Glands: a Correlation in Postmortem Subjects

Total Page:16

File Type:pdf, Size:1020Kb

Glands: a Correlation in Postmortem Subjects J. clin. Path., 1970, 23, 690-694 J Clin Pathol: first published as 10.1136/jcp.23.8.690 on 1 November 1970. Downloaded from Lymphocytic sialadenitis in the major and minor glands: a correlation in postmortem subjects D. M. CHISHOLM, J. P. WATERHOUSE, AND D. K. MASON From the Department of Oral Medicine and Pathology, University of Glasgow Dental Hospital and School, Glasgow, Scotland, and the Department of Oral Pathology, University ofIllinois, Chicago, USA SYNOPSIS In the present investigation, the prevalence offocal lymphocytic adenitis in the submandibular salivary gland was observed in a series of 116 postmortem subjects after suitable exclusions had been made. Focal lymphocytic adenitis could not be demonstrated in the labial salivary glands. The degree of lymphocytic infiltration in the labial salivary glands is positively correlated with the level of focal lymphocytic adenitis in the submandibular glands in the same subject. Lymphocytic foci and lymphocytic infiltrations found under thesecopyright. circumstances are probably related. This finding provides conceptual support for the examina- tion, by biopsy, of the labial glands in patients suspected of Sjogren's syndrome. The aim of the present study was to investigate muscle layer of the lower lip were excised at the prevalence and degree of lymphocytic sial- necropsy. Tissue was obtained from necropsies adenitis in the submandibular and minor labial at the Bernhard Baron Institute of Pathology, glands in a series of postmortem subjects. London Hospital, and the University Depart- Waterhouse (1963) has shown that the changes ment of Pathology, Royal Infirmary, Glasgow,http://jcp.bmj.com/ observed in the submandibular gland in the between March and June 1967. They were taken postmortem subject reflect the degree of focal from all necropsies on fixed days of the week adenitis present in the parotid and lacrimal excepting a few not obtainable for administrative glands. Furthermore, Waterhouse and Doniach reasons. (1966) have provided strong evidence for the The necropsy material was fixed in 10% association of focal lymphocytic sialadenitis and formalin, and routine paraffin sections, stained rheumatoid arthritis and have suggested that this with haematoxylin and eosin, were prepared. on October 2, 2021 by guest. Protected lesion may represent a focal manifestation of the Each submandibular gland and each ellipse of lesion in Sjogren's syndrome. Recently, Chisholm oral mucosa was bisected so that a large represen- and Mason (1968) have shown focal lymphocytic tative histological section would be obtained. adenitis of the labial salivary glands to be a The total number of cases examined was 129 consistent finding in patients with Sjogren's and, of these, 13 were excluded for the reasons syndrome. In view of these findings, therefore, given below, leaving 116 cases admitted to the we felt that it would be of value to observe and present series. The histological assessment was correlate the changes noted in the submandibular done independently by three observers. and labial salivary glands for each subject in a postmortem series of over 100 subjects. Criteria of Exclusion Materials and Methods Before a gland was included in the series, the following criteria, designed to exclude infection A submandibular salivary gland and an ellipse and neoplasm as effective causes of pathological of oral mucosa and subjacent tissue down to the change, were applied. Gland lobules were accep- Received for publication 26 March 1970. table if they were free from duct dilatation 691 Lymphocytic sialadenitis in the major and minor glands: a correlation in postmortem subjects indicating obstruction to flow of secretion, and gland acini (Fig. 1). Such foci are commonly J Clin Pathol: first published as 10.1136/jcp.23.8.690 on 1 November 1970. Downloaded from were free from extravascular polymorphonuclear found in relation to small veins and at the edge leucocytes. These pathological changes, when of intralobular ducts (Waterhouse and Doniach, present, were not infrequently limited to isolated 1966). lobules. Glands were acceptable if a representa- The grading standard used for the submandi- tive section of the gland (approximately 4 sq cm bular gland is shown in Table I. for the submandibular and 4 sq mm for the labial) In order to standardize the area examined and remained after exclusion of abnormal lobules. record the degree of histopathological change, Cases were admitted to the series if they were the grading standard shown in Table II was free from neoplasm of lymphocyte-like clls, and employed for the labial salivary glands. All had not received cytotoxic drugs within the last minor salivary gland tissue in the sections was three months before death. Leukaemia patients were excluded altogether. The 13 exclusions comprised seven with auto- Grade Lymphocytic Foci /4 sq cm ofSalivary Tissue lysis of gland parenchyma, and therefore not 0 None 0-I 1 'Slight' 2-8 suitable, one with neoplastic material present in 2 'Moderate' 9-40 the ducts, and five with extravascular polymor- 3 'Severe' 40 + phonuclear leucocytes, together with duct dilata- 4 'Very Severe' >half gland parenchyma replaced tion. Table I Grading standardfor submandibular gland Grade Lymphocytic Infiltration or Foci/sq mm of Salivary Tissue Criteria of Focal Lymphocytic Adenitis 0 Absent 1 Slight infiltrate A 'focus' was defined as one consisting of an 2 Moderate infiltrate 3 One focus aggregate of 50 or more lymphocytes and histio- 4 More than one focus cytes, usually with a few plasma cells placed peripherally, adjacent to and apparently replacing Table II Grading standardfor labial glands copyright. http://jcp.bmj.com/ on October 2, 2021 by guest. Protected Fig. 1 A focus oflymphocytes around a small Fig. 2 Moderate lymphocytic infiltration oflabial duct ofa submandibular salivary gland. H & E x 282 salivary gland tissue. H & E x 450 692 D. M. Chisholm, J. P. Waterhouse, and D. K. Mason J Clin Pathol: first published as 10.1136/jcp.23.8.690 on 1 November 1970. Downloaded from examined and scanned for the presence oflympho- cytic foci and/or diffuse lymphocytic infiltration. Females (All positives) 23 (41 %) The degree of lymphocytic infiltration and/or AllAll56 (Grades 2, 3, & 4 only) 17 (30%) cases number of foci were expressed as a value per (116) 4 sq mm of minor salivary tissue. Males (All positives 26 (43°/) An example of moderate lymphocytic infiltra- L 60 (Grades 2, 3, & 4 only) 16 (27%) tion (grade 2) in the minor glands is illustrated Table III Prevalence offocal lymphoc.ytic in Figure 2. adenitis (submandibular gland) The level of correlation between the grade of focal lymphocytic adenitis in the submandibular gland and the degree of lymphocytic infiltration ( Females (All positives) 31 (55%) in the labial glands of each subject was computed 56 (Grade 2) 14 as the non-parametric Spearman rank correla- All (25,%) cases tion coefficient applying the correction for tied (116) ranks, and a significance test was carried out Males (All positives) 39 (65 %) (Siegel, 1956). The non-parametric correlation L 60 (Grade 2) 12 (20%) coefficient was used in order to avoid the assump- Table IV Prevalence ofslight or n7vderate tion that the data were normally distributed. lymphocytic infiltration oflabial gland Age in No. with Grade of Severity, Total Percentage Results Years Positive 0 1 2 3 0-44 7 2 1 0 10 30 SUBMANDIBULAR GLANDS 45-64 12 1 5 3 2 1 43 The figures for the prevalence offocal lymphocytic 65+ 14 3 6 2 25 44 submandibular sialadenitis found in 56 female Total 33 6 12 5 56 41 and 60 male subjects are given in Tables III, V, Table V Numbers offemales with submandibular VI, and IX and Figure 3. In this series of 116 lymphocytic sialadenitis copyright. 70 r Grade 1 or worse GradeG 2 or worse 60 F Grade 3 or worse http://jcp.bmj.com/ 50 I 40 [ 7 on October 2, 2021 by guest. Protected 30 F 20 Z 10 _ : LL1 IL d.A Age group (yrs) < 45 45-64 > 65 < 45 45-64 > 65 No. of subjects 10 21 25 11 31 18 Sex distribution females males Fig. 3 The prevalence oflymphocytic submandibular sialadenitis in males andfemales. 693 Lymphocytic sialadenitis in the major and minor glands: a correlation in postmortem subjects subjects the frequency of involvement by sial- Age in No. with Grade of Severity Total Percentage J Clin Pathol: first published as 10.1136/jcp.23.8.690 on 1 November 1970. Downloaded from adenitis is not significantly different in males or Years Positive females. This is so, either when all degrees of 0 1 2 3 sialadenitis (X2 = 0003, p = greater than 0-5), 0-44 6 3 2 0 11 45 or when moderate and severe degrees of sial- 45-64 18 4 6 3 31 42 65+ 9 4 5 0 18 50 adenitis (X2 = 005, p = greater than 05) are considered. Affected glands occur in the three age Total 33 11 13 3 60 43 groups listed (Tables V and VI and Figure 3). Table VI Numbers ofmales with submandibular A tendency for more severe degrees to occur in lymphocytic sialadenitis females aged 45-64 appears in Table V and Fig. 3, but numbers in the groups are too small for a Age in No. with Grades of Severity Total Percentage formal test of significance to be carried out. Years Positive 0 1 2 0-44 8 1 1 10 20 LABIAL GLANDS 45-64 6 9 6 21 71 The figures for the prevalence of lymphocytic 65+ 1 1 7 7 25 56 infiltration of the labial salivary glands (the Total 25 17 14 56 55 exclusions quoted above having been made) are Table VII Numbers offemales with lymphocytic given in Tables IV and IX and Figure 4. infiltration of the labial glands The frequency of involvement of the glands in males or females is not significantly different, Age in No.
Recommended publications
  • Anatomy-Nerve Tracking
    INJECTABLES ANATOMY www.aestheticmed.co.uk Nerve tracking Dr Sotirios Foutsizoglou on the anatomy of the facial nerve he anatomy of the human face has received enormous attention during the last few years, as a plethora of anti- ageing procedures, both surgical and non-surgical, are being performed with increasing frequency. The success of each of those procedures is greatly dependent on Tthe sound knowledge of the underlying facial anatomy and the understanding of the age-related changes occurring in the facial skeleton, ligaments, muscles, facial fat compartments, and skin. The facial nerve is the most important motor nerve of the face as it is the sole motor supply to all the muscles of facial expression and other muscles derived from the mesenchyme in the embryonic second pharyngeal arch.1 The danger zone for facial nerve injury has been well described. Confidence when approaching the nerve and its branches comes from an understanding of its three dimensional course relative to the layered facial soft tissue and being aware of surface anatomy landmarks and measurements as will be discussed in this article. Aesthetic medicine is not static, it is ever evolving and new exciting knowledge emerges every day unmasking the relationship of the ageing process and the macroscopic and microscopic (intrinsic) age-related changes. Sound anatomical knowledge, taking into consideration the natural balance between the different facial structures and facial layers, is fundamental to understanding these changes which will subsequently help us develop more effective, natural, long-standing and most importantly, safer rejuvenating treatments and procedures. The soft tissue of the face is arranged in five layers: 1) Skin; 2) Subcutaneous fat layer; 3) Superficial musculoaponeurotic system (SMAS); 4) Areolar tissue or loose connective tissue (most clearly seen in the scalp and forehead); 5) Deep fascia formed by the periosteum of facial bones and the fascial covering of the muscles of mastication (lateral face).
    [Show full text]
  • Cheilitis Glandularis: Two Case Reports of Asian-Japanese Men and Literature Review of Japanese Cases
    International Scholarly Research Network ISRN Dentistry Volume 2011, Article ID 457567, 6 pages doi:10.5402/2011/457567 Case Report Cheilitis Glandularis: Two Case Reports of Asian-Japanese Men and Literature Review of Japanese Cases Toru Yanagawa,1 Akira Yamaguchi,2 Hiroyuki Harada,3 Kenji Yamagata,1 Naomi Ishibashi,1 Masayuki Noguchi,4 Kojiro Onizawa,1 and Hiroki Bukawa1 1 Department of Oral and Maxillofacial Surgery, Clinical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan 2 Section of Oral Pathology, Division of Oral Health Sciences, Department of Oral Restitution, Graduate School Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan 3 Section of Oral and Maxillofacial Surgery, Division of Oral Health Sciences, Department of Oral Restitution, Graduate School Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan 4 Department of Pathology, Life System Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan Correspondence should be addressed to Toru Yanagawa, [email protected] Received 25 October 2010; Accepted 5 December 2010 Academic Editor: G. L. Lodi Copyright © 2011 Toru Yanagawa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Cheilitis glandularis (CG) is a rare disorder characterized by swelling of the lip with hyperplasia of the labial salivary glands. CG is most frequently encountered in the lower lip, in middle-aged to older Caucasian men; however Asian cases were rarely reported.
    [Show full text]
  • Glands: a Correlation in Postmortem Subjects
    J. clin. Path., 1970, 23, 690-694 Lymphocytic sialadenitis in the major and minor glands: a correlation in postmortem subjects D. M. CHISHOLM, J. P. WATERHOUSE, AND D. K. MASON From the Department of Oral Medicine and Pathology, University of Glasgow Dental Hospital and School, Glasgow, Scotland, and the Department of Oral Pathology, University ofIllinois, Chicago, USA SYNOPSIS In the present investigation, the prevalence offocal lymphocytic adenitis in the submandibular salivary gland was observed in a series of 116 postmortem subjects after suitable exclusions had been made. Focal lymphocytic adenitis could not be demonstrated in the labial salivary glands. The degree of lymphocytic infiltration in the labial salivary glands is positively correlated with the level of focal lymphocytic adenitis in the submandibular glands in the same subject. Lymphocytic foci and lymphocytic infiltrations found under these circumstances are probably related. This finding provides conceptual support for the examina- tion, by biopsy, of the labial glands in patients suspected of Sjogren's syndrome. The aim of the present study was to investigate muscle layer of the lower lip were excised at the prevalence and degree of lymphocytic sial- necropsy. Tissue was obtained from necropsies adenitis in the submandibular and minor labial at the Bernhard Baron Institute of Pathology, glands in a series of postmortem subjects. London Hospital, and the University Depart- Waterhouse (1963) has shown that the changes ment of Pathology, Royal Infirmary, Glasgow, observed in the submandibular gland in the between March and June 1967. They were taken postmortem subject reflect the degree of focal from all necropsies on fixed days of the week adenitis present in the parotid and lacrimal excepting a few not obtainable for administrative glands.
    [Show full text]
  • Salivary Glands
    GASTROINTESTINAL SYSTEM [Anatomy and functions of salivary gland] 1 INTRODUCTION Digestive system is made up of gastrointestinal tract (GI tract) or alimentary canal and accessory organs, which help in the process of digestion and absorption. GI tract is a tubular structure extending from the mouth up to anus, with a length of about 30 feet. GI tract is formed by two types of organs: • Primary digestive organs. • Accessory digestive organs 2 Primary Digestive Organs: Primary digestive organs are the organs where actual digestion takes place. Primary digestive organs are: Mouth Pharynx Esophagus Stomach 3 Anatomy and functions of mouth: FUNCTIONAL ANATOMY OF MOUTH: Mouth is otherwise known as oral cavity or buccal cavity. It is formed by cheeks, lips and palate. It encloses the teeth, tongue and salivary glands. Mouth opens anteriorly to the exterior through lips and posteriorly through fauces into the pharynx. Digestive juice present in the mouth is saliva, which is secreted by the salivary glands. 4 ANATOMY OF MOUTH 5 FUNCTIONS OF MOUTH: Primary function of mouth is eating and it has few other important functions also. Functions of mouth include: Ingestion of food materials. Chewing the food and mixing it with saliva. Appreciation of taste of the food. Transfer of food (bolus) to the esophagus by swallowing . Role in speech . Social functions such as smiling and other expressions. 6 SALIVARY GLANDS: The saliva is secreted by three pairs of major (larger) salivary glands and some minor (small) salivary glands. Major glands are: 1. Parotid glands 2. Submaxillary or submandibular glands 3. Sublingual glands. 7 Parotid Glands: Parotid glands are the largest of all salivary glands, situated at the side of the face just below and in front of the ear.
    [Show full text]
  • Characteristics of the Saliva Flow Rates of Minor Salivary Glands in Healthy
    a r c h i v e s o f o r a l b i o l o g y 6 0 ( 2 0 1 5 ) 3 8 5 – 3 9 2 Available online at www.sciencedirect.com ScienceDirect journal homepage: http://www.elsevier.com/locate/aob Characteristics of the saliva flow rates of minor salivary glands in healthy people a b a c a, Zhen Wang , Ming-Ming Shen , Xiao-Jing Liu , Yan Si , Guang-Yan Yu * a Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 100081, Beijing, PR China b Department of Oral and Maxillofacial Surgery, School of Stomatology, the Second Hospital of Hebei Medical University, 050000, Shijiazhuang, PR China c Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, 100081, Beijing, PR China a r t i c l e i n f o a b s t r a c t Article history: Objectives: To investigate the normal range and characteristics of saliva secretion in the Accepted 23 November 2014 minor salivary glands (MSGs). Design: The flow rates of MSGs were measured in 4 anatomical locations of oral mucosa, and Keywords: the relationship between MSG flow rates and whole saliva flow rates were assessed in 300 healthy subjects stratified by age and sex. An additional 30 young females were further Minor salivary gland Saliva evaluated for flow symmetry, effects of stimulation, circadian effects in MSGs, and the relationship with the flow rates of major salivary glands. Saliva secretion Results: (1) The mean saliva flow rates were 2.10 Æ 0.66 (lower labial glands), 2.14 Æ 0.62 Saliva flow rate 2 (upper labial glands), 2.88 Æ 0.72 (buccal glands) and 2.15 Æ 0.51 (palatal glands) ml/min/cm , Salivary gland respectively.
    [Show full text]
  • Cheilitis Glandularis: Two Case Reports of Asian-Japanese Men and Literature Review of Japanese Cases
    International Scholarly Research Network ISRN Dentistry Volume 2011, Article ID 457567, 6 pages doi:10.5402/2011/457567 Case Report Cheilitis Glandularis: Two Case Reports of Asian-Japanese Men and Literature Review of Japanese Cases Toru Yanagawa,1 Akira Yamaguchi,2 Hiroyuki Harada,3 Kenji Yamagata,1 Naomi Ishibashi,1 Masayuki Noguchi,4 Kojiro Onizawa,1 and Hiroki Bukawa1 1 Department of Oral and Maxillofacial Surgery, Clinical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan 2 Section of Oral Pathology, Division of Oral Health Sciences, Department of Oral Restitution, Graduate School Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan 3 Section of Oral and Maxillofacial Surgery, Division of Oral Health Sciences, Department of Oral Restitution, Graduate School Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan 4 Department of Pathology, Life System Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan Correspondence should be addressed to Toru Yanagawa, [email protected] Received 25 October 2010; Accepted 5 December 2010 Academic Editor: G. L. Lodi Copyright © 2011 Toru Yanagawa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Cheilitis glandularis (CG) is a rare disorder characterized by swelling of the lip with hyperplasia of the labial salivary glands. CG is most frequently encountered in the lower lip, in middle-aged to older Caucasian men; however Asian cases were rarely reported.
    [Show full text]
  • Atlas of the Facial Nerve and Related Structures
    Rhoton Yoshioka Atlas of the Facial Nerve Unique Atlas Opens Window and Related Structures Into Facial Nerve Anatomy… Atlas of the Facial Nerve and Related Structures and Related Nerve Facial of the Atlas “His meticulous methods of anatomical dissection and microsurgical techniques helped transform the primitive specialty of neurosurgery into the magnificent surgical discipline that it is today.”— Nobutaka Yoshioka American Association of Neurological Surgeons. Albert L. Rhoton, Jr. Nobutaka Yoshioka, MD, PhD and Albert L. Rhoton, Jr., MD have created an anatomical atlas of astounding precision. An unparalleled teaching tool, this atlas opens a unique window into the anatomical intricacies of complex facial nerves and related structures. An internationally renowned author, educator, brain anatomist, and neurosurgeon, Dr. Rhoton is regarded by colleagues as one of the fathers of modern microscopic neurosurgery. Dr. Yoshioka, an esteemed craniofacial reconstructive surgeon in Japan, mastered this precise dissection technique while undertaking a fellowship at Dr. Rhoton’s microanatomy lab, writing in the preface that within such precision images lies potential for surgical innovation. Special Features • Exquisite color photographs, prepared from carefully dissected latex injected cadavers, reveal anatomy layer by layer with remarkable detail and clarity • An added highlight, 3-D versions of these extraordinary images, are available online in the Thieme MediaCenter • Major sections include intracranial region and skull, upper facial and midfacial region, and lower facial and posterolateral neck region Organized by region, each layered dissection elucidates specific nerves and structures with pinpoint accuracy, providing the clinician with in-depth anatomical insights. Precise clinical explanations accompany each photograph. In tandem, the images and text provide an excellent foundation for understanding the nerves and structures impacted by neurosurgical-related pathologies as well as other conditions and injuries.
    [Show full text]
  • Anatomy of the Ageing Lip
    AESTHETIC FOCUS Anatomy of the ageing lip With lip augmentation an ever popular option for those seeking more youthful looks it is vital that practitioners have a proper understanding of anatomy. In the first of our two-part special focus on lipsDr Foutsizoglou provides a comprehensive guide to function and anatomy. BY SOTIRIOS FOUTSIZOGLOU he lips are pliable, mobile, muscular folds that encircle the opening of the oral cavity. They contain the orbicularis oris and superior and inferior labial vessels and nerves. The lips are covered externally by skin and internally by mucous membrane. A sagittal cut through the lip can reveal the layers of soft tissue that form this relatively simple anatomical structure. That is, from Tsuperficial to deep: skin, superficial fat compartment, orbicularis oris muscle, deep fat compartment and mucosa. The lips are used for grasping food, sucking liquids, clearing food from the oral vestibule, forming speech, osculation, and controlling the size of the oral aperture. Functions of the lips as part of the tactile senses. Lips are very sensitive to touch, warmth and cold. Food intake Lips serve to close the mouth airtight shut, Erogenous zone to hold food and drink inside. Because of their high number of nerve endings, the lips are an erogenous zone. Mastication The lips therefore play a crucial role in Lips help to hold food between upper and osculation and other acts of intimacy. lower teeth during chewing. Facial expressions Figure 1: Anatomical landmarks of the lip. Deglutition The lips form an integral part of facial Lips push food into the oral cavity proper expression e.g.
    [Show full text]
  • Ÿþm I C R O S O F T W O R
    Review article Annals and Essences of Dentistry doi:10.5368/aedj.2011.3.4.4.3 ROLE OF SALIVA IN PERIODONTAL HEALTH & DISEASE– A REVIEW 1 1 Sanjay Vasudevan Professor 1 Department of Periodontia,SRM Dental College ,Kattankulathur ,chennai. ABSTRACT: Saliva is essential for maintaining the protection and normal functioning of the masticatory system. A 'dry mouth' or xerostomia resulting from a perceived reduction in salivary flow may lead to numerous signs and symptoms of oral dysfunction. The quality of life for affected people may be poor. Many of these persons are taking multiple medications that cause a reduced salivary flow, and the number of people taking such drugs can be expected to increase. The ingestion of softer cariogenic foods, and acidic foods and beverages in attempts to stimulate an increased saliva flow, is disastrous for the teeth. KEYWORDS: Acquired Dental Pellicle, Plaque Biofilm, Oropharyngeal, Sjogren's Syndrome INTRODUCTION The production of adequate amounts of unstimulated clears the mouth of food detritus, microorganisms and and stimulated normal salivary secretions is critical for the harmful dietary acids and gastric reflux acid4. The oral prevention of tooth erosion, dental caries and other clearance rate is much faster from the lingual of the adverse oral, pharyngeal and esophageal conditions. mandibular incisors than from the facial of the maxillary Unfortunately, however, the importance of saliva for incisors and mandibular molars5, which probably accounts maintaining oral health does not appear to be fully for the less frequent involvement of the mandibular appreciated by dental practitioners.1" Hyposalivation, from anterior teeth in dental caries and erosion.
    [Show full text]
  • (OC) and Its Accessory Organs Namely; the Tongue, Teeth, Salivary Glands
    ORAL CAVITY The oral cavity (O.C) and its accessory organs namely; the tongue, teeth, salivary glands are concerned with the prehension, mastication and in salivation of food i.e. they are involved in the conversion of food for palatability. The O.C. extends from the lips into the entrance of the pharynx. The osseous support of the mouth is provided by premaxilla, palatine, alveoli processes of the maxilla, the horizontal part of the palatine bone dorsally, the mandibular rami laterally of the body of the mandible ventrally. The soft structures complying with the wall of the mouth are the cheeks laterally, the lips rostrally and the mylohyoid ventrally. Its dorsal limit or roof is the hard palate. Caudally, the oral cavity communicates with the oropharynx by a narrow opening called the Isthmus faucium formed by roof of the tongue and the soft palate, it is usually closed. When the jaws are closed, the mouth is divided by the teeth and the alveolar processes into vestibuble and oral cavity proper. These two cavities communicates via the interdental spaces. The part of the vestibule between the incisors and the lips is the labial vestibule, while that between the check teeth and the check is the buccal Vestibule. Rostrally, two narrow incisive ducts connect the oral cavity and the nasal cavity. The duct opens on the incisive papillae. The mucus membrane of the O.C. is usually pink but may be pigmented (black) in some places. It is well supplied with blood vessels and in its sub mucosa it contains serous or mucous gland know as the labial, buccal and lingual glands (depending on their location).
    [Show full text]
  • Oral Cavity, Tongue, Salivary Glands, Teeth
    ORAL CAVITY, TONGUE, SALIVARY GLANDS, TEETH Andrea Heinzlmann Veterinary University Department of Anatomy and Histology 18th MARCH 2019 FUNCTION OF THE DIGESTIVE SYSTEM 1. prehension of food 2. mastication 3. digestion 4. absorption 5. initial storage of the nutreints 6. expulsion of the unabsorbed portion of the food https://hu.pinterest.com/pin/253609022739030729/ STRUCTURES OF THE DIGESTIVE SYSTEM 1. MOUTH 2. PHARYNX 3. ALIMENTARY CANAL 4. ACCESSORY GLANDS https://equinenutritionnerd.com/2014/06/29/the-equine-digestive-system/ https://veteriankey.com/digestive-system/ https://slideplayer.com/slide/10444416/ STRUCTURES OF THE DIGESTIVE SYSTEM ALIMENTARY CANAL: • muscular tube • begins with the esophagus • ends at the anus https://www.horsehageforage.co.uk/WP/?page_id=149 RUMINANT https://slideplayer.com/slide/4157123/ DOG https://veteriankey.com/digestive-system/ http://davidmarlin.co.uk/portfolio/2313/ STRUCTURES OF THE DIGESTIVE SYSTEM ACCESSORY GLANDS: • salivary glands located on the head • liver • pancreas https://veteriankey.com/digestive-system/ http://bvetmed1.blogspot.com/201 3/02/oral-cavity-lecture-131.html https://veteriankey.com/digestive-system/ https://hu.pinterest.com/pin/294704369347319951/ CONSECUTIVE SEGMENTS OF THE DIGESTIVE SYSTEM 1. MOUTH 2. PHARYNX 3. ESOPHAGUS 4. STOMACH 5. SMALL INTESTINE 6. LARGE INTESTINE 7. ANAL CANAL https://veteriankey.com/digestive-system/ ORAL CAVITY • extends from the lips to the entrance into the pharynx STRUCTURES OF THE ORAL CAVITY: 1. tongue 2. teeth 3. salivary glands ORAL CAVITY
    [Show full text]
  • METHODICAL GUIDANCE for the Lecture Academic Subject Human Anatomy Module No 1 "Anatomy of the Locomotor System. Splanchnol
    Ministry of Public Health of Ukraine Ukrainian Medical Stomatological Academy "Approved" at the meeting of the Department of Human Anatomy «29» 08 2020 Minutes № Head of the Department Professor O.O. Sherstjuk ________________________ METHODICAL GUIDANCE for the lecture Academic subject Human Anatomy Module No 1 "Anatomy of the locomotor system. Splanchnology. Endocrine glands" Lecture No 6 Oral cavity. Dental system Year of study І Faculty Foreign students' training faculty, specialty «Stomatology» Number of 2 academic hours Poltava – 2020 1. Educational basis of the topic Oral cavity is a first part of digestive system. Knowledge about oral cavity is necessary for future doctors, especially for future dentists. The science of teeth - odontology (odus, odontus - tooth) is a part of dentistry. Knowledge of anatomy of the teeth, their development, order and timing of the eruption of primary and secondary teeth are necessary for the studying of these sections as childhood diseases, diseases of the teeth and mouth. Knowledge of anatomy end of this section is important for students to further studies. 2. Learning objectives of the lecture: . Determine the importance of the dental system in the human body . To be able to characterize the teeth of the upper and lower jaws . Be able to characterize the age differences in the dental system .Select methods for examining the dental system 3. Objectives of developing the future specialist’s personality (educational aims and objectives): familiarization with axiological, ethical and deontological principles of medical profession. 4. Interdisciplinary integration The preceding The acquired knowledge subjects Biology Phylogeny of the digestive system Anatomy, histology Ontogeny of the digestive system; oral cavity, teeth.
    [Show full text]