was conducted using Web of Science Core Collection and Scopus until February 2018. In total, 113 articles from scientific journals and related conferences were selected. The most important authors of this topic are “Yano A” and “Abdel-Ghany AM”, and regarding the number of documents cited, the most important journal is Biosystems Engineering.
    [Show full text]
  • The Post-COVID Recovery: an Agenda for Resilience, Development and Equality, International Renewable Energy Agency, Abu Dhabi ISBN 978-92-9260-245-1
    THE POST-COVID RECOVERY An agenda for resilience, development and equality © IRENA 2020 Unless otherwise stated, material in this publication may be freely used, shared, copied, reproduced, printed and/or stored, provided that appropriate acknowledgement is given of IRENA as the source and copyright holder. Material in this publication that is attributed to third parties may be subject to separate terms of use and restrictions, and appropriate permissions from these third parties may need to be secured before any use of such material. CITATION IRENA (2020), The post-COVID recovery: An agenda for resilience, development and equality, International Renewable Energy Agency, Abu Dhabi ISBN 978-92-9260-245-1 ABOUT IRENA The International Renewable Energy Agency (IRENA) serves as the principal platform for international co-operation, a centre of excellence, a repository of policy, technology, resource and financial knowledge, and a driver of action on the ground to advance the transformation of the global energy system. An intergovernmental organisation established in 2011, IRENA promotes the widespread adoption and sustainable use of all forms of renewable energy, including bioenergy, geothermal, hydropower, ocean, solar and wind energy, in the pursuit of sustainable development, energy access, energy security and low-carbon economic growth and prosperity. www.irena.org DISCLAIMER This publication and the material herein are provided “as is”. All reasonable precautions have been taken by IRENA to verify the reliability of the material in this publication. However, neither IRENA nor any of its officials, agents, data or other third-party content providers provides a warranty of any kind, either expressed or implied, and they accept no responsibility or liability for any consequence of use of the publication or material herein.
    [Show full text]
  • Economic Analysis of Renewable Energy Generation Technologies in the Northeast of Brazil
    2014 4th International Conference on Future Environment and Energy IPCBEE vol.61 (2014) © (2014) IACSIT Press, Singapore DOI: 10.7763/IPCBEE. 2014. V61. 5 Economic Analysis of Renewable Energy Generation Technologies in the Northeast of Brazil Pieter de Jong and Ednildo Andrade Torres Universidade Federal da Bahia, Escola Politécnica/PEI, Rua Aristides Novis, nº 2, Federação, CEP 40.210-630, Salvador, BA, Brazil Abstract. This study compares the economic viability of five renewable energy technologies – wind, solar photovoltaic, concentrated solar thermal, biomass and wave power – to various other technologies including hydroelectricity, nuclear power, coal power and gas power sources. The Levelised cost of Electricity (LCOE) is calculated for 12 different Brazilian case study projects, 9 of which are located in the Northeast region. Initial results found that using a discount rate of 5%, the hydroelectric plants had the lowest LCOE, but were only slightly cheaper than the wind power case studies. Solar photovoltaic (PV) was found to be the most expensive technology followed by wave power and concentrated solar thermal power (CSP). Keywords: Renewable Energy, Solar, Wind Power, Hydroelectricity. 1. Introduction In recent years, due to increasing fossil fuel prices, the local manufacture of wind turbines and the introduction of carbon credits through the Clean Development Mechanism (CDM), large scale wind farm projects are now viable and have been undertaken by private enterprise in Brazil [4], [7] and [8]. The Northeast (NE) of Brazil has areas with excellent solar and wind energy potential, yet despite the huge potential, there is still an apparent lack in the development of large scale wind and solar technologies [4].
    [Show full text]
  • Techno-Economic Viability of Agro-Photovoltaic Irrigated Arable Lands in the EU-Med Region: a Case-Study in Southwestern Spain
    agronomy Article Techno-Economic Viability of Agro-Photovoltaic Irrigated Arable Lands in the EU-Med Region: A Case-Study in Southwestern Spain Guillermo P. Moreda 1, Miguel A. Muñoz-García 1,* , M. Carmen Alonso-García 2 and Luis Hernández-Callejo 3 1 LPF-TAGRALIA, Departamento de Ingeniería Agroforestal, ETS de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain; [email protected] 2 Unidad de Energía Solar Fotovoltaica, CIEMAT, 28040 Madrid, Spain; [email protected] 3 Departamento de Ingeniería de Sistemas y Automática, Universidad de Valladolid, 42004 Soria, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-9-1067-0968 Abstract: Solar photovoltaic (PV) energy is positioned to play a major role in the electricity generation mix of Mediterranean countries. Nonetheless, substantial increase in ground-mounted PV installed capacity could lead to competition with the agricultural use of land. A way to avert the peril is the electricity-food dual use of land or agro-photovoltaics (APV). Here, the profitability of a hypothetical APV system deployed on irrigated arable lands of southwestern Spain is analyzed. The basic generator design, comprised of fixed-tilt opaque monofacial PV modules on a 5 m ground- Citation: Moreda, G.P.; clearance substructure, featured 555.5 kWp/ha. Two APV shed orientations, due south and due Muñoz-García, M.A.; Alonso-García, southwest, were compared. Two 4-year annual-crop rotations, cultivated beneath the heightened M.C.; Hernández-Callejo, L. PV modules and with each rotation spanning 24 ha, were studied. One crop rotation was headed by Techno-Economic Viability of early potato, while the other was headed by processing tomato.
    [Show full text]