Pdf, in English

Total Page:16

File Type:pdf, Size:1020Kb

Pdf, in English BotanicalBotanical LessonsLessons Plant organisation (1/2) Leaves of the family Crassulaceae (here the Potatoes are stems that have been modified to 53 example of the houseleek, Sempervivum store nutrient reserves. In common with all stems, montanum) can store water as an adaptation they carry the buds ("eyes") to drought Flowering plants are composed of three parts: roots, stems and leaves. blade veins Roots. Most often found underground, roots anchor plants to the soil and absorb water and mineral elements required for growth. They can be either taproots (a single vertical root) or fasciculate. Sometimes roots also store reserves (such as in the carrot). petiole stipules alternate opposite The stem. Generally found aboveground, stems carry the buds, which determine the growth, General organisation of a leaf and examples of ramification and flowering of the plant. Stems maintain the plant upright and are essential for the the arrangements "alternate" and "opposite" transport of nutrients (sap). Stems can be herbaceous, or rigid and lignified (wood) in shrubs and trees. Diagram of a plant: roots (in black, here fasciculate, with numerous roots attached to the same point), stem (in brown), leaves (in Leaves. Leaves are the principal organ of photosynthesis and transpiration. They generally green) and a flower (in blue). The stolons are lanceolate ovate obovate orbicular above ground stems which grow horizontally comprise of two parts: the lamina and the petiole. The lamina is a flattened blade containing veins and produce clones of the mother plant. which transport the sap. The shape, margin and pattern of veins differ between species and constitute criteria for identification. The lamina is divided into leaflets, in the case of leaves called sagittate pedate pennatilobate cordate “compound” leaves. The petiole, which is sometimes absent, attaches the leaf to the stem. Phyllotaxy describes the arrangement of leaves on the stem. Leaves can, for example, be grouped in pairs attached face to face along the stem (leaves called "opposite") or be rather isolated and palmate paripennate imparipennate An example of a plant with both an A few examples of the diversity of leaf blades. In underground stem, or rhizome (in brown), and brown, the petiole, in dark green, some an above ground stem; the roots (in black) are arranged regularly in a spiral around the stem (leaves called "alternate"). examples of "compound" leaves called “adventive” (newly formed on the stem) BotanicalBotanical LessonsLessons Plant organisation (2/2) Two gentians: Gentianella campestris (left, The daffodil (Narcissus poeticus, 53 hemicryptophyte) and Gentiana nivalis (right, a Amaryllidaceae family), an example of a rare alpine therophyte) cryptophyte plant with a bulb The Danish botanist Christen Raunkiær (1860-1938) developed a classification of plants founded on A. Phanerophytes (trees, shrubs > 50 cm) their strategies to survive bad winter conditions. This classification is based on the position of plant Perennial B. Chamephytes subshrubs (a), creeping shrubs (b), plants with woody basee (c) buds during the winter. Phanerophytes are trees and shrubs higher than 50 cm. Their buds are not plants C. Hemicryptophytes rosettes (d), tufts (e) protected from frost by snow cover, which is one of the reasons that trees are absent from the alpine D. Cryptophytes (ou geophytes) with rhizome (f), or bulb (g) zone. Chamephytes are small shrubs whose buds are sufficiently low to be protected by snow cover. Annual E. Therophytes Numerous cushion plants from dry mountain areas (see the rockery “Spanish mountains”) have plants woody bases and also belong to this category. Hemicryptophytes have their buds located at soil A CD level, and their leaves form either a rosette (such as the Dandelion) or a tussock (such as in numerous e f Poaceae or Cyperaceae). Cryptophytes (also called Geophytes) have their buds buried, and thus 50 cm B E g protected from cold under the ground (geo in Greek). The buds are situated on the rhizomes a cd b (underground stems) or on bulbs which accumulate reserves to fuel the beginning of growth for the next year. Therophytes are annual species. These species pass the winter period as seeds, highly resistant to aridity and frost. Very common in arid areas, annual species are almost non-existent in alpine areas, mostly because of the highly random nature of the possibility for sexual reproduction at high altitudes. The principal "biological types" based on the position of the buds during winter (in red). In black, the perennial parts of the plant that remain from one year to the next; dotted lines, the plant parts that die during the winter. Etymology of the terms: "phanero", visible; "chamae", dwarf; "hemi", half; "crypto", hidden; "thero", summer. BotanicalBotanical LessonsLessons The concept of the alpine plant (1/2) The mountain avens (Dryas octopetala, The gentians (here Gentiana acaulis, 53 Rosaceae family), an example of an Gentianaceae family), examples of plants arctic-alpine plant originating from the Himalayan region Altitudinal vegetation zones. Mountain vegetation is divided into zones, each with a characteristic type of vegetation. The upper limit of the sub alpine zone marks the natural limit (without human intervention) of trees. This limit is found around 2300 m altitude in the Alps. Higher up is found the alpine South North zone where environmental conditions become more and more extreme with altitude due to decreasing mean temperatures, increasing solar radiation, strong winds, etc. The sub alpine / alpine NIVAL belt boundary varies from 0 m altitude in polar areas, up to above 4000 m in tropical regions. For biologists, mosses, lichens 3000 m ADRET UBAC 2900 m an alpine plant is a species that grows in the alpine zone, in the Alps or another mountain region. Routes of the plant colonisation of the Alps: 1, Mediterranean; 2, Central Asian; 3, Arctic ALPINE belt Determined mostly by temperature, the limit of the alpine zone is rising due to global warming, 2400 m alpine meadows endangering those plants that grow at high altitudes. The plants growing in the Lautaret alpine garden 2200 m come from subalpine and alpine zones. Etage SUBALPIN 1700 m conifer forests Multiple origins for the flora of the Alps. The current alpine flora is the result of a colonisation begun some 1500 m 10 000 years after the retreat of the glaciers. The major vegetation influences come from the MOUNTAIN belt 1100 m mixed forests Mediterranean, Central Asian (notably Himalayan) and arctic regions. In the case of the arctic region, 900 m the alternation between glaciations and glacial retreat has contributed to numerous exchanges of COLLINEAN belt flora, resulting in the presence of numerous plant species, called arctic-alpine species, which are found The campanulas (here Campanula alpestris, broadleaved forests Campanulaceae family), a plant with a both in the Alps and in arctic regions. Mediterranean origin BotanicalBotanical LessonsLessons The concept of the alpine plant (2/2) Swiss androsace (Androsace helvetica, High altitude Dwarf willow (Salix serpyllifolia, 53 Primulaceae family), a cushion plant growing Salicaceae family) an example of a prostrate amongst rocks at the Galibier pass (around 2800 m) plant Morphological adaptations. A small size is very common amongst alpine plants, allowing them to at the surface 25 of the cushion remain within 1 to 2 m of the ground where temperatures are less cold. It also allows plants to benefit 20 from protection by snow cover in winter, and limits the mechanical effects of the wind and snow which 15 10 can break stems and branches. Cushion plants are a well-known example of adaptation to extreme at 2 m Temperature(°C) from the cushion 5 conditions: the cushion functions as a heat trap as its geometric form exposes the least surface area to 0 9 12 15 18 external conditions, limiting both losses of heat (and water). Plant hairs are another adaptation: these Hour of the day (summer) form a screen that protects the plant from cold, dry and strong solar radiation. Root systems of alpine The temperature difference between the surface of a cushion plant and at two meters plants can also exhibit adaptations, such as the presence of a long tap root in cushion plants. Structure of the Swiss androsace, an example of height (using the example of silene acaule) a cushion plant with a long tap root alpine plants Physiological adaptations. Alpine plants synthesise molecules (sugars, anti-freeze proteins) which 5 protect their cell membranes from the effects of freezing. They can also maintain their cell contents in 4 a liquid state down to temperatures of -40°C. To counter oxidative stress imposed by excessive solar 3 lowland plants 2 radiation (light and UV), plant can accumulate anti-oxidants, in particular vitamin C. These 1 Vitamin C, micromol/mg chlorophylll micromol/mg C, Vitamin adaptations are the results of long periods of evolution. They are in part fixed in the genetic makeup of 0 132 465 alpine species, and in part dependant on environmental conditions (acclimation). Differences in the concentration of vitamin C in three alpine plants (1, soldanella; 2, alpine coltsfoot; 3, glacier ranunculus) and three Ces adaptations sont le fruit d'une longue évolution. Elles sont pour partie inscrites dans le patrimoine The edelweiss (Leontopodium alpinum, lowland plants (1, rye; 2, dandelion; 3, Asteraceae family), an example of a plant meadow buttercup) génétique des espèces et pour partie conditionnées par les conditions environnementales (acclimatation). covered with protective hairs BotanicalBotanical LessonsLessons Interspecific relationships (1/2) Mont Cenis restharrow (Ononis cenisia, Lousewort (Pedicularis comosa, Orobanchaceae 53 Fabaceae family), an example of a plant family), an example of a hemiparasitic plant able to fix atmospheric nitrogen atmospheric nitrogen (N2) Plants have multiple types of relationships between each other, and with other organisms (bacteria, animals). Here are a few examples organic nitrogen Symbiosis. This is a long term association between two organisms allowing each to obtain (proteins) root reciprocal advantages.
Recommended publications
  • Phytolacca Esculenta Van Houtte
    168 CONTENTS BOSABALIDIS ARTEMIOS MICHAEL – Glandular hairs, non-glandular hairs, and essential oils in the winter and summer leaves of the seasonally dimorphic Thymus sibthorpii (Lamiaceae) .................................................................................................. 3 SHARAWY SHERIF MOHAMED – Floral anatomy of Alpinia speciosa and Hedychium coronarium (Zingiberaceae) with particular reference to the nature of labellum and epigynous glands ........................................................................................................... 13 PRAMOD SIVAN, KARUMANCHI SAMBASIVA RAO – Effect of 2,6- dichlorobenzonitrile (DCB) on secondary wall deposition and lignification in the stem of Hibiscus cannabinus L.................................................................................. 25 IFRIM CAMELIA – Contributions to the seeds’ study of some species of the Plantago L. genus ..................................................................................................................................... 35 VENUGOPAL NAGULAN, AHUJA PREETI, LALCHHANHIMI – A unique type of endosperm in Panax wangianus S. C. Sun .................................................................... 45 JAIME A. TEIXEIRA DA SILVA – In vitro rhizogenesis in Papaya (Carica papaya L.) ....... 51 KATHIRESAN KANDASAMY, RAVINDER SINGH CHINNAPPAN – Preliminary conservation effort on Rhizophora annamalayana Kathir., the only endemic mangrove to India, through in vitro method ..................................................................................
    [Show full text]
  • Etude Sur L'origine Et L'évolution Des Variations Florales Chez Delphinium L. (Ranunculaceae) À Travers La Morphologie, L'anatomie Et La Tératologie
    Etude sur l'origine et l'évolution des variations florales chez Delphinium L. (Ranunculaceae) à travers la morphologie, l'anatomie et la tératologie : 2019SACLS126 : NNT Thèse de doctorat de l'Université Paris-Saclay préparée à l'Université Paris-Sud ED n°567 : Sciences du végétal : du gène à l'écosystème (SDV) Spécialité de doctorat : Biologie Thèse présentée et soutenue à Paris, le 29/05/2019, par Felipe Espinosa Moreno Composition du Jury : Bernard Riera Chargé de Recherche, CNRS (MECADEV) Rapporteur Julien Bachelier Professeur, Freie Universität Berlin (DCPS) Rapporteur Catherine Damerval Directrice de Recherche, CNRS (Génétique Quantitative et Evolution Le Moulon) Présidente Dario De Franceschi Maître de Conférences, Muséum national d'Histoire naturelle (CR2P) Examinateur Sophie Nadot Professeure, Université Paris-Sud (ESE) Directrice de thèse Florian Jabbour Maître de conférences, Muséum national d'Histoire naturelle (ISYEB) Invité Etude sur l'origine et l'évolution des variations florales chez Delphinium L. (Ranunculaceae) à travers la morphologie, l'anatomie et la tératologie Remerciements Ce manuscrit présente le travail de doctorat que j'ai réalisé entre les années 2016 et 2019 au sein de l'Ecole doctorale Sciences du végétale: du gène à l'écosystème, à l'Université Paris-Saclay Paris-Sud et au Muséum national d'Histoire naturelle de Paris. Même si sa réalisation a impliqué un investissement personnel énorme, celui-ci a eu tout son sens uniquement et grâce à l'encadrement, le soutien et l'accompagnement de nombreuses personnes que je remercie de la façon la plus sincère. Je remercie très spécialement Florian Jabbour et Sophie Nadot, mes directeurs de thèse.
    [Show full text]
  • Introduction the Genus Aconitum L. (Ranunculaceae Juss.) Is an Interesting Taxonomical Group Which Is Characterized by High Leve
    Modern Phytomorphology 9 (Suppl.): 35–73, 2016 SOME NOTES ON THE GENUS ACONITUM IN CHORNOHOra MTS. Andrew V. Novikoff 1*, Józef Mitka 2, Alexander Kuzyarin 1, Oleg Orlov 1, Marina Ragulina 1 Abstract. The paper is a contribution to ecology and chorology ofAconitum in high-mountain zone of the Ukrainian Carpathians. It was confirmed that genusAconitum in the Chornogora mountain range is represented by 14 taxa, and 7 more taxa were listed as potential for this region. These taxa belong to 3 subgenera and are divided on 4 main biomorphological groups delimited on the base of their habitat, life form, ecology and altitudinal distribution. The soil and vegetation types for all taxa have been identified and the maps of their distribution have been prepared. The most influent threats and their categories were identified. Threat category for A. × nanum was changed from DD to VU, and for A. firmum subsp. fussianum from NT to VU. Key words: Aconitum, Chornogora, sozology, ecology, chorology, soils, vegetation 1 State Natural History Museum NAS of Ukraine, Teatralna str. 18, 79008 Lviv, Ukraine; * [email protected] 2 Institute of Botany of Jagiellonian University, Botanical Garden, Jagiellonian University, Kopernika 27, 31-501 Kraków, Poland; [email protected] Introduction (19 confirmed + 3 unconfirmedAconitum taxa) 9 species and subspecies are listed as clearly The genusAconitum L. (Ranunculaceae endemic or subendemic and 2 more hybrid Juss.) is an interesting taxonomical group which subspecies are considered as probably endemic is characterized by high level of morphological (Novikoff & Hurdu 2015). From other side, diversity, presence of a number of subspecific if we consider all forms and varieties then we taxa, and high number of both infra- and can tell about 17 subendemic and endemic taxa interspecific natural hybrids Gáyer( 1922; in general.
    [Show full text]
  • A Floristic Survey of Fair Isle
    Edinburgh Research Explorer A floristic survey of Fair Isle Citation for published version: Quinteros Peñafiel, CV, Riddiford, N & Twyford, A 2017, 'A floristic survey of Fair Isle', New Journal of Botany, vol. 7, no. 2-3, pp. 101-111. https://doi.org/10.1080/20423489.2017.1393191 Digital Object Identifier (DOI): 10.1080/20423489.2017.1393191 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: New Journal of Botany General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 09. Oct. 2021 New Journal of Botany Journal of the Botanical Society of Britain & Ireland ISSN: 2042-3489 (Print) 2042-3497 (Online) Journal homepage: http://www.tandfonline.com/loi/ynjb20 A floristic survey of Fair Isle C. V. Quinteros Peñafiel, N. J. Riddiford & A. D. Twyford To cite this article: C. V. Quinteros Peñafiel, N. J. Riddiford & A. D. Twyford (2017) A floristic survey of Fair Isle, New Journal of Botany, 7:2-3, 101-111, DOI: 10.1080/20423489.2017.1393191 To link to this article: https://doi.org/10.1080/20423489.2017.1393191 © 2017 The Author(s).
    [Show full text]
  • Ecology of the Olearia Colensoi Dominated Sub-Alpine Scrub in the Southern Ruahine Range, New Zealand
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. 581 .509 9355 Ess ECOLOGY OF THE OLEARIA COLENSOI DOMINATED SUB-ALPINE SCRUB IN THE SOUTHERN RUAHINE RANGE, NEW ZEALAND. A thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Botany at Massey University New Zealand Peter Ronald van Essen 1992 Olearia colensoi in flower. Reproduced from a lithograph by Walter Fitch in Flora Novae-Zelandiae (J.D. Hooker 1852). Source: Alexander Turnbull Library in New Zealand Heritage, Paul Hamlyn Ltd ABSTRACT The Olearia colensoi (leatherwood or tupari) dominated southern Ruahine sub-alpine scrub is the largest continuous area of sub-alpine asteraceous scrub in New Zealand - the result of a lowered treeline due to climatic conditions characterised by high cloud cover, high rainfall, and high winds and the absence of high altitude Nothofagus species. Meteorological investigation of seven sites in the southern Ruahine found that altitude alone was the main environmental detenninant of climatic variation, particularly temperature regime. Temperatures varied between sites at a lapse rate of 0.61°C lOOm-1 while daily fluctuation patterns were uniform for all sites. Rainfall increased with altitude over the Range-at a rate of 3.8mm m-1. Cloud interception, unrecorded by standard rain­ gauges, adds significantly to total 'rainfall'. Vegetative phenology of Olearia colensoi is highly seasonal and regular with an annual growth flush from mid November to January.
    [Show full text]
  • ISTA List of Stabilized Plant Names 7Th Edition
    ISTA List of Stabilized Plant Names th 7 Edition ISTA Nomenclature Committee Chair: Dr. M. Schori Published by All rights reserved. No part of this publication may be The Internation Seed Testing Association (ISTA) reproduced, stored in any retrieval system or transmitted Zürichstr. 50, CH-8303 Bassersdorf, Switzerland in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior ©2020 International Seed Testing Association (ISTA) permission in writing from ISTA. ISBN 978-3-906549-77-4 ISTA List of Stabilized Plant Names 1st Edition 1966 ISTA Nomenclature Committee Chair: Prof P. A. Linehan 2nd Edition 1983 ISTA Nomenclature Committee Chair: Dr. H. Pirson 3rd Edition 1988 ISTA Nomenclature Committee Chair: Dr. W. A. Brandenburg 4th Edition 2001 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 5th Edition 2007 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 6th Edition 2013 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 7th Edition 2019 ISTA Nomenclature Committee Chair: Dr. M. Schori 2 7th Edition ISTA List of Stabilized Plant Names Content Preface .......................................................................................................................................................... 4 Acknowledgements ....................................................................................................................................... 6 Symbols and Abbreviations ..........................................................................................................................
    [Show full text]
  • (Dr. Sc. Nat.) Vorgelegt Der Mathematisch-Naturwissenschaftl
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2012 Flowers, sex, and diversity: Reproductive-ecological and macro-evolutionary aspects of floral variation in the Primrose family, Primulaceae de Vos, Jurriaan Michiel Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-88785 Dissertation Originally published at: de Vos, Jurriaan Michiel. Flowers, sex, and diversity: Reproductive-ecological and macro-evolutionary aspects of floral variation in the Primrose family, Primulaceae. 2012, University of Zurich, Facultyof Science. FLOWERS, SEX, AND DIVERSITY. REPRODUCTIVE-ECOLOGICAL AND MACRO-EVOLUTIONARY ASPECTS OF FLORAL VARIATION IN THE PRIMROSE FAMILY, PRIMULACEAE Dissertation zur Erlangung der naturwissenschaftlichen Doktorwürde (Dr. sc. nat.) vorgelegt der Mathematisch-naturwissenschaftliche Fakultät der Universität Zürich von Jurriaan Michiel de Vos aus den Niederlanden Promotionskomitee Prof. Dr. Elena Conti (Vorsitz) Prof. Dr. Antony B. Wilson Dr. Colin E. Hughes Zürich, 2013 !!"#$"#%! "#$%&$%'! (! )*'+,,&$-+''*$.! /! '0$#1'2'! 3! "4+1%&5!26!!"#"$%&'(#)$*+,-)(*#! 77! "4+1%&5!226!-*#)$%.)(#!'&*#!/'%#+'.0*$)/)"$1'(12%-).'*3'0")"$*.)4&4'*#' "5*&,)(*#%$4'+(5"$.(3(-%)(*#'$%)".'(#'+%$6(#7.'2$(1$*.".! 89! "4+1%&5!2226!.1%&&'%#+',!&48'%'9,%#)()%)(5":'-*12%$%)(5"'"5%&,%)(*#'*3' )0"';."&3(#!'.4#+$*1"<'(#'0")"$*.)4&*,.'%#+'0*1*.)4&*,.'2$(1$*.".! 93! "4+1%&5!2:6!$"2$*+,-)(5"'(12&(-%)(*#.'*3'0"$=*!%14'(#'0*1*.)4&*,.' 2$(1$*.".>'5%$(%)(*#'+,$(#!'%#)0".(.'%#+'$"2$*+,-)(5"'%..,$%#-"'(#' %&2(#"'"#5($*#1"#).! 7;7! "4+1%&5!:6!204&*!"#")(-'%#%&4.(.'*3'!"#$%&''."-)(*#'!"#$%&''$"5"%&.' $%12%#)'#*#/1*#*204&4'%1*#!'1*2$0*&*!(-%&&4'+(.)(#-)'.2"-(".! 773! "4+1%&5!:26!-*#-&,+(#!'$"1%$=.! 7<(! +"=$#>?&@.&,&$%'! 7<9! "*552"*?*,!:2%+&! 7<3! !!"#$$%&'#""!&(! Es ist ein zentrales Ziel in der Evolutionsbiologie, die Muster der Vielfalt und die Prozesse, die sie erzeugen, zu verstehen.
    [Show full text]
  • ISTA List of Stabilised Plant Names 7Th Edition
    ISTA List of Stabilised Plant Names 7th Edition ISTA Nomenclature Committee Chair Dr. M. Schori Published by All rights reserved. No part of this publication may be The International Seed Testing Association (ISTA) reproduced, stored in any retrieval system or transmitted in Richtiarkade 18, CH- 8304 Wallisellen, Switzerland any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior ©2021 International Seed Testing Association (ISTA) permission in writing from ISTA. ISBN 978-3-906549-77-4 Valid from: 16.06.2021 ISTA List of Stabilised Plant Names 1st Edition 1966 ISTA Nomenclature Committee Chair: Prof P. A. Linehan 2nd Edition 1983 ISTA Nomenclature Committee Chair: Dr. H. Pirson 3rd Edition 1988 ISTA Nomenclature Committee Chair: Dr. W. A. Brandenburg 4th Edition 2001 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 5th Edition 2007 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 6th Edition 2013 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 7th Edition 2019 ISTA Nomenclature Committee Chair: Dr. M. Schori 7th Edition 2 ISTA List of Stabilised Plant Names Table of Contents A .............................................................................................................................................................. 7 B ............................................................................................................................................................ 21 C ...........................................................................................................................................................
    [Show full text]
  • Eleocharis Elliptica Kunth (Elliptic Spikerush): a Technical Conservation Assessment
    Eleocharis elliptica Kunth (elliptic spikerush): A Technical Conservation Assessment Prepared for the USDA Forest Service, Rocky Mountain Region, Species Conservation Project August 10, 2006 James E. Nellessen, Ph.D. Taschek Environmental Consulting 8901 Adams St., NE, Suite D Albuquerque, NM 87113 Peer Review Administered by Center for Plant Conservation Nellessen, J.E. (2006, August 10). Eleocharis elliptica Kunth (elliptic spikerush): a technical conservation assessment. [Online]. USDA Forest Service, Rocky Mountain Region. Available: http://www.fs.fed.us/r2/projects/scp/ assessments/eleochariselliptica.pdf [date of access]. ACKNOWLEDGMENTS Production of this assessment would not have been possible without the help of others. I wish to thank David Wunker for his help conducting Internet searches for information on Eleocharis elliptica. I wish to thank Ron Hartman for supplying photocopies of herbarium specimen labels from the University of Wyoming. Numerous other specimen labels were obtained through searches of on-line databases, so thanks go to those agencies (cited in this document) for having such convenient systems established. I would like to thank local Region 2 botanists Bonnie Heidel of the Wyoming Natural Heritage Program, and Beth Burkhart of the Black Hills National Forest for supplying information. Thanks go to Paula Nellessen for proofing the drafts of this document. Thanks go to Teresa Hurt and John Taschek of Taschek Environmental Consulting for supplying tips on style and presentation for this document. Thanks are extended to employees of the USFS Region 2, Kathy Roche and Richard Vacirca, for reviewing, supplying guidance, and making suggestions for assembling this assessment. Final thanks go to two external reviewers, one unidentified, and Dr.
    [Show full text]
  • Nuclear and Plastid DNA Phylogeny of the Tribe Cardueae (Compositae
    1 Nuclear and plastid DNA phylogeny of the tribe Cardueae 2 (Compositae) with Hyb-Seq data: A new subtribal classification and a 3 temporal framework for the origin of the tribe and the subtribes 4 5 Sonia Herrando-Morairaa,*, Juan Antonio Callejab, Mercè Galbany-Casalsb, Núria Garcia-Jacasa, Jian- 6 Quan Liuc, Javier López-Alvaradob, Jordi López-Pujola, Jennifer R. Mandeld, Noemí Montes-Morenoa, 7 Cristina Roquetb,e, Llorenç Sáezb, Alexander Sennikovf, Alfonso Susannaa, Roser Vilatersanaa 8 9 a Botanic Institute of Barcelona (IBB, CSIC-ICUB), Pg. del Migdia, s.n., 08038 Barcelona, Spain 10 b Systematics and Evolution of Vascular Plants (UAB) – Associated Unit to CSIC, Departament de 11 Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de 12 Barcelona, ES-08193 Bellaterra, Spain 13 c Key Laboratory for Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, 14 Chengdu, China 15 d Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA 16 e Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA (Laboratoire d’Ecologie Alpine), FR- 17 38000 Grenoble, France 18 f Botanical Museum, Finnish Museum of Natural History, PO Box 7, FI-00014 University of Helsinki, 19 Finland; and Herbarium, Komarov Botanical Institute of Russian Academy of Sciences, Prof. Popov str. 20 2, 197376 St. Petersburg, Russia 21 22 *Corresponding author at: Botanic Institute of Barcelona (IBB, CSIC-ICUB), Pg. del Migdia, s. n., ES- 23 08038 Barcelona, Spain. E-mail address: [email protected] (S. Herrando-Moraira). 24 25 Abstract 26 Classification of the tribe Cardueae in natural subtribes has always been a challenge due to the lack of 27 support of some critical branches in previous phylogenies based on traditional Sanger markers.
    [Show full text]
  • Wild Plants of Ohlone Regional Wilderness Common Name Version
    Wild Plants of Ohlone Regional Wilderness Common Name Version A Photographic Guide Sorted by Form, Color and Family with Habitat Descriptions and Identification Notes Photographs and text by Wilde Legard District Botanist, East Bay Regional Park District New Revised and Expanded Edition - Includes the latest scientific names, habitat descriptions and identification notes Decimal Inches .1 .2 .3 .4 .5 .6 .7 .8 .9 1 .5 2 .5 3 .5 4 .5 5 .5 6 .5 7 .5 8 .5 9 1/8 1/4 1/2 3/4 1 1/2 2 1/2 3 1/2 4 1/2 5 1/2 6 1/2 7 1/2 8 1/2 9 English Inches Notes: A Photographic Guide to the Wild Plants of Ohlone Regional Wilderness More than 2,000 species of native and naturalized plants grow wild in the San Francisco Bay Area. Most are very difficult to identify without the help of good illustrations. This is designed to be a simple, color photo guide to help you identify some of these plants. This guide is published electronically in Adobe Acrobat® format so that it can easily be updated as additional photographs become available. You have permission to freely download, distribute and print this guide for individual use. Photographs are © 2014 Wilde Legard, all rights reserved. In this guide, the included plants are sorted first by form (Ferns & Fern-like, Grasses & Grass-like, Herbaceous, Woody), then by most common flower color, and finally by similar looking flowers (grouped by genus within each family). Each photograph has the following information, separated by '-': COMMON NAME According to The Jepson Manual: Vascular Plants of California, Second Edition (JM2) and other references (not standardized).
    [Show full text]
  • Duplications and Expression of DIVARICATA-Like Genes in Dipsacales
    Duplications and Expression of DIVARICATA-Like Genes in Dipsacales Dianella G. Howarth* and Michael J. Donoghue *Department of Biological Sciences, St. John’s University, Queens, NY; and Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT The genetics underlying flower symmetry shifts between radial and bilateral symmetry has been intensively studied in the model Antirrhinum majus. Understanding the conservation or diversification of this genetic pathway in other plants is of special interest in understanding angiosperm evolution and ecology. Evidence from Antirrhinum indicates that TCP and MYB transcription factors, especially CYCLOIDEA (CYC), DICHOTOMA (DICH), DIVARICATA (DIV), and RADIALIS (RAD) play a role in specifying dorsal identity (CYC, DICH, and RAD) and ventral identity (DIV) in the corolla and androecium of monosymmetric (bilateral) flowers. Previous data indicate that the ECE clade of TCP genes (including CYC and DICH) underwent two duplication events around the diversification of the core eudicots. In this study, we examined the duplication events within Dipsacales, which contains both radially and bilaterally symmetrical flowered species. Additionally, we report here the phylogenetic relationships of the DIV-like genes across core eudicots. Like TCP genes, we found three core eudicot clades of DIV-like genes, with duplications occurring around the diversification of the core eudicots, which we name DIV1, DIV2, and DIV3. The Antirrhinum genes, DIVARICATA and its sister DVL1, fall into the DIV1 clade. We also found additional duplications within these clades in Dipsacales. Specifically, the Caprifoliaceae (bilaterally symmetrical clade) duplicated independently in each of the three core eudicot DIV clades. Downloaded from Using reverse transcription polymerase chain reaction (rtPCR), we showed that most of these copies are expressed across floral tissues in the Dipsacales species Heptacodium miconioides.
    [Show full text]