Bacterial Susceptibility to Antibiotics Joseph P

Total Page:16

File Type:pdf, Size:1020Kb

Bacterial Susceptibility to Antibiotics Joseph P Henry Ford Hospital Medical Journal Volume 6 | Number 2 Article 6 6-1958 Bacterial Susceptibility To Antibiotics Joseph P. Truant Follow this and additional works at: https://scholarlycommons.henryford.com/hfhmedjournal Part of the Life Sciences Commons, Medical Specialties Commons, and the Public Health Commons Recommended Citation Truant, Joseph P. (1958) "Bacterial Susceptibility To Antibiotics," Henry Ford Hospital Medical Bulletin : Vol. 6 : No. 2 , 189-195. Available at: https://scholarlycommons.henryford.com/hfhmedjournal/vol6/iss2/6 This Article is brought to you for free and open access by Henry Ford Health System Scholarly Commons. It has been accepted for inclusion in Henry Ford Hospital Medical Journal by an authorized editor of Henry Ford Health System Scholarly Commons. For more information, please contact [email protected]. BACTERIAL SUSCEPTIBILITY TO ANTIBIOTICS JOSEPH P. TRUANT* The determination of in vitro susceptibility testing of bacteria to antibiotics has been of considerable value in assisting the clinician to choose the most effective thera­ peutic agent in order to overcome an infectious process. A great deal of valuable time may be lost, often to the detriment of the patient if bacterial cultures and in vitro susceptibility tests are not initiated as soon as possible. The information gained by following this procedure is not only important as an aid in determining which anti­ biotic may be effective against a possible pathogen, but also which antibiotics are in­ effective. As the scope of antibiotic therapy has been expanded by the discovery and de­ velopment of many new chemotherapeutic agents, the problem of selecting the most suitable one for any individual case has become more and more complex. As a result, the following system has been adopted in the bacteriology laboratory. Routinely, with requests for sensitivity, the pathogenic bacteria are tested in one, two or possibly three stages. If stage one shows the organism to be sensitive to one of the antibiotics tried, stage two will not be undertaken unless there is a specific request by the clinician. For Gram-positive bacteria, the first stage includes testing with sensitivity discs which contain penicillin, dihydrostreptomycin, tetracycline and chloramphenicol. In the second stage erythromycin, novobiocin and occasionally oleandomycin (matromy- cin) are employed. In reserve are such anti-bacterial agents as bacitracin, furacin, furadantin, neomycin and the sulfas which are employed only after consultation with the clinician. For the Gram-negative bacteria the first stage includes dihydrostreptomycin, tetracycline and chloramphenicol. Strains of Proteus are tested wflh penicillin and Pseudomonas strains are tested with polymyxin in addition to the mentioned antibiotics during the first trial. In the second stage the clinician may choose from the following; furacin, furadantin, neomycin, polymyxin and the sulfas. The sensitivity of any given strain or organism to an antimicrobial agent is generally defined in terms of concentration of the agent which inhibits the growth partially or completely. Several methods of determining this value are in common use and the results obtained by the different methods may show some discrepancy, depending on the details of the method and the choice of end point. In this laboratory, we employ the disc technique since it provides a satisfactory and practical routine procedure for the sensitivity evaluation of microorganisms to a variety of chemotherapeutic agents. The antibiotic discs most commonly employed are listed in Table I. It should be emphasized that this technique is a qualitative pro­ cedure and is designed to determine whether the organisms are sensitive or resistant according to the following scheme; "Division of Microbiology, Department of Laboratories 189 Bacterial Susceptibility to Antibiotics Sensitive — a marked zone of inhibition around the discs of both high and low series. Moderately sensitive — minimal if any detectable zone of inhibition around the low series disc and a distinct zone of inhibition around the high series disc. Resistant — absence of a zone of inhibition around the discs of both con­ centrations. TABLE I CONCENTRATIONS OF ANTIBIOTIC DISCS Low series High Series Penicillin 2 units 10 units Dihydrostreptomycin 10 meg. 50 meg. Tetracycline 5 meg. 30 meg. Chloramphenicol 5 meg. 30 meg. Erythromycin 2 meg. 15 meg. Novobiocin 5 meg. 30 meg. Oleandomycin 2 meg. 15 meg. Neomycin 5 meg. 30 meg. Polymyxin 5 meg. 30 meg. Furacin 100 meg. 100 meg. Furadantin 100 100 n:c-. During the past year our interest has been centered on methods for controlling the variables inherent in routine disc sensitivity testing. A large number of Gram- positive and Gram-negative isolates from the routine services were tested for sensi­ tivity to several antibiotics by three different methods. In this manner it was possible to reveal the frequency, extent and direction of the variations in the results obtained with the different procedures as applied to antibiotics which are now in general use. It was hoped, in this manner also to elucidate some of the factors responsible for the discrepancies which occur occasionafly. MATERIALS AND METHODS Two hundred and thirty bacterial strains and ten antibacterial agents were included in this study. The three methods which were employed for susceptibility testing were as follows; (1) The filter paper "disc agar diffusion" technique (2) The tube or broth dilution technique (3) The cylinder-plate method The details concerning these procedures are clearly discussed by Grove and Randall (1) as well as by Jackson et al (2). 190 Truant In order to obtain the best comparison and evaluation of the different methods, the tube dflution and the cylinder-plate tests done with any given combination of organisms and antibiotics, were set up and carried out using the same seed culture and the same freshly prepared dflutions of antibiotics. From three to six organisms were tested with the antibiotics at one time. The tests employing the medicated discs were carried out separately in our laboratory and some .strains were also tested by the Division of Labora­ tories, Michigan Department of Health. The results were also compared with those reported by the technicians on the routine services. RESULTS It is not feasible to record the results of all tests with every combination of organisms and antibiotics included in this study. However, sufficient data will be reported in tabular form to illustrate the highlights which were brought out by this investigation. Table II shows the results of testing 130 staphylococci against penicillin, tetra­ cycline, dihydrostreptomycin. chloramphenicol, oleandomycin, erythromycin and novo­ biocin by the three methods. Inspection of the data shows only small differences in the values obtained by the different procedures. Thus, in almost all instances, agreement was observed. Minor discrepancies (one-dilution differences) occasionally would have altered the reporting in lieu of changing the sensitivity pattern from one category to another. This is practically only important with organisms on the borderline between moderately resistant and resistant, since the latter interpretation would exclude therapy. The antibiotic spectrum of the staphylococci shown in Table II may be of practical value since it is based on a large number of recent isolates obtained from specimens collected in this hospital. From this spectrum it can be seen that as many as 78.8 per cent of the isolates may be resistant to penicillin. The spectrums of the other anti­ biotics shown in Table II correspond to tho.se reported by other investigators. Table III shows the results of the susceptibility tests wflh the Gram-negative bacilli. The data shows a greater variation in the sensitivity pattern due to the different methods than the results obtained using similar procedures against the staphylococci. The greatest discrepancy occurred with dihydrostreptomycin using the tube dilution procedure. According to Garrod (4) and others, the levels of resistance to streptomycin with in vitro susceptibility tests may vary with changes in the size of the inoculum. Branch et al (5) have shown that the size of the inoculum is an important factor in changing the minimum inhibitory concentration in the tube dilution method and it also has a slight effect in the agar well method but has not been found to exert any demonstrable changes in the reading of the 'disc results'. Furthermore, as already noted by others (2, 3). additional factors such as media, period of incubation, choice of size of inhibition zone etc. may account for some of the variation in the results shown in Table IIL The data in Table III shows dihydrostreptomycin and furacin were the most effective antibiotics in vitro against the Gram-negative bacilli. The least effective of the five agents was tetracycline. Previous experience has shown that peniciflin is ineffective against this group of organisms. Occasionafly high concentrations of penicillin will inhibit members of the genus Proteus. 191 TABLE II COMPARATIVE TESTS BY THREE lETHODS ON 130 STAPHYLOCOCCI 5: Penicillin Tetracycline Dihydro- Chloramphenicol Hatromycin Erythromycin Novobiocin streptomycin METHODS DISC ^, % sensitive^,j^^ 21.2 42.4 44.3 90.0 97.7 93.4 100 -: % resistant 78.8 57.6 55.7 10.0 2,3 6.6 0 ••3 TUBE DILUTIOI % sensitive 18.2 42.4 44.3 88.6 97.7 90.4 100 % resistant 81.8 57.6 55.7 11.4 2.3 9.6 0 CYLINDER-PLATE % sensitive 22.7 39.4 44.3 87.1 95.5 93.4 100 % resistant
Recommended publications
  • Allosteric Drug Transport Mechanism of Multidrug Transporter Acrb
    ARTICLE https://doi.org/10.1038/s41467-021-24151-3 OPEN Allosteric drug transport mechanism of multidrug transporter AcrB ✉ Heng-Keat Tam 1,3,4 , Wuen Ee Foong 1,4, Christine Oswald1,2, Andrea Herrmann1, Hui Zeng1 & ✉ Klaas M. Pos 1 Gram-negative bacteria maintain an intrinsic resistance mechanism against entry of noxious compounds by utilizing highly efficient efflux pumps. The E. coli AcrAB-TolC drug efflux pump + 1234567890():,; contains the inner membrane H /drug antiporter AcrB comprising three functionally inter- dependent protomers, cycling consecutively through the loose (L), tight (T) and open (O) state during cooperative catalysis. Here, we present 13 X-ray structures of AcrB in inter- mediate states of the transport cycle. Structure-based mutational analysis combined with drug susceptibility assays indicate that drugs are guided through dedicated transport chan- nels toward the drug binding pockets. A co-structure obtained in the combined presence of erythromycin, linezolid, oxacillin and fusidic acid shows binding of fusidic acid deeply inside the T protomer transmembrane domain. Thiol cross-link substrate protection assays indicate that this transmembrane domain-binding site can also accommodate oxacillin or novobiocin but not erythromycin or linezolid. AcrB-mediated drug transport is suggested to be allos- terically modulated in presence of multiple drugs. 1 Institute of Biochemistry, Goethe-University Frankfurt, Frankfurt am Main, Germany. 2 Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, UK. 3Present
    [Show full text]
  • Combination of Minocycline and Rifampicin Against Methicillin- and Gentamicin-Resistant Staphylococcus Aureus
    J Clin Pathol: first published as 10.1136/jcp.34.5.559 on 1 May 1981. Downloaded from J Clin Pathol 1981 ;34:559-563 Combination of minocycline and rifampicin against methicillin- and gentamicin-resistant Staphylococcus aureus E YOURASSOWSKY, MP VAN DER LINDEN, MJ LISMONT, F CROKAERT From the H6pital Universitaire Brugmann, Service de Biologie Clinique, 1020 Bruxelles, Belgique SUMMARY Methicillin- and gentamicin-resistant Staphylococcus aureus may remain sensitive to minocycline and to rifampicin. A study of growth curves has shown that at inhibitory concentrations (0-4 ,ug/ml), minocycline prevents the development of mutants resistant to rifampicin. Staphylococcus aureus resistant to methicillin and strains of different phage type were selected for this gentamicin is responsible for an increasing number of investigation. hospital infections, some of which are severe.1-7 A number of treatments have been suggested although Microbial strains vancomycin is often the only major antibiotic which Minocycline HCL (Cyanamid Benelux, batch no is active against these strains. However, it is necessary 7116B-172). Rifampicin (Lepetit, batch no P/4) copyright. to assess the effect of the "second choice" antibiotics. (solution in dimethyl formamide). The MICs of The risk of rapid development of resistance to minocycline (tube dilution method in Mueller Hinton rifampicin is well known,8 9 and in spite of the medium, inoculum 106 micro-organisms/ml) were excellent penetration particularly in polymor- 0-2 ,ug/ml for all the strains. Rifampicin showed phonuclear cells of this antibiotic,10 11 its use alone is minimal inhibitory activity in liquid medium up to contraindicated. Minocycline is active against Staph a concentration of 0-01 ,ug/ml.
    [Show full text]
  • 1028 Subpart A—Susceptibility Discs
    § 460.1 21 CFR Ch. I (4±1±96 Edition) 460.137 Methicillin concentrated stock solu- Neomycin: 30 mcg. tions for use in antimicrobial suscepti- Novobiocin: 30 mcg. bility test panels. Oleandomycin: 15 mcg. 460.140 Penicillin G concentrated stock so- Penicillin G: 10 units. lutions for use in antimicrobial suscepti- Polymyxin B: 300 units. bility test panels. Rifampin: 5 mcg. 460.146 Tetracycline concentrated stock so- Streptomycin: 10 mcg. lutions for use in antimicrobial suscepti- Tetracycline: 30 mcg. bility test panels. Tobramycin: 10 mcg. 460.149 Tobramycin concentrated stock so- Vancomycin: 30 mcg. lutions for use in antimicrobial suscepti- bility test panels. The standard discs used to determine 460.152 Trimethoprim concentrated stock the potency shall be made of paper as solutions for use in antimicrobial suscep- described in § 460.6(d). Each antibiotic tibility test panels. compound used to impregnate such 460.153 Sulfamethoxazole concentrated stock solutions for use in antimicrobial standard discs shall be equilibrated in susceptibility test panels. terms of the working standard des- ignated by the Commissioner for use in AUTHORITY: Sec. 507 of the Federal Food, determining the potency or purity of Drug, and Cosmetic Act (21 U.S.C. 357). such antibiotic. SOURCE: 39 FR 19181, May 30, 1974, unless (b) Packaging. The immediate con- otherwise noted. tainer shall be a tight container as de- fined by the U.S.P. and shall be of such Subpart AÐSusceptibility Discs composition as will not cause any change in the strength, quality, or pu- § 460.1 Certification procedures for an- rity of the contents beyond any limit tibiotic susceptibility discs.
    [Show full text]
  • TYLOSIN First Draft Prepared by Jacek Lewicki, Warsaw, Poland Philip T
    TYLOSIN First draft prepared by Jacek Lewicki, Warsaw, Poland Philip T. Reeves, Canberra, Australia and Gerald E. Swan, Pretoria, South Africa Addendum to the monograph prepared by the 38th Meeting of the Committee and published in FAO Food and Nutrition Paper 41/4 IDENTITY International nonproprietary name: Tylosin (INN-English) European Pharmacopoeia name: (4R,5S,6S,7R,9R,11E,13E,15R,16R)-15-[[(6-deoxy-2,3-di-O-methyl- β-D-allopyranosyl)oxy]methyl]-6-[[3,6-dideoxy-4-O-(2,6-dideoxy-3- C-methyl-α-L-ribo-hexopyranosyl)-3-(dimethylamino)-β-D- glucopyranosyl]oxy]-16-ethyl-4-hydroxy-5,9,13-trimethyl-7-(2- oxoethyl)oxacyclohexadeca-11,13-diene-2,10-dione IUPAC name: 2-[12-[5-(4,5-dihydroxy-4,6-dimethyl-oxan-2-yl)oxy-4- dimethylamino-3-hydroxy-6-methyl-oxan-2-yl]oxy-2-ethyl-14- hydroxy-3-[(5-hydroxy-3,4-dimethoxy-6-methyl-oxan-2- yl)oxymethyl]-5,9,13-trimethyl-8,16-dioxo-1-oxacyclohexadeca-4,6- dien-11-yl]acetaldehyde Other chemical names: 6S,1R,3R,9R,10R,14R)-9-[((5S,3R,4R,6R)-5-hydroxy-3,4-dimethoxy- 6-methylperhydropyran-2-yloxy)methyl]-10-ethyl-14-hydroxy-3,7,15- trimethyl-11-oxa-4,12-dioxocyclohexadeca-5,7-dienyl}ethanal Oxacyclohexadeca-11,13-diene-7-acetaldehyde,15-[[(6-deoxy-2,3- dimethyl-b-D-allopyranosyl)oxy]methyl]-6-[[3,6-dideoxy-4-O-(2,6- dideoxy-3-C-methy-a-L-ribo-hexopyranosyl)-3-(dimethylamino)-b-D- glucopyranosyl]oxy]-16-ethyl-4-hydroxy-5,9,13-trimethyl-2,10- dioxo-[4R-(4R*,5S*,6S*,7R*,9R*,11E,13E,15R*,16R*)]- Synonyms: AI3-29799, EINECS 215-754-8, Fradizine, HSDB 7022, Tilosina (INN-Spanish), Tylan, Tylocine, Tylosin, Tylosine, Tylosine (INN-French), Tylosinum (INN-Latin), Vubityl 200 Chemical Abstracts System number: CAS 1401-69-0 Structural formula: Tylosin is a macrolide antibiotic representing a mixture of four tylosin derivatives produced by a strain of Streptomyces fradiae (Figure 1).
    [Show full text]
  • WHO Report on Surveillance of Antibiotic Consumption: 2016-2018 Early Implementation ISBN 978-92-4-151488-0 © World Health Organization 2018 Some Rights Reserved
    WHO Report on Surveillance of Antibiotic Consumption 2016-2018 Early implementation WHO Report on Surveillance of Antibiotic Consumption 2016 - 2018 Early implementation WHO report on surveillance of antibiotic consumption: 2016-2018 early implementation ISBN 978-92-4-151488-0 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution- NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons. org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non- commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. WHO report on surveillance of antibiotic consumption: 2016-2018 early implementation. Geneva: World Health Organization; 2018. Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data.
    [Show full text]
  • Sales of Veterinary Antimicrobial Agents in 29 European Countries in 2014
    Sales of veterinary antimicrobial agents in 29 European countries in 2014 Trends across 2011 to 2014 Sixth ESVAC report An agency of the European Union The mission of the European Medicines Agency is to foster scientific excellence in the evaluation and supervision of medicines, for the benefit of public and animal health. Legal role • publishes impartial and comprehensible information about medicines and their use; The European Medicines Agency is the European Union body responsible for coordinating the existing scientific resources • develops best practice for medicines evaluation and put at its disposal by Member States for the evaluation, supervision in Europe, and contributes alongside the supervision and pharmacovigilance of medicinal products. Member States and the European Commission to the harmonisation of regulatory standards at the international The Agency provides the Member States and the institutions level. of the European Union (EU) and the European Economic Area (EEA) countries with the best-possible scientific advice Guiding principles on any questions relating to the evaluation of the quality, safety and efficacy of medicinal products for human or • We are strongly committed to public and animal health. veterinary use referred to it in accordance with the provisions of EU legislation relating to medicinal products. • We make independent recommendations based on scien- tific evidence, using state-of-the-art knowledge and The founding legislation of the Agency is Regulation (EC) expertise in our field. No 726/2004. • We support research and innovation to stimulate the Principal activities development of better medicines. Working with the Member States and the European Commission as partners in a European medicines network, the European • We value the contribution of our partners and stakeholders Medicines Agency: to our work.
    [Show full text]
  • Surveillance of Antimicrobial Consumption in Europe 2013-2014 SURVEILLANCE REPORT
    SURVEILLANCE REPORT SURVEILLANCE REPORT Surveillance of antimicrobial consumption in Europe in Europe consumption of antimicrobial Surveillance Surveillance of antimicrobial consumption in Europe 2013-2014 2012 www.ecdc.europa.eu ECDC SURVEILLANCE REPORT Surveillance of antimicrobial consumption in Europe 2013–2014 This report of the European Centre for Disease Prevention and Control (ECDC) was coordinated by Klaus Weist. Contributing authors Klaus Weist, Arno Muller, Ana Hoxha, Vera Vlahović-Palčevski, Christelle Elias, Dominique Monnet and Ole Heuer. Data analysis: Klaus Weist, Arno Muller and Ana Hoxha. Acknowledgements The authors would like to thank the ESAC-Net Disease Network Coordination Committee members (Marcel Bruch, Philippe Cavalié, Herman Goossens, Jenny Hellman, Susan Hopkins, Stephanie Natsch, Anna Olczak-Pienkowska, Ajay Oza, Arjana Tambić Andrasevic, Peter Zarb) and observers (Jane Robertson, Arno Muller, Mike Sharland, Theo Verheij) for providing valuable comments and scientific advice during the production of the report. All ESAC-Net participants and National Coordinators are acknowledged for providing data and valuable comments on this report. The authors also acknowledge Gaetan Guyodo, Catalin Albu and Anna Renau-Rosell for managing the data and providing technical support to the participating countries. Suggested citation: European Centre for Disease Prevention and Control. Surveillance of antimicrobial consumption in Europe, 2013‒2014. Stockholm: ECDC; 2018. Stockholm, May 2018 ISBN 978-92-9498-187-5 ISSN 2315-0955
    [Show full text]
  • Antibiotics and Antibiotic Resistance
    This is a free sample of content from Antibiotics and Antibiotic Resistance. Click here for more information on how to buy the book. Index A Antifolates. See also specific drugs AAC(60)-Ib-cr, 185 novel compounds, 378–379 ACHN-975 overview, 373–374 clinical studies, 163–164 resistance mechanisms medicinal chemistry, 166 sulfamethoxazole, 378 structure, 162 trimethoprim, 374–378 AcrAB-TolC, 180 Apramycin, structure, 230 AcrD, 236 Arbekacin, 237–238 AdeRS, 257 Avibactam, structure, 38 AFN-1252 Azithromycin mechanism of action, 148, 153 resistance, 291, 295 resistance, 153 structure, 272 structure, 149 Aztreonam, structure, 36 AIM-1, 74 Amicoumacin A, 222 Amikacin B indications, 240 BaeSR, 257 structure, 230 BAL30072, 36 synthesis, 4 BB-78495, 162 Aminoglycosides. See also specific drugs BC-3205, 341, 344 historical perspective, 229–230 BC-7013, 341, 344 indications, 239–241 b-Lactamase. See also specific enzymes mechanism of action, 232 classification novel drugs, 237 class A, 67–71 pharmacodynamics, 238–239 class B, 69–74 pharmacokinetics, 238–239 class C, 69, 74 resistance mechanisms class D, 70, 74–77 aminoglycoside-modifying enzymes evolution of antibiotic resistance, 4 acetyltransferases, 233–235 historical perspective, 67 nucleotidyltransferases, 235 inhibitors phosphotransferases, 235 overview, 37–39 efflux-mediated resistance, 236 structures, 38 molecular epidemiology, 236–237 nomenclature, 67 overview, 17, 233 b-Lactams. See also specific classes and antibiotics ribosomal RNA modifications, 235–236 Enterococcus faecium–resistancemechanisms,
    [Show full text]
  • Development of Novel Antibiotic Classes
    60 years ago… The changes in antibiotic research as shown by patent publications Development of Novel Antibiotic Classes 1930 1940 1950 1960 1970 1980 1990 2000 2003 Daptomycin 1999 Linezolid 1962 Quinolones 1962 Streptogramins 1958 Glycopeptides 1952 Macrolides 1950 Aminoglycosides 1949 Chloramphenicol 1949 Tetracyclines 1940 Beta-Lactams 1936 Sulfonamides Harald Labischinski Products in the Pipeline Product Class Main Segment Status ABT 492 Quinolone Community Ph II DK507k Quinolone Community Ph I Daptomycin Lipopeptide Hospital Reg. Oritavancin Glycopeptide Hospital Ph III Dalbavancin Glycopeptide Hospital Ph III Tigecycline Glycylcycline Hospital Ph III AR 100 Trimethoprime Hospital Ph II BAL 9141 Cephalosporin Hospital Ph II BB-83698 PDF-inhibitor Community Ph I CS-023 Carbapenem Hospital Ph II Until 2008 very few antibiotics will reach the market ! Harald Labischinski 60 years ago… 1942 Gardner and Chain discover a substance with antibacterial activity, produced by a strain of Proactinomyces (later Streptomyces gardneri), which they name proactinomycin A. Macrolide structure • Macrolides are lipophilic molecules with a characteristic central lactone ring bearing 12 to 17 atoms, few if any double bonds and no nitrogen athoms (until the advent of the azalides). • Several amino and/or neutral sugars can bind to the lactone ring. MACROLIDE ANTIBIOTICS 12-membered-ring 14-membered-ring 15-membered-ring 16-membered-ring 17-membered-ring Methymycin Natural Semi-synthetic Azithromycin Natural Semi-synthetic Lankacidin Neomethymycin compounds derivatives compounds derivatives complex YC-17 Litorin Erythromycin A to F Roxithromycin Josamycin Rokitamycin Oleandomycin Dirithromycin Kitasamycin Miokamycin Sporeamicin Flurithromycin Spiramycin Clarithromycin Midecamycin • The macrolides narrow the entrance of the tunnel through which the nascent polypeptide chain is extruded from the ribosome.
    [Show full text]
  • Veterinary Use of Antibiotics Highly Important to Human Health
    VETERINARY USE OF ANTIBIOTICS HIGHLY IMPORTANT TO HUMAN HEALTH The World Health Organization, the Food withholding periods and export and Agriculture Organization and the slaughter intervals in the case of food- World Organization for Animal Health producing animals. Where possible, are working to protect the effectiveness choices should be based on culture and of antimicrobials in the face of rapidly susceptibility testing and the narrowest increasing resistance in serious and life- spectrum drugs effective against the threatening pathogens. infection. Antimicrobial use in animals contributes Alternatives to antimicrobial use — such to the selection and spread of resistance. as changes in husbandry, management, Veterinarians must help preserve vaccination and infection prevention existing antibiotics and fight the serious and control — should also be explored public health threat of antimicrobial in each case. The overriding principle resistance. Veterinarians need to of antimicrobial prescribing is to use carefully consider how they prescribe as little as possible but as much as antibiotics, especially those that are necessary to address the infection. critical in human medicine, to help Following diagnosis, consider using preserve these lifesaving drugs for the the first line antimicrobials along with future. alternative treatment approaches. The table on the next page outlines Second line use should be limited where in a broad and general sense how possible to when susceptibility testing or veterinarians should use the antibiotics clinical results have proven that first line highly important to human medicine identified by the Australian Strategic antibiotics are not effective. and Technical Advisory Group on Third line antimicrobials are for AMR (ASTAG). Responsible use of use as a last resort.
    [Show full text]
  • Summary Report on Antimicrobials Dispensed in Public Hospitals
    Summary Report on Antimicrobials Dispensed in Public Hospitals Year 2014 - 2016 Infection Control Branch Centre for Health Protection Department of Health October 2019 (Version as at 08 October 2019) Summary Report on Antimicrobial Dispensed CONTENTS in Public Hospitals (2014 - 2016) Contents Executive Summary i 1 Introduction 1 2 Background 1 2.1 Healthcare system of Hong Kong ......................... 2 3 Data Sources and Methodology 2 3.1 Data sources .................................... 2 3.2 Methodology ................................... 3 3.3 Antimicrobial names ............................... 4 4 Results 5 4.1 Overall annual dispensed quantities and percentage changes in all HA services . 5 4.1.1 Five most dispensed antimicrobial groups in all HA services . 5 4.1.2 Ten most dispensed antimicrobials in all HA services . 6 4.2 Overall annual dispensed quantities and percentage changes in HA non-inpatient service ....................................... 8 4.2.1 Five most dispensed antimicrobial groups in HA non-inpatient service . 10 4.2.2 Ten most dispensed antimicrobials in HA non-inpatient service . 10 4.2.3 Antimicrobial dispensed in HA non-inpatient service, stratified by service type ................................ 11 4.3 Overall annual dispensed quantities and percentage changes in HA inpatient service ....................................... 12 4.3.1 Five most dispensed antimicrobial groups in HA inpatient service . 13 4.3.2 Ten most dispensed antimicrobials in HA inpatient service . 14 4.3.3 Ten most dispensed antimicrobials in HA inpatient service, stratified by specialty ................................. 15 4.4 Overall annual dispensed quantities and percentage change of locally-important broad-spectrum antimicrobials in all HA services . 16 4.4.1 Locally-important broad-spectrum antimicrobial dispensed in HA inpatient service, stratified by specialty .
    [Show full text]
  • Pharmacokinetics of Antibiotics in the Lungs
    Eur Respir J REVIEW 1990, 3, 715-722 Pharmacokinetics of antibiotics in the lungs Y. Valcke, R. Pauwels, M. Van Der Straeten Pharmacokinetics of anJibiotics in the lungs. Y. Valcke, R. Pauwels, M. Van Dept of Respiratory Diseases, University Hospital, Der Straeten. Ghent, Belgium. ABSTRACT: This paper reviews current knowledge on the relationship between local penetration or antibiotics and therapeutic efficacy in Correspondence: Dr Y. Valcke, Dept of Respiratory Diseases, University Hospital, De Pintelaan 185, B pulmonary and bronchial infections. The antimicrobial drug concentration 9000 Ghenl, Belgium. at the site of Infection is supposedly determinative for the efficacy of the antibiotic treatment but the number of studies In respiratory infections Keywords: Antibiotics; bronchoalveolar lavage; lower supporting this hypothesis is Umlted. The mechanisms responsible for the respiratory tract infections. pulmonary deposition or orally or systemically administered antibiotics include passive diffusion, active transport, bulk flow and permeation. The Accepted after revision September 9, 1989. penetration of antimicrobial drugs Into the respiratory tract is Influenced by both host-related factors, such as lnfiammatlon or mechanical Injury, and drug-related factors, such as molecular weight. In addition, local blo-inactlvatlon can occur. The final bloactlve antibiotic concentration at the site of the respiratory Infection is, therefore, the result or a very complex dynamic process. Different sampling and measuring methods have been used for the assessment of antibiotic concentrations at the site of respiratory Infections. Concentrations in sputum, bronchial secretions and biopsy specimens have been correlated with serum concentrations and clinical outcome. Bronchoalveolar lavage could be a promising technique for evaluating antibiotic drug concentrations In alveolar Uning fluid.
    [Show full text]