<<

The author(s) shown below used Federal funds provided by the U.S. Department of Justice and prepared the following final report:

Document Title: Synthesis and Analytical Profiles for Regioisomeric and Isobaric Related to MDMA, MDEA and MBDB: Differentiation of Drug and non-Drug Substances of Mass Spectral Equivalence

Author: C. Randall Clark, Ph.D.

Document No.: 236243

Date Received: October 2011

Award Number: 2006-DN-BX-K016

This report has not been published by the U.S. Department of Justice. To provide better customer service, NCJRS has made this Federally- funded grant final report available electronically in addition to traditional paper copies.

Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice. This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Final Technical Report

Synthesis and Analytical Profiles for Regioisomeric and Isobaric Amines Related to MDMA, MDEA and MBDB: Differentiation of Drug and non-Drug Substances of Mass Spectral Equivalence

Award Number: 2006-DN-BX-K016

Submitted By: C. Randall Clark, Ph.D. Auburn University

Abstract: This project has focused on issues of resolution and discriminatory capabilities in controlled substance analysis providing additional reliability for forensic evidence and analytical data on regioisomeric and isobaric of forensic interest. The broad objective of this research is improved specificity in the analytical methods used to identify

MDMA, MBDB, MDEA, and related controlled substances. This improved specificity comes from methods which allow the forensic analyst to eliminate non-drug imposter substances as the source of analytical data matching that of the controlled drug substance. This project has developed methods to discriminate between the methylenedioxyphen-ethylamine drugs and those regioisomeric and isobaric having the same molecular weight and major fragments of equivalent mass (i.e. identical mass spectra). The work has emphasized those analytical methods commonly employed in forensic laboratories for confirmation of drug identity: gas chromatography, mass spectrometry, infrared spectrometry. When compounds exist which produce the same mass spectrum (same

1 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

MW and fragments of equivalent mass) as the drug of interest, the identification by GC-MS must be based entirely upon the ability of the chromatographic system to resolve these substances.

The initial phase of this work involved the organic synthesis of the direct regioisomeric substances related to MDMA, MBDB, and MDEA. We also prepared representative samples of the indirect regioisomeric molecules (such as the 2, 3, and 4- methoxymethcathinones) and the isobaric substances, compounds of the same nominal mass but different elemental composition (for example 2, 3, and 4-ethoxyphenethylamines and the

10 different ring substitution patterns for the methoxy-methyl-phenethylamines). Additional compounds were prepared in related categories to further refine the developed analytical methods and confirm/challenge experimental observations. A number of labeled analogs has been prepared to establish mass spectral fragmentation patterns. Other isomeric series were prepared such as the methoxymethylene-substitution phenyl ring pattern for the

MDMA and the MBDB side chain series and the 2-, 3-, and 4-ethoxyphenyl compounds for the MBDB series. Overall, in this project more than 90 phenethylamines having a regioisomeric or isobaric relationship to MDMA or MBDB have been synthesized and evaluated.

The chromatographic retention properties for each series of have been evaluated by gas chromatographic techniques on a variety of stationary phases. These studies

2 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

established structure-retention relationships (elution orders) for the side chain regioisomers and the isobaric amines on a number of stationary phases.

Mass spectrometry studies have focused on the underivatized free amines and have clearly established the significant similarity in the mass spectrum for the side chain and ring regioisomers. Derivatization studies have established methods for differentiation of side chain substitution patterns yielding unique fragment ions of significant abundance in the EI mass spectrum for these compounds. The perfluoroacyl derivatives provide maximum mass spectral information for compound individualization and in a number of regioisomeric subsets the HFBA derivatives provide more data for molecular individualization than PFPA or TFA derivatives. A detailed background study established the advantages of perfluoroacyl derivatives over other or aryl derivatives. A second detailed background study provided the scientific evidence for the mechanism of fragmentation producing the unique m/z 110, 160 and 210 ions for the side chain in the TFA, PFPA and HFBA derivatives respectively. The mass spectral studies clearly show that the individual side chain isomers of m/z58 and m/z72 can be identified by specific fragment ions. Additionally unique ions help to point the direction of investigation for ring substitution pattern. For example the unique fragment ions at m/z107 in the spectrum of ethoxy-substituted phenethylamines allows its’ differentiation from methylenedioxyphenethylamines. Vapor phase infrared spectrometry following separation by gas chromatography (GC-IRD) provided confirmation of the nature and position of aromatic ring .

3 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

TABLE OF CONTENTS

Abstract……………………………………………………………………………………1

Excutive Summary……………………………………………………………………….9

I.Introduction…………………………………………………………………………….16

I.1 Statement of the Problem ……………………………………………………….....16

I.2 Literature Citations and Review……………………………………………………20

I.3 Statement of Hypothesis or Rationale for the Research……………………………...47

II. Methods (Narrative Descriptions of the Experimental Design) ……………………...48

II.1 Synthesis Design ……………………………………………………………………48

II.2 Methods (Synthetic materials, and procedures) …………………………………..57

II.2.1 Materials……………………………………………………………………….57

II.3 Analytical Methods……………………………………………………………...…58

II.3.1 Instruments……………………………………………….………………….…58

II.3.2 GC- Columns………………………………………………………………..…59

III. Results………………………………………………………………………………61

Chapter 1…………………………………………………………………………….62

Mass Spectrometry and Gas Chromatographic Studies on Direct Regioisomers to 3,4-MDMA…………………………………………….…………..62

Mass spectral studies of direct regioisomers of 3,4-MDMA (methylenedioxyphenyl substituted side-chain regioisomers) …… ….……………62

4 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Mass spectral studies of perfluroacyl derivatives of 3,4- MDMA and their direct regioisomers………………………………………67

Gas chromatographic separation of perfluroacyl derivatives of 3,4- MDMA and their direct regioisomers………………………………………83

Conclusions of Chapter 1…………………………………………………………88

Chapter 2……………………………………………………………………………89

Mass Spectrometry and Gas Chromatographic Studies of Indirect Regioisomers Related to 3,4-MDMA, the Methoxymethcathinones. …………89

Mass spectral studies of the undreivatized and the perfluroacyl derivatives of the methoxymethcathinones…………………………………………………90

Gas chromatographic Separation of 2,3-MDMA , 3,4-MDMA from the Methoxymethcathinnes………………………………………………………...…101

Conclusion of Chapter 2……………………………………………………….…106

Chapter 3……………………………………….…………………………………107

Mass Spectrometry and Gas Chromatographic Studies on Acylated Derivatives of a Series of Side Chain Regioisomers of 2-Methoxy-4-Methyl Phenethylamines…………………………………………………………………107

Mass Spectral Studies on Chain Regioisomers of 2-Methoxy-4-Methyl Phenethylamines…………………………………………………………………107

Gas Chromatographyic separation of the perflouroacyl derivatives of 2- methoxy-4-methylphenethylamines from 2,3- and 3,4-MDMA……………123

5 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Conclusion of Chapter 3………………………………………..……………………127

Chapter 4…….……………………………………………………………………128

GC-MS Analysis of Acylated Derivatives of the Side Chain Regioisomers of 4-Methoxy- 3-Methyl Phenethylamines Related to Methylenedioxymethamphetamine………..128

Mass Spectrometral studies of 4-methoxy-3-methyl phenethylamines along with 2,3- and 3,4- MDMA……………………………………….…………………….128

Gas Chromatography of the regioiosmeric4-methoxy-3-methyl Phenethylamines and 2,3- and 3,4-MDMA………………………………………146

Conclusions of Chapter 4………………………………………………….……...149

Chapter 5……………………………………………………….…………………....150

Gas Chromatographic and Mass Spectral Studies on Acylated Side Chain Regioisomers of 3-Methoxy-4-methyl-phenethylamine and 4-Methoxy-3-methylphenethylamine…150

Mass Spectral Studies on Side Chain Regioisomers of 3-Methoxy-4-methyl- phenethylamine and 4-Methoxy-3-methylphenethylamine……………………...150

Gas Chromatography of 3-Methoxy-4-methyl-phenethylamine, 4-Methoxy-3-methyl- phenethylamine, 2,3- and 3,4-MDMA………………………………….173

Conclusions of Chapter 5…………………………………………………………..176

Chapter 6……………………………….…………………………………………177

Mass Spectral and Gas Chromatographic Studies of Methoxy Methyl Isobaric to 3, 4-MDMA. ……………………………………………………………177

Mass Spectral Studies of Methoxy Methyl methamphetamines Isobaric to 3,4-MDMA………………………………………………….……….177

6 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Mass Spectral Studies of Perfluroacyl Derivatives Methoxymethyl Methamphetamines compared to 2,3- and 3,4-MDMA………………………………………………183

Gas chromatographic separation of the perfluroacyl derivatives of ring substituted methoxy methyl methamphetamines, 2,3- and 3,4- MDMA. ………200

Conclusions of Chapter 6………………………………………………………..211

Chapter 7…………………………………………………………………………….213

GC–MS Analysis of Ring and Side Chain Regioisomers of Ethoxyphenethylamines………………………………………………………….213

Mass spectrometry of Ring and Side Chain Regioisomers of Ethoxyphenethylamines………………………………………………………….213

Gas chromatography of Ring substituted Ethoxy Phenethylamines, 2,3- and 3,4-MDMA. …………………………………………………………….234

Conclusions of Chapter 7…………………………………………………………238

Chapter 8……………………………………………………………………...239

GC-MS Studies on Direct Side Chain Regioisomers Related to Substituted Methylenedioxyphenethylamines; MDEA, MDMMA and MBDB……………...239

Mass Spectral Studies……………………………………………………………239

Gas chromatography of Side Chain Regioisomeric Phenethylamines Related to the Controlled Substances MDEA, MDMMA, and MBDB. ………………….257

Conclusion of Chapter 8………………………………………………………...260

Chapter 9…………………………………………………………………...260

GC-MS Evaluation of a series of Acylated Derivatives of 3,4- Methylenedioxymethamphetamine ...... 260

7 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Mass Spectrometry of Acylated Derivatives of 3,4- Methylenedioxymethamphetamine………………………………………………261

Gas Chromatography………………………………….………………………….275

Conclusions of Chapter 9…………………………………………………………..277

IV. Conclusions……………………………………………………………………278

IV.1 Discussion of findings. …………………………………………………………278

IV.2 Implications for policy and practice. …………………………………………...278

IV.3 Implications for further research………………………………………………..279

V. References………………………………………………………………………….281

VI. Dissemination of Research Findings………………………………………………293

VI.1 Scientific Publications Related to this Project…………………………………….293

VI.2 Scientific Presentations Related to this Project…………………………..……….298

8 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Executive Summary: In this project, we have synthesized over 90 regioisomeric and isobaric phenethylamines of mass spectral equivalence and evaluated the analytical profiles of these amines. The work has emphasized those analytical methods commonly employed in forensic laboratories for confirmation of drug identity: gas chromatography, mass spectrometry, infrared spectrometry. The synthetic efforts focused on those regioisomeric and isobaric substances most likely to appear in future forensic samples. In some cases compounds were prepared to complete a set of all the possibilities in a series when some of the regioisomers have already appeared in clandestine samples. In other cases the compounds prepared were available directly or indirectly from commercially available precursor substances. We have collected, cataloged and categorized the mass spectra for the free amines and several derivatives of each of the 90 amines; studied the gas chromatographic retention properties of various subsets of the amines and their derivatives; collected and evaluated vapor phase infrared spectra for these compounds. As of the date of this writing (January, 2011) twenty scientific publications resulting from this area of research are in print or accepted for publication in Forensic Science International and Journal of Chromatographic Science. A few other manuscripts related to this project are yet to be written. Additionally 12 presentations have been made at national meetings during this project period.

The overall goal of this project was a comprehensive study of those regioisomeric and isobaric amines capable of producing mass spectra equivalent to those of MDMA,

MBDB and MDEA. The availability of all the necessary compounds to establish and

9 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

prove the structure-retention, structure-fragmentation and other structure-property analytical experiments was the starting point for this research. The mass spectra of phenethylamines are characterized by a base peak formed from an initiated - cleavage reaction of the -carbon bond of the ethyl linkage between the aromatic ring and the amine group. In methamphetamine and ring substituted methamphetamines

(for example 3,4-methylenedioxymethamphetamine), the alpha-cleavage reaction yields the substituted fragment at m/z 58 and the benzyl fragment or substituted benzyl fragment at the appropriate mass.

H CH3 H3C H C N C N H H3C H H3C

H CH2CH3 H CH CH3CH2 H 3 C N C N C N H H H H H CH3

+ m/z=58, C4H8N

Regioisomeric Forms of m/z 58

In this project the substituted benzyl fragment for 3,4-MDMA and its

regioisomeric and isobaric equivalents occurs at m/z 135. There are four side chain

regioisomers of methamphetamine with the potential to yield mass spectra essentially

equivalent to methamphetamine yielding regioisomeric imine fragment ions in their

electron ionization mass spectra at m/z 58. Thus, for every individual ring substitution

10 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

pattern there are five side chains yielding equivalent m/z 58 fragment ions (the methamphetamine side chain and four regioisomeric equivalents). The ring substitution pattern in methylenedioxymethamphetamine (MDMA) doubles the number of isomers to ten, the five side chain isomers in which the -ring is substituted in a 3,4-manner and the five in which the methylenedioxy-ring is substituted in a 2,3-pattern. Thus, there are nine other amines with the potential to produce a mass spectrum essentially the same as that of

3,4-MDMA. Most of these potential designer analogues have the strong possibility to be misidentified as 3,4-MDMA based on mass spectrometry. In addition to the ten amines containing the methylenedioxy-group, other substitution patterns have the potential to produce mass spectra with fragments of equivalent mass to those of 3,4-MDMA.

O H3CO 58 O 58 58

O H3CO H3C H3C 58 58 58

H3CO EtO H3CO

Example of Regioisomeric and Isobaric Compounds in this Study

11 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

For example, the reported methoxy-methcathinones are uniquely isomeric

with the MDMAs having the same MW, elemental composition and expected major fragment

ions of equal mass to those of the MDMAs. Additionally isobaric substitution patterns

especially those likely to undergo few if any unique/characteristic fragmentations such as

methoxy-methyl disubstitution of the methamphetamine aromatic ring, ethoxy-

monosubstitution as well as methoxymethylene- monosubstitution are compounds with the

potential to produce El mass spectra essentially equivalent to that of 3,4-MDMA. Each

methoxy-methyl, methoxymethylene- or ethoxy-substitution pattern would produce 5-side

chain isomers analogous to methamphetamine with the potential to yield mass spectra

equivalent to 3,4-MDMA. The o, m, and p-ethoxy would yield a total of 15-

isomers, 15 for the methoxymethylenes and the methoxy-methyl disubstituted aromatic ring system (10 unique disubstitution patterns) can result in over 50 isomers.

Representative samples have been prepared in this study for each aromatic ring substitution pattern and each side chain regioisomer. A complete set of all side chain regioisomers was prepared in enough categories to confirm mass spectral methods for specific side chain identification. The number of side chain regioisomers for the MBDB series doubles to 20 for each ring substitution pattern and the base peak for these compounds is m/z72. In this project efforts were concentrated on preparing compounds necessary to confirm methods developed for the MDMA isomers (m/z58). When the number of mass spectral equivalent isomeric substances is relatively small, chromatographic separation and reference standard

12 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

availability is not a major concern. However, the continued designer exploration of some drug categories will likely produce even greater numbers of regioisomeric and isobaric substances especially among the phenethylamines. As the number of compounds having mass spectral equivalence increases so does the challenge of specific identification via chromatographic resolution and other analytical methods. In this project we have systematically examined the analytical profiles of compounds from each structural category. The results of the work will allow the forensic analyst to differentiate among most of the regioisomeric and isobaric equivalents of MDMA without the need for reference standards of all these compounds.

The mass spectra in almost all the compounds prepared in this study showed the expected m/z 58 and 135 ions with no features for specific differentiation. Upon derivatization with perfluoroacyl reagents such as trifluoroacetyl, pentafluoropropionyl and heptafluorobutryl characteristic and distinguishing ions were obtained in many cases.

These are specific ions which occur for differentiation and not just changes in the relative abundance of common ions. In every case specific ions to identify the side chains were obtained. The individualization is the result of fragmentation of the alkyl carbon- bond yielding hydrocarbon fragments at m/z 148, 162 and 176 as well as other unique fragments from these regioisomeric . The N-ethylamides show a specific ion to identify the by loss of mass 28 and the methamphetamine side chain yields a unique ion at m/z110, 160 and 210 for the TFA, PFPA and HFBA derivatives

13 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

respectively. Thus, following chemical derivatization the variations in regioisomeric m/z58 side chains can be specifically identified. This is possible due to specific ions identifying the number of attached directly to the aromatic ring in an uninterrupted manner and the nature of the substituent attached to nitrogen. During the course of this work the mass spectral fragmentation mechanisms and proof of structure for these diagnostic ions have been confirmed by homologation experiments and deuterium labeling studies. These additional compounds were synthesized in order to confirm the details of the observed mass spectral fragmentation pathways.

In an additional fundamental study, a series of acylation reagents were evaluated to find the reagent yielding maximum specific fragmentation information as well as appropriate chromatographic properties. The perfluoroacyl derivatives of MDMA show excellent chromatographic properties and unique mass spectral fragment ions. The perfluoroalkyl amides of TFAA, PFPA and HFBA yield a unique series of mass spectral fragments at m/z 110, 160 and 210 respectively. Additionally, the base peaks in these mass spectra occur at relatively higher masses at m/z 154, 204 and 254 respectively. These ions are the perfluoroacylimines resulting from loss of 135 mass units (3,4-methylenedioxybenzyl) from the molecular ion. This (M-135)+ species also occurs for the acetyl, propionyl and butyryl amides however these ions rearrange through loss of the to yield a common ion at m/z 58. Thus, the base peak for the non-fluorinated hydrocarbon derivatives is the same as that observed for the underivatized MDMA, m/z 58. The

14 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

formyl, d3-acetyl, d5-benzoyl and pentafluorobenzoyl derivatives provided

chromatographic and confirmatory mass spectral evidence for fragmentation pathways.

In many cases the ring substituent can be identified following perfluoroacylation as well. In some cases the position of ring substitution is not available from the mass spectral data. In all cases compounds having identical mass spectra in the derivatized and underivatized form, can be differentiated by vapor phase infrared spectrometry. GC-IRD studies yield individual spectra to differentiate primarily between ring substituents. Thus these techniques in concert provide molecular individualization for most of these compounds. The differentiation by IRD of the methcathinones is straight forward due to the carbonyl absorption in this set of compounds.

Similar studies for the precursor substances synthesized in this study have helped to provide analytical details for the substituted phenylacetones and 2-butanones and related . Additionally the tertiary amines cannot yield stable amide derivatives for side chain or ring substituent identification. These compounds can only be differentiated by underivatized mass spectra, vapor phase infrared spectrometry and other techniques.

15 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Main Body of the Final Technical Report

I. Introduction

I.1 Statement of the Problem

3,4-Methylenedioxymethamphetamine, MDMA, is a Schedule I drug under the

Controlled Substances Act (CSA). Primarily illicitly manufactured in and trafficked from

Europe, MDMA is the most popular of the club drugs. DEA reporting indicates widespread abuse of this drug within virtually every city in the United States. The mass spectrum is often the confirmatory piece of evidence in the identification of drugs in the forensic laboratory.

While the mass spectrum is often considered a specific "fingerprint" for an individual compound, there are other substances which produce very similar or almost identical mass spectra. Many of these compounds which yield the same mass spectrum are positional isomers of side-chain or aromatic ring substituents. Such compounds having MS-equivalency and similar elution properties, perhaps coelution, represent a serious analytical challenge for the forensic chemist. The ability to distinguish between these isomers directly enhances the specificity of the analysis for the controlled substance. If other compounds exist which have the potential to produce the same mass spectrum as the drug of interest then the identification by GC-MS must be based entirely upon the ability of the chromatographic system to separate the isomeric substance from the actual drug. Those substances which coelute with the drug of abuse will be misidentified. The ultimate concern then is "if the laboratory has never analyzed the counterfeit substances, how can the analyst be sure that these compounds would not coelute 16 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

with the controlled drug?" The courts expect forensic drug to identify a substance

as an individual compound, not report it as an unknown member of a large group of

regioisomeric/isobaric substances. Methamphetamine is an excellent example which illustrates

the possibility of counterfeit amines based on side chain isomerism. The El mass spectrum for

methamphetamine is dominated by the m/z 58 fragment and the m/z 91 fragment with very

little molecular ion at m/z 149. There are four other side chain isomers of methamphetamine

having a molecular weight of 149 which yield an imine fragment of m/z58 and an

unsubstituted benzyl fragment of m/z 91.

NH CH3 NH2

H CH3 H3C CH3 Methamphetamine C10H15N, MW=149 C10H15N, MW=149 CH3

NH2 NH C2H5 N CH3 C2H5 1-Phenyl-2-aminobutane N-Ethylphenethylamine N,N-Dimethylphenethylamine C10H15N, MW=149 C10H15N, MW=149 C10H15N, MW=149

Methamphetamine and Regioisomeric Side Chains Yielding m/z 58.

However, the high resolution capabilities of capillary GC coupled with the limited number of compounds (a total of five for the methamphetamines having an unsubstituted aromatic ring) can solve the issue in this case. Aromatic ring substitution makes this issue much more

17 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

challenging in forensic drug analysis. When the number of mass spectral equivalent isomeric substances is relatively small, chromatographic separation and reference standard availability is not a major concern. However, the continued designer exploration of some drug categories will likely produce even greater numbers of regioisomeric and isobaric substances especially among the phenethylamines. As the number of compounds having mass spectral equivalence increases so does the challenge of specific identification via chromatographic resolution and other analytical methods.

Major Fragment Ions for Substituted Methamphetamines

18 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

The results of this project allow the forensic analyst to differentiate among most

of the regioisomeric and isobaric equivalents of MDMA and minimizes the need for a

large number of reference standards of all these compounds.

I.2 Literature Citations and Review

I.2.1 Introduction

Designer drug exploration of the methylenedioxyphenethylamines has produced several drugs of abuse in recent years. These derivatives include 3,4- methylenedioxyamphetamine (MDA), 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-methylenedioxyethyl- (MDEA), 3,4-methylenedioxyphenyl-2-

butanamine (BDB) and 2-methylamino-1-(3,4-methylenedioxyphenyl) (MBDB).

The methylenedioxy-derivatives of amphetamine and methamphetamine represent the

largest group of designer drugs (Figure I.2-1).

19 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

R O 1

N O R2 R3

MDA: R1 = CH3, R2 = R3 = H

MDMA: R1 = CH3, R2 = CH3, R3 = H

MDEA: R1 = CH3, R2 = C2H5, R3 = H

BDB: R1 = C2H5, R2 =R3 = H

MBDB: R1 = C2H5, R2 = CH3, R3 = H

Figure I.2-1: Chemical structures of methylenedioxyphenalkyl amine derivatives.

20 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

MDMA, also known as eccstcy, with its stimulant and hallucinogenic effects in humans is the most commonly used derivative of this series and has become a major drug of abuse in recent years. In 2003, the estimated annual production of ecstacy worldwide was

100-125 tons and the estimated retail price for that drug alone was 63.74 billion US dollars for 1.4 billion tablets. In the same year eight million people were reported to abuse Ecstacy alone [UNODCCP, 2003]. In 2005, the reported consumption of ecstacy among US students indicated that 1.7 % of the eight grade students in the US had consumed the drug and this increased to 2.6% among tenth grade students and as high as

3.0 % among students in grade twelve [MTF, 2005]. About 0.1 % of the global population (age 15 and above) consume ecstasy and significantly higher ratios, 0.5 –

2.4%, have been reported from countries in the Oceania region, Western Europe and

North America. West Europe and North America together account for almost 85% of global consumption. Use of ecstasy, however, is increasingly spreading to developing countries as well.

Tablets or capsules are the most common way to administer MDMA, however the powder also can be snorted, smoked or—in rare cases—injected (TCADA 2002). Drug effects may last up to six hours and are known to include the production of profoundly positive feelings, empathy for others, elimination of anxiety, and extreme relaxation.

MDMA is also said to suppress the need to eat, drink, or sleep, enabling users to endure two- to three-day parties. For a while, it has been clear that many tablets sold as ecstasy do not always contain MDMA as an active substance and in many cases these tablets are notoriously impure [Ecstasy Data, 1996-2006]. Ecstasy tablets are prepared in clandestine laboratories and, during most of the last decade; Western Europe has been the world’s

21 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

major manufacturing region. The most frequently mentioned country of origin was

Belgium followed by Germany, the UK, Spain and the USA. The most frequently mentioned source countries located in Eastern Europe were the Baltic countries, Poland and Belarus. China, Indonesia and Thailand were the most frequently reported source countries located in Asia. In Africa, the Republic of South Africa, and in South America,

Colombia, were identified as source countries for ecstasy [UN ODCCP, 2003].

The goal of clandestine manufacturers is often to prepare substances with pharmacological profiles that are sought after by the user population. Clandestine manufacturers are also driven by the desire to create substances that circumvent existing laws. In Europe, as a result of the substance-by-substance scheduling approach, the appearance of new substances cannot be immediatley considered as illicit drugs. This offers room for clandestine experimentation into individual substances within a class of drugs with similar pharmacological profiles, perhaps yielding substances of increased potency. In the USA, continued designer exploration has resulted in legislation

(Controlled Substances Analog Act) to upgrade the penalties associated with clandestine use of all compounds of a series. Thus, identification of new MDA derivatives and other designer drugs is essential and a significant task for forensic laboratories.

I.2.2 Analytical Methods Used to Identify and Separate 3,4-MDMA

I.2.2.1

I.2.2.1.1 Mass spectrometry

Gas chromatography-mass spectrometry (GC-MS) is the main tool used for the detection and identification of unknown drugs in forensic and other drug screening laboratories. The mass spectra of 3,4-methylenedioxyamphetamines are characteristic and 22 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

can be used for differentiation from other phenethylamines [Noggle et al., 1988]. The

electron impact (EI) mass spectra for 3,4-methylenedioxyamphetamines exhibit weak to extremely weak molecular ions which, in some cases, may not be evident without computer enhancement. The base peaks result from the alpha cleavage involving the

carbon-carbon bond of the ethyl linkage between the aromatic ring and the amine

nitrogen producing the products shown in Scheme I.2.2-1. Furthermore a peak at m/z

135, which corresponds to methylenedioxybenzyl cation, is characterstic for these

compounds.

Unfortunately, the EI technique is often insufficient, alone, to discriminate

between structurally similar phenethylamines. The amine dominated fragmentation

reactions in these compounds often yields low mass fragments of similar mass and little

(if any) molecular ion species. The differentiation of these compounds is only achieved

by means of derivatization and chromatographic methods. Borth et al., reported

regioisomeric differentiation of 2,3- and 3,4-methylenedioxyphenalkylamines by using

collision-induced dissociation (CID) mass spectrometry under EI and chemical ionization

(CI) [Borth et al., 2000].

In a recent study, [Sachs and Woo, 2007] described the use of the low mass

region between mass 39 and 58 for differentiation between methamphetamine and its four

possible regioisomers. All five regioisomeric phenethylamines yield m/z 58 as the imine base peak therefore the additional two carbons of the side chain are bonded to the

fragment imine species. The reported method [Sachs and Woo, 2007] for differentiation

between the compounds uses m/z 39 as a reference ion and compares its relative

abundance to the ions at m/z 41, m/z 42 and m/z 56. The relative abundance of each of

23 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

the three ions (m/z 41, 42 and 56) was characteristic for each of the five side chain

regioisomers. The use of the m/z 39 as a pseudo-internal standard was platform

independent and reported to be consistent among numerous published reports on similar

compounds [Sachs and Woo, 2007].

O

O m/z = 163

O O EI

HN 70ev HN NH O O R R R R m/z H 44 CH3 58 C2H5 72 CH2 O C3H7 86

O m/z = 135

Scheme I.2.2-1: Mass fragments (EI) of 3,4-methylenedioxyamphetamines.

Methamphetmaine was the only one of the five regioisomeric amines which showed both m/z 41 and m/z 56 in greater abundance than m/z 39. The mechanistic fragmentation process for the formation of each of these diagnostic low mass ions was described in detail. However, the disadvantage of the method is the relatively low intensity of these low mass ions and the lack of a unique and characteristic ion for each of the regioisomeric side chains (i.e. all five compounds show fragment ions at m/z 39, 41,

42 and 56 and differentiation is based on the relative abundance of these ions).

24 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

I.2.2.1.2 Nuclear magnetic resonance (NMR)

NMR is a nondestructive flexible technique that can be used for the simultaneous

identification of pure compounds and even mixtures of compounds in one sample. Its

advantages, compared to GC-MS techniques, include stereochemical differentiation and

the capability to analyze nonvolatile compounds. However, the lack of use in forensic

laboratories can be attributed to the high cost of instrumentation and the poor sensitivity

of NMR. The chemical shift data with proton assignments, appropriate proton-proton J-

coupling as well as 13C-NMR shift assignments for MDMA as the free base and

hydrochloride salt in deuterochloroform has been reported [Dal Cason et al., 1997].

Solid state NMR also can be used for analytical purposes in much the same way as

solution NMR. The observed chemical shifts however differ in the solution and solid

states because of conformational freezing and packing effects. Lee et al. reported the

differences in chemical shifts of the solid state NMR and solution NMR for MDMA [Lee

et al., 2000]. This study described the differences between chemical shifts of

MDMAHydrochloric acid in ecstasy tablets and pure crystals.

I.2.2.1.3 Infrared (IR) spectroscopy

The absorption of IR radiation is also considered one of the non-destructive

techniques that can be used for the identification of organic molecules. The region from

1250 to 600 cm-1 is generally classified as the “fingerprint region” and is usually a result of bending and rotational energy changes of the as a whole. However since the clandestine samples are usually impure, overlapping absorptions of different molecules

25 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

present in the sample becomes a possibility. Hence, this region is not useful for

identifying functional groups, but can be useful for determining whether or not samples

are chemically identical. Common absorptions for 3,4-methylenedioxyamphetamines

were reported [Young, 2000]. Because of the polymorphic crystalline structure of the

hydrochloride salt compared to the base form, different infrared spectra were determined

for MDMA hydrochloride alone [Shulgin, 1986]. Near infrared (NIR) spectroscopy

(1100-2500 nm) offers a possibility for fast and nondestructive screening of ecstasy tablets. Modern NIR equipment is portable and easy to handle so that confiscated samples

can be measured on the spot and in real time. It has been shown that differentiation of

placebo, amphetamine and ecstasy samples is possible [Sonderman and Kovar, 1999].

Infra red detector coupled with GC also had significant application in the

identification of controlled substances in presence of their isomers. Generally isomers

other than optical isomers yield different IR spectra. Diastereomers resulting from two or

more chiral centers also exhibit different infrared spectra [Lanig et al, 2003].

Polymorphism in the solid phase can yield variations in the infrared spectrum of an

individual compound. Analytes in the solid phase can crystallize in different ways,

allowing for different crystal forms and different intermolecular interactions resulting in

significant variability in the IR spectrum of an individual compound [Lanig et al, 2003].

GC-FTIR spectroscopy is characterized by scanning quickly enough to obtain IR spectra

of peaks eluting from the capillary columns. Thus, this technique combines the separation

power of GC with the identification power of IR and is not affected by polymorphism

since the IR spectra are obtained in the vapor phase. GC-IR and MS have been

successfully used for the identification of some amphetamine isomers [Duncan and

26 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Soine, 1988]. The GC-IR Spectra of methamphetamine and phentermine have been

previously reported [Kempfert, 1988] along with other non-phenethylamine forensic compounds.

I.2.2.1.4 Raman spectroscopy

Raman spectroscopy also has been used to study ecstasy tablets [Bell et al., 2000a].

The use of far-red (785 nm) excitation reduces interfering background luminescence and

therefore the level of fluorescence background, even in untreated samples, is sufficiently low which makes it possible to obtain good quality data in reasonable times. It was shown that Raman methods can be used to distinguish between ecstasy analogs and the compounds can be identified even in a mixture with bulking agents in ecstasy tablets. The spectra can also be used to identify bulking agents, the relative concentration of drug to bulking agent and the degree of hydration of the active compounds. Bell et al. found that

composition profiling by Raman methods is a fast and effective method of discriminating

between ecstasy tablets manufactured in different ways and with different drug feed

stocks [Bell et al., 2000b]. Recently a surface-enhanced Raman scattering (SERS)

spectroscopy method was developed for a rapid determination of MDMA in illicit

samples [Sagmuller B. et al., 2001].

I.2.2.1.5 Ultra violet (UV) spectroscopy

The 3,4-methylenedioxyphenyl group is a strong chromophore in the UV range

with two major absorption bands at 285 nm and 235 nm range with the absorptivity

slightly higher at 285 nm [Noggle et al., 1987]. Because of their common chromophore, a

27 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

variety of 3,4-methylenedioxyamphetamines and 3,4-methylenedioxyphenyl-2-

butanamines show similar UV absorption properties and therefore are not discriminated

by UV-spectroscopy [Clark et al., 1995].

I.2.2.2 Chromatography

Chromatography has played a key role in forensic drug separation and identification over the past 35 years. Gas chromatography (GC) coupled with several detection methods such as flame ionization (FID), nitrogen phosphorus (NPD), electron capture (EC), and mass spectrometry (MS) has been used for the analysis of different N-substituted

analogues of 3,4-methylenedioxyamphetamines. The determination of MDMA, MDA

and MDEA in biological samples has mainly been carried out using GS-MS [Clauwaert

et al., 2000; Peters FT et al., 2005]. Actually, GC-MS is considered the method of choice

in forensic laboratories. High-performance liquid chromatography (HPLC) with different

detectors is another often applied technique in the determination of N-substituted analogs

of 3,4-methylenedioxyamphetamines. Most of the literatures describe the identification

and quantitative determination of MDA, MDMA, and MDEA, and their metabolites in

biological samples. Derivatization is mainly required in the analysis of biological

samples to improved sensitivity and selectivity, while such a technique is not usually

applied in the analysis of non-biological samples such as drug forms.

28 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

I.2.2.2.1 High-performance liquid chromatography (HPLC)

I.2.2.2.1.1 Analysis of biological samples.

The determination of MDA, MDMA and MDEA in biological samples has been

done by HPLC with various detectors, such as ultraviolet (UV), diode array detection

(DAD), fluorescence (FL), electrochemical (ED), mass spectrometry (MS), and mass

spectrometry –mass spectrometry (MS-MS) and these studies are reviewed in Table I.2-1.

Table I.2-1: HPLC methods to separate 3,4-methylenedioxyamphetamines from

biological matrices.

Separated compounds Matrix Column Detector Reference

MDA, MDEA, Kromasil 100 Concheiro et al. MDMA, MBDB Oral fluids FL C8 2005

De Costa JL et MDA, MDEA, MDMA urine octadecyl C FL 18 al., 2004 R-MDA, S-MDA, R-HME, S-HME, Plasma Buechler J et al. chiral-CBH FL R-MDE, S-MDE urine 2003

MDA, MDMA, MDEA, amphetamine, plasma Hypersil BDS Wood M. et al. methamphetamine, MS-MS oral fluids C 2003 18

Blood, urine, MDMA, MDA, Hypersil BDS Mortier KA et postmortem MS amphetamine phenyl al., 2002 tissue R-MDA, S-MDA, ChiralDex, R-MDMA, S-MDMA, Brunnenberg and plasma LiCrospher 60 FL R-MDEA, S-MDEA Kovar, 2001 RP-select B

MDA, MDMA, blood, Hypersil BDS Clauwaert et al., FL MDEA vitreous C18 2000

29 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

humor, urine

MDA, MDEA, MDMA, MBDB, Superspher Bogusz et al., 2-CB and some serum 100 APCI-MS 2000 phenethylamines RP 18

MDA, MDMA, Tagliaro et al., MDEA hair PLRP-S FL 1999

amphetamine, methamphetamine, Silica column UV- Talwar et al., MDA, MDMA, urine (APEX) visible 1999 MDEA

MDA, MDMA, LiChrocart-Li- urine, serum, Mancinelli et al., MDEA, MBDB Crospher 100 FL saliva 1999 RP-18 amphetamine, methamphetamine, Superspher APCI- Bogusz et al., MDA, MDMA, serum Select B a MS, 1997 MDEA ECOcart DAD/UV

MDA, MDMA plasma, Spherisorb Helmlin et al., DAD urine ODS-1 1996 MDA, MDMA, Whatman Michel et al., MDEA whole blood silica ED 1993 Partisphere

I.2.2.2.1.2 Analysis of non-biological samples.

Reversed phase LC is the main technique used for separation and quantitation of the active substances, usually 3,4-methylenedioxy-, in ecstasy tablets. Usually the column of the choice is conventional C18 or a base-deactivated C18 stationary phase

(Table I.2-2). Mancinelli et al. have developed a HPLC-fluorimetric procedure suitable for different matrices, dosage forms and biological samples, to determine MDA, MDMA,

MDEA, and MBDB [Mancinelli et al., 1999]. This procedure was carried out in basic

30 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

isocratic conditions and because of the high pH (11.4) the analytes are non-ionized. The

analysis time is less than 10 min and the first eluting compound is MDA (4.94 min)

followed by MDEA (6.77 min), MBDB (7.53 min) and last eluting one is MDMA (9.50

min).

Sadeghipour and Veuthey also reported the use of fluorimetric detection in

determination of MDA, MDMA, MDEA, and MBDB [Sadeghipour and Veuthey, 1997].

The selectivity of the method was verified not only with common substances, which can

appear in seized tablets, but also with some drugs of abuse such as , ,

amphetamine, methamphetamine, etc. The selectivity of the method is based on that only

methylenedioxylated amphetamines are natively fluorescent and therefore detectable. The

optimal mobile phase condition was determined as 20 mM NaH2PO4 solution (adjusted to pH 3.8)- (85:15, v/v). Under these conditions, the analytes were ionized and analysis time was less than 6 min. The elution order was MDA, MDMA, MDEA and the last eluting compound was MBDB.

In addition, Sadeghipour et al. have developed a reversed-phase LC method with

UV detection for separation and quantitation of five amphetamines (amphetamine, methamphetamine, MDA, MDMA, and MDEA) and ephedrine in the presence of adulterants in illicit drugs [Sadeghipour et al., 1997]. The comparison of a regular reversed phase column (RP18 Nucleosil 100) and a base-deactivated column (RP18-AB

Nucleosil 100) was demonstrated and as a result, the base-deactivated phase gave higher efficiency and lower peak asymmetry and capacity factors which allowed a rapid separation of amphetamines with good resolution. The mobile phase composition was optimized by studying the influence of pH, buffer composition and the organic solvent

31 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

type. The best results were obtained with acetonitrile concentrations between 7 and 10% and with phosphate buffer (pH adjusted to between 3.4 and 3.8).

The reversed phase separation of N-alkyl MDAs has been achieved on a C18 stationary phase and a ternary mobile phase [Noggle et al., 1987 and 1988]. The ternary mobile phase consisted of pH 3 phosphate buffer, acetonitrile, and containing

triethylamine. The use of triethylamine as a competing base (silanophile) was necessary

on Bondapak C18 stationary phase to prevent peak tailing.

Table I.2-2: HPLC methods to separate 3,4-methylenedioxyamphetamines from non-biological matrices.

Separated compounds Column Detector Reference MDA, MDMA, MDEA, LiChrocart-LiCrospher Mancinelli et al., FL MBDB 100 RP-18 1999 MDA, MDMA; MDEA; Sadeghipour and FL MBDB Veuthey, 1997 MDA, MDMA, MDEA, RP18 Nucleosil 100, Sadeghipour et al., and other RP18-AB Nucleosil FL 1997 phenethylamines 100 MDEA, MDMMA, Bondclone C UV Clark et al., 1996 MBDB, MDP-3-MB 18 MDA, MDMA, MDEA, Bondclone C UV Clark et al., 1995a MDMMA 18 BDB, MBDB, MDP-2- EB, MDP-2-MMB, Bondclone C18 UV Clark et al., 1995a MDP-2-OHB MDP-3-B, MDP-3-MB MDP-3-EB, Bondclone C UV Clark et al., 1995a MDP-3-MMB, 18 MDP-3-OHB MDMA, BDB, Bondclone C UV Clark et al., 1995a MDP-3-B 18

32 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

MDA, MDMA, Nucleosil C UV Valaer et al., 1990 NOHMDA 18 MDA, MDMA, Deltabond C UV Valaer et al., 1990 NOHMDA 8 MDA, MDMA, MDMMA, MDEA, N- isopropyl MDA, Bondapak C18 UV Noggle et al., 1988 N-n-propyl MDA, NOHMDA MDA, MDMA, MDEA, N-isopropyl MDA, N-n-propyl MDA, Bondapak C18 UV Noggle et al., 1987 N-isobutyl MDA, N-n-butyl MDA

The elution order of the N-alkyl MDAs is based on the relative lipophilicity of the

derivatives and thus retention increases with the size of the alkyl chain on the nitrogen.

The N,N-dimethyl MDA (MDMMA) elutes before N-ethyl MDA (MDEA), and the

branched isopropyl derivative elutes before N-n-propyl MDA [Noggle et al., 1988].

Under these conditions the N-hydroxy MDA (NOHMDA) has the highest retention (25

min) which has been explained by higher polarity and lower basicity of the compound

compared to the other N-alkyl MDAs. The pKa value for NOHMDA has been determined

by titration to be 6.22, which is much lower than the pKa values of other N-alkyl MDAs

(cirka 10) [Valaer et al., 1990]. The separation of NOHMDA from MDA and MDMA was improved by using a Deltabond C8 stationary phase which enabled the separation

without the need for competing base and in a shorter analysis time (10 min) [Valaer et al.,

1990].

Clark et al. reported the separation studies of N-substituted MDAs, N-substituted-2- butanamines and N-substituted-3-butanamines [Clark et al., 1995a]. The separation of the compounds was accomplished using a C18 stationary phase (Bondclone C18) with an

33 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

acidic mobile phase. The elution order under these conditions was according to the size

of the N-substituent. The N-substituted MDAs eluted in the same order as previously;

MDA (5.08 min), MDMA (5.87 min) and MDEA (6.68 min). The elution order of N-

substituted-2-butanamines and N-substituted-3-butanamines was similar. The three-

carbon side chain propanamines (MDAs) had lower capacity factors than the 2-and 3-

butanamines when comparing compounds with identical N-substituents. In addition, 3-

butanamines display higher capacity factors than the 2-butanamines of the same N-

substituent in every case. When compounds with the same molecular weight as MDMA

were compared, it was found that MDMA eluted first, followed by BDB and the last

compound to elute was MDP-3-B [Clark et al., 1995a]. The separation of compounds

with the same molecular weight as MDEA was also studied under the same conditions

and the results are shown in Table I.2-3 [Clark et al., 1996].

Table I.2-3: Reversed phased LC separation of MDEA and its regioisomers.

Compound Rt (min) MDMMA 7.93

MDEA 8.77

MBDB 10.91

MDP-3-MB 12.60

34 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

I.2.2.2.2 Gas chromatography (GC)

I.2.2.2.2.1 Analysis of biological samples.

Publications on GC procedures with different detectors used for the determination

of 3,4-methylenedioxyamphetamines from biological samples are reviewed in Table I.2-

4. A mass spectrometer is the most specific detector for drug testing. Several manuscripts

describe drug testing using GC with less specific detectors. For example Drummer et al.

identified amphetamine, methamphetamine, MDMA, MDA, and other drugs of forensic

interest in blood using GC-NPD [Drummer et al., 1994]. In addition, the analysis has

been performed by a dual channel GC combined with a NP and an EC detector [Lillsunde

et al., 1996]. Ortuño et al. stated that when analyzing plasma samples with GC-NPD,

good chromatographic separation and adequate sensitivity of underivatized compounds

can be achieved but the same approach is not applicable for urine [Ortuño et al., 1999].

When GC-MS is used for screening blood samples, the selected ion monitoring (SIM) mode is often applied [Marquet et al., 1997].

Table I.2-4: GC procedures for the identification and/or quantification of 3,4-

-dioxy amphetamines from biological samples.

Separated compounds Matrix Column Detector Reference

Enantiomers of blood HP5-MS MS(EI) Peters FT et al., 2005 MDEA, MDMA, MDA Enantiomers ofMDA, MDMA, MDEA, urine MS(EI) Paul BD et al., 2004 amphetamine, methamphetamine MDMA, MDEA hair DB5-MS MS (SIM) Girord and Staub, 2000 MDA, MDMA, serum DB5-MS MS (SIM) Weinman et al., 2000 MDEA, MBDB

35 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

MDMA and its plasma, metabolites (MDA, Ultra-2 NPD Ortuño et al., 1999 urine HMMA, HMA) R and S-MDMA and its chiral urine DB5-MS MS (EI, PCI) deBoer et al., 1997 metabolites (MDA, HMMA, HMA) MDA, MDMA, MS (EI, MDEA, amphetamine, blood HP5-MS Marquet et al., 1997 SIM) methamphetamine MDA, MDMA, MS (EI, CI, MDEA, amphetamine, urine SPB-5 Dallakian et al., 1996 SIM) methamphetamine MDA, MDMA, MS (EI, urine FSC HP-5 Kronstrand, 1996 MDEA, MBDB SIM) MDA, MDMA, amphetamine, blood FSC HP-5 NPD, ECD Lillsunde et al., 1996 methamphetamine, etc. MDA, MDMA, urine HP1 MS (SIM) Maurer, 1996 MDEA, BDB, MBDB MDA, MDMA, amphetamine, blood FSC BP-5 NPD Drummer et al., 1994 methamphetamine MS (CI, MDA, MDMA, MDEA urine FSC DP-5 Lim et al., 1992 SIM)

I.2.2.2.2.2 Analysis of non-biological samples.

O’Connell and Heffron established a GC-MS procedure to determine the principal amphetamines, MDMA, MDEA, MDA, cocaine and pharmacologically active impurities in ecstasy tablets [O’Connell and Heffron, 2000]. The tablets were ground into powders and dissolved in . The column used was a HP-1 fused-silica capillary column column (60 m x 0.25 mm id) with a 1 m film thickness of methylsilicone.

Lillsunde and Korte have reported a method for analyzing 12 ring and N--derivatives in body fluids or seized materials by GC combined either with

36 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

MS, EC or NP detector [Lillsunde and Korte, 1991]. GC-MS was used for identification

with a packed column, 2% SP-2110 / 1% SP-2510. GC-ECD and GC-NPD was used for

quantitation with a fused silica capillary column, SE-54. Derivatization was done with

heptafluorobutyric anhydride and then most of the 12 amphetamines examined were

separated and their retention times are listed in Table I.2-5. Only MDEA and 2,5-

dimethoxy-4-ethylamphetamine as well as 3,4,5- and 3-methoxy-

4,5-methylenedioxyamphetamine co-eluted. On the other hand, the mass spectra are

characteristic and can be used to distinguish these compounds from each other.

Table I.2-5: Retention times (min) of HFBA derivatives of amphetamines on packed

and capillary columns [Lillsunde and Korte, 1991].

R R Compound (HFBA-derivative) t t (packed column) (capillary column) amphetamine 3.3 2.74 methamphetamine 3.8 3.61 N-ethylamphetamine 4.1 3.95 4-methoxyamphetamine 5.8 4.77 MDA 7.5 5.77 2,5- 6.9 6.24 MDMA 7.5 6.87 2,5-dimethoxy-4-ethylamphetamine 7.8 7.23 MDEA 7.8 7.25 3,4,5-trimethoxyamphetamine 8.8 7.76 3-methoxy-4,5-methylenedioxyamphetamine 8.8 7.77 4-bromo-2,5-dimethoxyamphetamine 10.2 8.70

37 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Gas chromatographic separation of MBDB, MDEA, N,N-dimethyl-3,4-

methylenedioxy-amphetamine (MDMMA) and N-methyl-1-(3,4-methylenedioxyphenyl)-

3-butanamine (HMDMA) has been achieved on a 12 m x 0.20 mm id methylsilicone column (HP-1) [Noggle et al., 1995]. These compounds have the same molecular weight and similar retention properties (Table I.2-6). HMDMA has the highest retention time and the other three compounds elute over approximately 0.25 minutes with MDEA and

MDMMA eluting before MBDB. In this system compounds having the C3 carbon side

chain attached to the aromatic ring elute before the two aryl-C4 butanamines.

The use of mass spectrometry as a detector does not provide significant data for

differentiation among MDEA, MBDB and MDMMA since these regioisomeric

compounds also yield regioisomeric fragment ions of equal mass. HMDMA can be easily

distinguished from the other three compounds because the difference in mass spectrum

produced by substitution of the methylamino group at the 3-position of the butanamine

side chain. Pentafluoropropionylamide (PFPA) derivativatization of MDEA, HMDMA,

and MBDB, was used to improve mass spectrometric differentiation [Clark et al., 1996].

The GC analysis of the three PFPA derivatives showed slightly higher retention for

derivatized compounds and they eluted in the same order as underivatized compounds.

Tertiary amines such as MDMMA do not form stable PFPA-derivatives and therefore it

can be easily identified since the mass spectrum remains unchanged after acylation with

PFPA.

38 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Table I.2-6: GC separation of MDEA, MDMMA, MBDB and HMDMA.

Compound Structure Rt

O MDEA HN 7.23 O

O MDMMA N 7.35 O

O MBDB HN 7.50 O

HMDMA O N 7.68 H O

I.2.3 General Problems for Identification and Separation.

Regioisomerism at the aromatic ring and the alkyl side-chain of the methylenedioxyalkylamines produces a variety of compounds that have very similar

analytical properties. The methylenedioxy ring can be fused to the aromatic in a 2,3- or

3,4-pattern, yielding regiosiomerism of the aromatic portion of the molecule.

Identification of 2,3-methylenedioxy-phenalkylamines is of importance to forensic chemists, although those compounds are not as likely to appear on the clandestine market. Alkyl side-chain regioisomerism is most significant when imine fragments of equivalent mass and similar abundance appear in the mass spectra of these compounds.

Some of the alkyl side-chain regioisomers can be differentiated by derivatization [Clark et al., 1995b], but for example 2,3- and 3,4-methylenedioxyphenalkyl-amines cannot be differentiated by derivatization [DeRuiter et al., 1998].

39 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Further more there are other compounds that do not necessarily contain the methylenedioxy ring, however they constitute indirect regioisomeric and isobaric substances related to the drug of abuse 3,4-MDMA. These substances have the same molecular weight and are capable of producing mass spectra similar to 3,4-MDMA. The co-elution of one or more of these substances with MDMA remains a possibility.

Additionally the lack of reference materials for these substances complicates the identification procedure.

I.2.3.1 Differentiation of regioisomeric 2,3- and 3,4-methylenedioxy phenalkyl amines and isobaric substances related to MDMA and MDEA by chromatographic methods.

The analytical properties of the 2,3-MDAs, such as 2,3-MDA, 2,3-MDMA, 2,3-

MDEA, and 2,3-MDMMA, has been compared to the corresponding 3,4-MDAs [Casale et al., 1995]. The EI mass spectra of 2,3- and 3,4-MDAs showed fragments of the same mass with only slight differences in relative intensity. The distinguishable difference is the relative abundance of ions at m/z 135 and m/z 136. Such differences cannot be considered significant from the analytical point of view, in particular when the analytes must be detected in a chromatographic run and the mass spectra of the compounds of interest show interferences from co-chromatographing substances. Gas chromatographic studies of the regioisomers on the methylsilicone stationary phase showed that all four

2,3-MDAs were easily resolved from its respective 3,4-regiosiomers and their retention times were significantly less than the corresponding 3,4-substituted MDA. Naturally, the regioisomeric MDAs could each be differentiated by proton NMR via variances in both chemical shifts and overall peak patterns. However, NMR is not a technique, which is

40 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

commonly used in the forensic laboratories and therefore the differentiation has usually

depended on chromatographic and mass spectrometric methods.

DeRuiter et al. studied liquid chromatographic and mass spectral methods to differentiate 2,3- and 3,4-methylenedioxyphenyl ring substitution regioisomers of

MDMA, BDB, MDEA, and MBDB [DeRuiter et al., 1998]. The derivatization of the side-chain regioisomers to pentafluoropropionylamide (PFPA) derivatives enabled differentiation by mass spectroscopy. The fragmentation of the bond between the alkyl

side-chain and the nitrogen in the PFPA-derivatized amines yielded prominent ions that

identified the nature of the hydrocarbon chain attached directly to the aromatic ring. The reversed-phase LC system consisting of a C18 stationary phase (Hypersil Elite C18) and a

mobile phase of 30% methanol in pH 3 phosphate buffer gave an excellent separation of

regioisomeric MDMA and BDBs. The first eluting compound was 3,4-MDMA followed

by 2,3-MDMA and then 3,4-BDB and last eluting compound was 2,3-BDB. A similar

elution order was obtained when regioisomeric MDEA and MBDBs were separated on

the same stationary phase but by using a different mobile phase composition. The

optimum isocratic separation was achieved when the mobile phase was 10% acetonitrile

in pH 3 phosphate buffer. The two compounds with the C3 alkyl chain attached to the

aromatic ring eluted first; the 3,4-MDEA eluted before the 2,3-MDEA, and the two

compounds with C4 alkyl group showed greater retention. The observed elution order was

the same; first are eluting compounds with shorter alkyl chains attached to the aromatic ring and secondly, the 3,4-regioisomers elute before the 2,3-regioisomers, for several C18 stationary phases in both methanol- and acetonitrile-modified acidic aqueous systems. In addition, four regioisomers of 3,4-MDMA and 3,4-MDEA were analyzed by GC on a

41 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

methylsilicone stationary phase under temperature-programmed conditions. 3,4-MDMA

and its regioisomers eluted over a 0.6 min time window from 6.7 to 7.3 min and 3,4-

MDEA and its regioisomers produced an elution range of 0.5min (7.0 to 7.5 min). The

elution order of the compounds was not mentioned.

Aalberg et al. reported the use of Dry Lab software for the separation of direct and indirect regioisomers related to the drug of abuse 3,4-MDMA and 3,4 MDEA using

LC. The Dry lab software uses initial four runs under identical conditions using two

different gradient times and two different temperatures. By entering the collected

retention data along with column dimensions, mobile phase composition, flow rate and

column efficiency, the software will generate three dimensional resolution map and suggest the best conditions for separating the desired compounds in a physical mixture.

Aalberg reported the 10 direct side chain and ring regioisimers of MDMA

including N-ethyl-3,4-methylenedioyphenylethanamine, N,N-dimethyl-3,4-methylene-

dioxyphenethanamine, 3,4-methylenedioxyphetramine, 3,4-methylenedioxyBDB and their 2,3- ring regioisomers. The HPLC study showed the rentention time increase with

side chain length of the uninterrupted hydrocarbon attached to the aromatic ring. Base

line separation of these compounds was carried out on an XTerra column at 40C with tG

of 90 min (initial 3% methanol, final 30% methanol in pH 3 phosphate buffer). On

Supelcosil ABZ+Plus column a better sepration was obtained at 41C with a tG of 230

min (initial 3% methanol, final 40% methanol in pH 3 phosphate buffer). Dry lab helped in determining the optimum isocratic separation of these compounds on a Supelcosil

ABZ+Plus with 2% methanol and pH 3 phosphate buffer at 45C [Aalberg et al. 2003].

42 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

The indirect regioisomers of 3,4-MDMA included in the Aalberg study were p-

ethoxymethamphetamine, 1-p-ethoxyphenyl)-2-butanamine, 4-methoxy-3-methylmeth-

amphetamine, 1-(3-methyl-4-methoxyphenyl)-2-butanamine, ,-dimethyl-1-(3-methyl-

4-methoxyphenyl)-2-ethanamine, N-methyl-1-(2-methoxyphenyl)-1-methyl-2-propan-

amine, N-methyl-1-(3-methoxyphenyl)-1-methyl-2-propanamine, N-methyl-1-(4-

methoxyphenyl)-1-methyl-2-propanamine and p-methoxymethcathinone. The sepration

of these substances was only achieved on Supelcosil ABZ+Plus and XTerra columns,

when acetonitrile was used as an organic modifier in the mobile phase. Separations

conditions were gradient mobile phase with a gradient time of 20.90 min at 40C, starting

from 14% and ending at 26% acetonitrile in pH 3 phosphate buffer. It was very hard to get a base line separation for both N-methyl-1-(3-methoxyphenyl)-1-methyl-2- propanamine and N-methyl-1-(4-methoxyphenyl)-1-methyl-2-propanamine because of the similarity of their retention properties. The Supelcosil ABZ+Plus offered the best resolution of all the 19 compounds with the gradient mobile phase (initial mobile phase consisted of 3% acetonitrile and pH 3 phosphate buffer, and the final composition, 9.6% acetonitrile, was reached in 35 min) at room temperature [Aalberg et al. 2003].

Aalberg et al. also reported gas chromatographic separations for the above described substances. For the 2,3- and 3,4- regioisomers directly related to the drug of abuse MDMA, optimum separation was obtained using a 35% phenylmethylsilicone phase (DB35MS) and temperature programming of 1800C as intial temperature and an increase in rate of 0.3 0C/ minute. These conditions were determined by the retention

modeling software, Dry Lab [Aalberg et al., 2004].

43 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Other indirect ring and side chain regioisomers and isobaric substances related to

MDMA were separated on non polar Ultra 2 column (25 m, 0.2 mm, 0.33m) with a temperature program rate of 7.3C/min. The analysis time was decreased on a narrow pore column (Hp-5) by optimizing the temperature program through segmented temperature ramp using Dry Lab software. A base line separation of all the 19 direct, indirect and isobaric substances related to MDMA was not obtained in the study [Aalberg et al., 2004].

I.2.3.2 Differentiation of regioisomeric 2,3- and 3,4-methylenedioxyphen- alkylamines and isobaric substances by mass spectroscopic methods.

The underivatized methylenedioxyphenalkylamines give virtually identical EI mass spectra containing mainly intense immonium ions as mentioned earlier. The differentiation of some methylenedioxyphenalkylamines can be achieved by means of derivatization using various chromatographic methods. The use of tandem mass spectrometry (MS-MS) is reported to give additional information contained in the collision induced dissociation (CID) mass spectra of molecular ions using EI and especially CI [Borth et al., 2000a]. CID mass spectra are obtained by parent ions colliding with an inert gas during the passage through the reaction chamber of a tandem mass spectrometer.

In their study Borth et al. were able to differentiate 18 regioisomeric methylene- dioxyphenyl-2-propanamines and methylenedioxyphenyl-2-butanamines (Figure I.2-2).

The mixture of compounds was analyzed by GC on a methylsilicone stationary phase and

44 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

an insufficient separation was obtained. Several compounds (3a and 1c or 4a, and 3b

or 4b, 3c and 3d or 4c and 4d) co-eluted.

In general, the molecular ion CID mass spectra using EI were distinct, except in the

case of compounds 4e and 4f the molecular ions did not have sufficient intensity for

recording daughter ion mass spectra. The EI-CID mass spectra of all 2,3-

methylenedioxyphenethylamines derivatives (1a-d and 3a-d) are dominated by

+ immonium base peak ions with the general formula [CnH2n+nN] (m/z 44, 58, 72, etc.)

resulting from an -cleavage reaction. In contrast the EI-CID mass spectra of 3,4-

methylenedioxy isomeric compounds show significant or base peaks ions at m/z 136.

This signal was explained to be due to a rearrangement of nitrogen H to the

aromatic ortho position eliminating an imine or by a specific six-center H-rearrangement

of a -H- of the alkyl side chain to the aromatic ring eliminating a neutral enamine

[Borth et al., 2000a].

The CI-CID spectra of all ring substituted regioisomers generate a very intense or base peak ion at m/z 135 via cleavage of the benzyl bond by the charge of

cation [Borth et al., 2000b]. The 2,3-methylenedioxy isomeric compounds formed a

+ significant [C7H7O2] ion at m/z 123 with the mass of a protonated methylenedioxybenzene. The 3,4-methylenedioxy ring-substituted compounds do not

+ show this ion to a significant extent, but they show a significant homologous [C8H9O2] ion at m/z 137 by a formally benzylic bond cleavage. Therefore, the study of Borth et al using CI-CID mass spectrometry suggests that, the ion at m/z 123 indicates the 2,3-ring- substituted phenethylamine isomers and the ion at m/z 137 the 3,4-ring-substituted isomers.

45 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

O O O N N O R R R R 1 2 1 2

a: R1 = H; R2 = H a: R1 = H; R2 = H

b: R1 = H; R2 = CH3 b: R1 = H; R2 = CH3

c: R1 = H; R2 = C2H5 c: R1 = H; R2 = C2H5

d: R1 = CH3; R2 = CH3 d: R1 = CH3; R2 = CH3

1 2

O O O N N O R R R R 1 2 1 2

a: R1 = H; R2 = H a: R1 = H; R2 = H

b: R1 = H; R2 = CH3 b: R1 = H; R2 = CH3

c: R1 = H; R2 = C2H5 c: R1 = H; R2 = C2H5

d: R1 = CH3; R2 = CH3 d: R1 = CH3; R2 = CH3

e: R1 = H; R2 = n-C3H7

f: R1 = H; R2 = i-C3H7

3 4

Figure I.2-2: Chemical structures of 18 regioisomeric methylenedioxyphenyl-2- propanamines and methylenedioxyphenyl-2-butanamines [Borth et al., 2000a].

46 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

I.3 Statement of Hypothesis or Rationale for the Research

Analytical specificity in forensic drug analysis requires knowledge of all possible isomers in order to identify an individual compound and eliminate all other possibilities.

Knowledge of the properties of all the possible regioisomeric/isobaric substances is essential in order to specifically identify any one of these compounds. The precursor chemicals are available to synthesize any of these compounds and several have already appeared in clandestine drug samples. It is perhaps a matter of time until one appears which has GC retention properties and MS equivalence to MDMA or MBDB. The goal of this work is to have the data and methods for differentiation available to prevent misidentification at that future time.

47 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

II. Methods (Narrative Descriptions of the Experimental Design)

II.1 Synthesis Design

Synthetic Methods Not Available

48 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Synthetic Methods Not Available

49 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Synthetic Methods Not Available

50 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Synthetic Methods Not Available

51 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Synthetic Methods Not Available

52 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Synthetic Methods Not Available

53 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Synthetic Methods Not Available

54 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Synthetic Methods Not Available

55 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Synthetic Methods Not Available

Synthetic Methods Not Available

56 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Synthetic Methods Not Available

II.2 Methods (Synthetic materials):

Synthetic Methods Not Available

57 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

II.3 Analytical Methods

II.3.1 Instruments

GC-MS analysis was performed on two diggerent GC-MS. the first GC-MS is an

HP-5890 GC coupled with a HP-5970 mass selective detector (Hewlett Packard, Palo

Alto , CA) using Helium (grade 5.0) as carrier gas. The mass spectrometer was operated

on the electron impact (EI) mode using ionization voltage of 70 ev and a source

temperature of 230 oC [Instrument 1]. Samples were dissolved in HPLC grade acetonitrile (Fisher Scientific NJ, USA) and manually introduced (1 µL), individually and

in a physical mixture using a 10µL Hamilton syringe (Hamilton Co., Reno Nevada,

USA).

The Second GC-MS is GC–MS analysis was performed using an Agilent

Technologies (Santa Clara, CA) 7890A gas chromatograph and an Agilent 7683B auto

injector coupled with a 5975C VL Agilent mass selective detector. The mass spectral

scan rate was 2.86 scans/s. The GC was operated in splitless mode with a helium (grade

5) flow rate of 0.7 mL/min and the column head pressure was 10 psi (68.946 kPa). The

58 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

MS was operated in the electron impact (EI) mode using an ionization voltage of 70 eV

and a source temperature of 230 8C. The GC injector was maintained at 250 8C and the

transfer line at 280 0C [ Instrument 2]

GC–IRD studies were carried out on a Hewlett-Packard 5890 Series II gas

chromatograph and a Hewlett-Packard 7673 auto injector coupled with a Hewlett-

Packard 5965B infrared detector obtained from Analytical Solutions and Providers,

Covington, Kentucky. The vapor phase infrared detector (IRD) spectra were recorded in the range of 4000–550 cm_1 with a resolution of 8 cm_1 and a scan rate 1.5 scans/s. The

IRD flow cell temperature as well as the transfer line was 280 8C and the GC was

operated in the splitless mode with a carrier gas (helium grade 5) flow rate of0.7 mL/min and a column head pressure of 10 psi[ Instrument 3].

H1NMR for the identification of raction intermediates were collected for samples

dissolved in deuterated using a Brucker Avance 250 (250MHz) instrument

with the chemical shifts being reported as  ppm downfield from tetramethylsilane

[Instrument 4]

II.3.2 GC- Columns

Different capillary GC columns were evaluated throughout the course of this

work, however only columns showed best compromises between resolution and

analysis time are illustrated in Table II.1. All columns used were purchased from

Restek Corporation (Bellefonte PA, USA) and have the same dimensions, 30m x

0.25mm-I.d. column coated (fd) with o.25 µm. Inlet pressure was converted

according to the constant flow mode and the total flow was 60 ml/min. The

59 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

injection was in the split mode with an injector temperature at 250C except for

Rt-βDEXcst-TM, the injector temperature was adjusted to 200C as

recommended by the manufacturer.

Table II.1: List of columns used and their compostion.

Column Name Column Composition

Rtx-1 100% Dimethyl polysiloxane

Rtx-5 95% dimethyl-5%diphenyl polysiloxane

Rtx-35 65% dimethyl-35%diphenyl polysiloxane

Rxi-50 50% phenyl to 50% methyl polysiloxane

Rtx-200 trifluoropropyl methyl polysiloxane

14% cyanopropyl phenyl – 86 % Rt-βDEXcst-TM dimethylpolysiloxane

60 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

III. Results

During the course of this project we have prepared a large number of ring and side-chain

substituted phenethylamines and compared and evaluated the analytical properties of

these compounds. This work has included the 5 side chain isomers of 3,4- methylenedioxy ring system yielding the m/z 58 base peak in the EI-mass spectrum (3,4-

MDMA and the 4 side chain isomers as well as the equivalent 2,3-methylenedioxy series of compounds. Additional studies have characterized the 2-, 3-, and 4-methoxymeth- which can be considered indirect isomers since these compounds have the same elemental composition as the MDMA series.

A number of individual synthetic and analytical studies have evaluated the 2-, 3-, and 4- ethoxyphenethylamines as well as the 10 different ring substitution patterns for the methoxy-methyl-phenethylamines. Furthermore the 2-, 3-, and 4-methoxy-alpha-methyl- methamphetamines were prepared and evaluated as well.

The methamphetamine side-chain of every ring substitution pattern was prepared and evaluated in this study.

A series of all ten of the MBDB (m/z 72) side chain isomers was prepared and evaluated as well as of the more common side chains for several other ring substitution patterns.

Well over 90 compounds were evaluated in this project which allowed us to confirm specific structure property relationships for differentiation among most of these isomers.

The next chapters provide the details of specific studies as an example of each category of compounds evaluated in this project.

61 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Chapter 1 Mass Spectrometry and Gas Chromatographic Studies on Direct Regioisomers to 3,4-MDMA.

There are nine other methylenedioxy-substituted phenethylamines with the potential to produce a mass spectrum essentially the same as 3,4-MDMA, five of them being 2,3-methylenedioxy ring substituted regioisomers.

Mass spectral studies of direct regioisomers of 3,4-MDMA (methylenedioxyphenyl substituted side-chain regioisomers).

The mass spectra of the phenethylamine drugs of abuse including 3,4-MDMA are characterized by a base peak formed by an -cleavage reaction involving the carbon- carbon bond of the ethyl linkage between the aromatic ring and the amine. In 3,4-MDMA

(MW=193) the -cleavage reaction yields the 3,4-methylenedioxybenzyl fragment at mass 135/136 (for the cation and the radical cation, respectively) and the substituted imine fragment at m/z 58. Thus, the mass spectrum for 3,4-MDMA contains major ions at m/z 58 and 135/136 as well as other ions of low relative abundance.

There are nine other methylenedioxy substituted regioisomers (a total of ten compounds) of the 3,4-MDMA molecule (MW=193) which yield -cleavage fragments at m/z 58 and 135/136 during analysis by mass spectrometry (Scheme 1.1). The mass spectra in Figure 1.1 are for the ten possible direct regioisomers of the MDMA molecule.

The first five side chain regioisomers show the methylenedioxy-group fused to the aromatic ring in a 3,4-manner while in compounds 6 through10 the substitution is in the

2,3-manner. All compounds show the expected fragments (m/z 58 and 135), and in

62 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

addition, most of the compounds show the molecular ion at m/z 193. In a direct comparison of the 3,4-regioisomers versus the 2,3-regioisomers with the identical side chain, the major difference is the greater relative abundance of the radical cation at m/z

136 for the 3,4-substitution pattern in most cases.

Clark et al [1996, 1998] and Aalberg et al. [2000, 2003] in previous work have described the analytical properties of these unique direct regioisomeric equivalences to the drug of abuse 3,4-methylenedioxymethamphetamine. These results illustrated that the mass spectrum alone cannot be used to identify an individual compound within this group to the exclusion of all others. Their observations [Aalberg et al., 2000 and 2004] illustrated that 3,4-MDMA (3) and N-ethyl-2,3-methylenedioxyphenyl-2-ethanamine (7) co-eluted using some common gas chromatographic stationary phases and conditions.

However, additional studies [Aalberg et al., 2004] have identified capillary gas chromatographic phases and conditions for the complete resolution of compounds 1-10.

Optimum separation was obtained using a 35% phenylmethylsilicone phase (DB35MS) and temperature programming conditions determined by retention modeling software

(Dry Lab).

While these studies have shown that all ten compounds can be resolved, the lack of mass spectral specificity makes the specific identification of MDMA (with the exclusion of all other regioisomers) a significant challenge. The lack of available reference samples for all ten of these regioisomeric molecules further complicates the individual identification of any one of these substances. When other compounds exist with the potential to produce the same or nearly identical mass spectrum as the drug of interest, the identification by gas chromatography-mass spectrometry (GC-MS) must be

63 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

based primarily upon the ability of the chromatographic system to separate the

“counterfeit substance” from the actual drug of interest. If not, those substances co- eluting with the target drug in chromatographic systems could be misidentified as the target drug. Without the appropriate standards a thorough method validation is not possible, and thus co-elution of drug and non-drug combinations would remain a possibility. Furthermore, the ability to distinguish between these regioisomers directly enhances the specificity of the analysis for the target drugs of interest

CH2 O

C2H8 O m/z = 135 H2C C N 70ev O C2H8

O CN

MW = 193 m/z = 58

Scheme 1.1: General mass spectral fragmentation for the methylenedioxy regioisomers

of MDMA (compounds 1-10).

64 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Figure 1.1: Structures and mass spectra of methylenedioxy substituted side-chain regioisomers.

Structure of regioisomers Mass spectrum

Abundance

Average of 10.543 to 10.576 min.: 00050920.D (-) 55000 58 50000 O N 45000 40000 35000 O 30000 25000 20000 15000 1 10000 5000 77 135 42 51 88 178 65 105 117 148 163 193 0 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 m/z-->

Abundance

Average of 12.065 to 12.124 min.: 00050920.D (-) 58 35000

30000 O NH 25000

O 20000

15000

10000 2 136 5000 77 51 65 91 39 105 119 149 163 176 193 0 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 m/z-->

Abundance

Average of 10.673 to 10.721 min.: 00050920.D (-) 140000 58 130000 O 120000 110000 100000 NH 90000 O 80000 CH3 70000 60000 50000 40000 30000 3 20000 10000 77 5165 91 135 193 39 105 119 149 163 176 0 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 m/z-->

65 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Abundance

Average of 9.734 to 9.766 min.: 00050920.D (-) 160000 58

140000

O 120000 NH 100000 O 2 80000 60000 4 40000

20000 42 51 77 91 135 65 105 119 147 162 177 193 0 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 m/z--> Abundance

Average of 13.441 to 13.516 min.: 00050920.D (-) 30000 58

O 25000

20000 NH O 2 15000 10000 136 5 5000 77 41 51 106 164 65 91 121 147 176 193 0 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 m/z-->

Abundance

Average of 8.898 to 8.930 min.: 00050920.D (-) 58 30000

28000 O 26000 24000 O N 22000 20000

18000

16000

14000 12000 10000

8000

6000

6 4000

77 135 2000 42 51 88 178 105 65 117 147 161 0 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 m/z-->

Abundance

Average of 10.840 to 10.867 min.: 00050920.D (-) 58 90000

O 80000 O NH 70000 60000

50000 40000 30000 7 20000 10000 77 135 51 42 88 65 95 105 118 148 162 178 191 0 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 m/z-->

66 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Abundance

Average of 9.405 to 9.443 min.: 00050920.D (-) O 55000 58 50000 O 45000 40000 35000 NH 30000 CH 25000 3 20000 15000 10000 5000 77 42 51 135 8 65 89 95 105 118 148 162 178 192 0 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 m/z--> Abundance

Average of 8.380 to 8.428 min.: 00050920.D (-) 58

O 25000 O 20000

15000 NH2

10000

9 5000 42 51 77 91 65 105 119 135 148 160 193 0 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 m/z--> Abundance

Average of 11.622 to 11.660 min.: 00050920.D (-) 58 O 16000 O 14000 12000

10000

NH2 8000

6000

4000

2000 41 77 135 10 51 164 65 91 105 116 147 193 0 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 m/z-->

Mass spectral studies of perfluroacyl derivatives of 3,4- MDMA and its direct regioisomers

The perfluoroacylated derivatives of the eight primary and secondary amines

(Compounds 2-5 and 7-10) were prepared and evaluated for their ability to individualize the GC-MS properties of the compounds in this uniquely regioisomeric series and to maintain or improve chromatographic resolution. Of course, the two tertiary amines, compounds 1 and 6, would not form stable amide derivative.

67 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Acylation of the amines significantly lowers the basisty of nitrogen and can allow

other fragmentation pathways to play a more prominent role in the mass spectrum [F. W.

McLafferty et al, 1993]. The mass spectra for the eight pentaflouropropionyl and

heptflourobutryl amides are shown in Figures 1.2 and 1.3, respectively

From these spectra a common peak occurs at m/z 204 and 254 which corresponds

to the loss of 135 mass units from the molecular ions at 339 and 389 for PFPA and HFBA amides, respectively.

Figure 1.2: Mass Spectra of the PFPA derivatives of compounds (2-5) and (7-10).

Scan 530 (9.772 min): 110903-1.D Abundance 148

3000000

2800000

2600000 NC2F5 135 O 2400000

2200000 O O 2000000 1800000 a 1600000 1400000 1200000 1000000 339 800000 176 77 600000 119 204 400000 51 91 200000 42 160 220 244252 272 294 309 324 0 m/ z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

68 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Scan 494 (9.469 min): 110903-2.D Abundance 204

2000000 162

NCF O 2 5 1500000

135 O O 42 1000000 b

77 339 119 500000 51

91 147 176 220 241 259269282 300 324 0 m/z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

Scan 393 (8.305 min): 110903-3.D Abundance 204 H NCF O 2 5

O 140000 O

120000 c

100000 135 80000

339 60000 59

40000 176 41 77 20000 119 164 91 145 324 0 m/z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

69 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Scan 448 (8.935 min): 110903-4.D Abundance 135

200000 O C2F5

180000 NH 160000 176

140000 O

120000 O 339 100000 d 80000

60000

40000 41 77 204 51 119 20000 161 147 310 89 220 292 0 m/z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

Scan 460 (9.077 min): 110903-5.D Abundance 148 180000

160000 O O NC2F5 140000 339 176 120000 204 O

100000 e 80000

60000 135

40000 77 119 91 20000 51 41 160 220 0 m/z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

70 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice. Scan 431 (8.749 min): 110903-6.D Abundance 204

250000

O

O 200000 N C2F5

O 150000

162 f 100000 339

50000 42 119 135 51 77 91 147 177 220 0 m/z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

Scan 357 (7.881 min): 110903-7.D Abundance 204

100000 O

90000 O H N C2F5

80000

O 70000

60000 g 50000

40000 59

41 339 30000

20000 135 176 10000 77 119 164 91 146 324 0 m/z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

71 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

O

Scan 400 (8.385 min): 110903-8.D O Abundance 176 41

18000 HN C2F5

16000 O 14000 204 339 12000 h

10000

8000 135 6000 4000 79 2000 161 51 105 0 m/ z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

Figure 1.3: Mass Spectra for the HFBA derivatives of compounds (2-5) and (7- 10).

Scan 810 (13.125 min): 20304-4.D Abundance 148

800000

NcF O 3 7 700000

226 O 600000 O

254 500000 a 389

400000

300000

200000 169 6977 100000 42 105119 178 197 279 302 322 360374 0 m/ z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380

72 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Scan 887 (14.016 min): 30204-2.D Abundance 254 2000000

1800000

1600000 162

1400000 NCF O 3 7

1200000 O O 1000000 210 135 800000 b 42

600000 389 77 69 400000

200000 105 131 192 220 263 291 310 332 350 374 0 m/ z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380

Scan 722 (12.083 min): 20404-4.D Abundance 254

85000

80000

75000 H 70000 NCF O 3 7

65000

60000 O O 55000

50000

45000 c

40000 135 35000

30000 389 25000 59 20000 15000 176 10000 41 77 214 5000 169 105 119 374 0 m/z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380

73 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Scan 825 (13.292 min): 30204-4.D Abundance 135

600000

550000

500000 O C3F7

450000 NH 400000

350000 176 O

300000

O 250000

200000 d 389 150000 77 41 100000 254 69

50000 161 105 131 226 360 214 296302 330 361 0 m/ z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380

Scan 810 (13.125 min): 20304-4.D Abundance 148

800000 O

700000 O NC3F7

600000 226 O 254 500000 e 389

400000

300000

200000 169 6977 100000 42 105119 178 197 279 302 322 360374 0 m/ z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380

74 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Scan 776 (12.730 min): 12804-6.D Abundance 254

2000000

1800000

1600000 O

1400000 O N C3F7

1200000 162 O 1000000 210 f 800000 42 600000 389 400000 69 77 135

200000 105 119 192 220 263 291 313 339350 374 0 m/ z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380

Scan 665 (11.431 min): 12804-7.D Abundance 254 O 2200000 O H N C F 2000000 3 7

1800000 O 1600000 g 1400000

1200000

1000000

59 389 800000

600000

400000 42 77 135 176

200000 214 169 105119 374 226 277 295305320 350 0 m/ z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380

75 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

O

O Scan 734 (12.244 min): 12804-8.D Abundance 176

1200000 HN C3F7

1100000

O 389 1000000 254 h

900000

800000 135 41 700000

600000 500000

400000 77 69

300000 226

200000 161 105 131 100000 360

214 265280 311 330 370 0 m/z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380

These ions at m/z 204 and 254 is the PFPA and HFBA imine species likely formed from the alpha cleavage of the amide nitrogen to eliminate the 2, 3- and 3, 4- methylenedioxybenzyl radical, thus the m/z 204 and 254 ions in PFPA and HFBA amides are analogous to m/z 58 in the underivatized species because all these ions represent the

(M-135)+ species. The general fragmentation pattern and structures for the m/z 204 and

254 ions are shown in Scheme 1.2. The methylenedioxybenzyl cation at m/z 135 is a

fragment common to all the spectra in Figures 1.2 and 1.3. The decreased role for alpha

cleavage reaction in the fragmentation of these amides allows the formation of ions more

diagnostic of each individual side chain isomer. Acylation, and in particular the

perflouroacylation, weakens the bond between nitrogen and the alpha-carbon of the

substituted methylenedioxyphenethyl group, allowing the formation of charged

hydrocarbon species of increased relative abundance. These hydrocarbons of varying

76 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

mass significantly individualize the mass spectra and provide specific structure information.

Scheme 1.2: Formation of the (M-135)+ ions in the perfluoroacyl-derivatives of the regioisomeric amines.

The mass spectra in Figures 1.2 and 1.3 illustrate the role of hydrocarbon fragments at m/z 148, 162 and 176 in the electron impact mass spectral differentiation among these side chain regioisomers.

The spectra for the N-ethyl derivatives in Figures 1.2a, 1.2e and 1.3a, 1.3e) show a base peak at m/z 148 corresponding to the radical cation which occurs from rearrangement and subsequent fragmentation of the alkyl carbon to nitrogen bond of the phenethylamine side chain (Scheme 1.3).

77 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

R4 O R4 C HO C

H N R3 N R3 H H CH C R2 C C R2 C C R2 O O O R1 R1 R1

O O O

R1=R2=H, m/z=148 R1=H, R2=CH3, m/z = 162 R1=R2=CH3, m/z = 176 R1=H, R2=C2H5, m/z = 176

Scheme 1.3: Mechanism for the formation of the alkane radical cation in the

perfluoroacyl-derivatives of the regioisomeric amines.

This ion at m/z 148 would only occur for the N-ethyl regioisomer. The spectra in

Figures 1.2b, 1.2f and 1.3b, 1.3f show the 2,3- and 3,4-methylenedioxyphenylpropane hydrocarbon ion at m/z 162, identifying this molecules as the PFPA and HFBA derivatives of 2,3- and 3,4-methyelenedioxymethamphetamines, respectively. The proposed mechanism for the formation of the hydrocarbon fragment is illustrated in

Scheme 2.3. The spectra for the PFPA and HFBA derivatives of the primary amines 4, 5,

9 and 10 show ions at m/z 176 from the corresponding 2,3- or 3,4-methylenedioxyphenyl alkyl radical cation. This m/z 176 results from hydrogen rearrangement and subsequent fragmentation of alkyl carbon to nitrogen bond. The lower abundance of m/z 176 for the

2, 3- and 3, 4-methylenedioxyphentramines (compounds 4 and 9) may be attributed to steric inhibition of hydrogen transfer in the alpha, alpha-dimethyl substitution pattern.

78 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

While the ions at 148, 162, and 176 help to identify the side chain

regioisomers, one complicating factor in the PFPA derivatives for the N-

ethylphenethylamines (Figures 1.2a and 1.2e) is the appearance of an ion at m/z 176 in addition to the base peak at m/z 148. The 176 ion suggests a four carbon chain directly attached to the aromatic ring as occurs for the alpha-ethyl- and alpha, alpha-dimethyl- phenethylamines (Figures 1.2 c, d, g, h and 1.3 c, d, g, h). The m/z 176 ion in the spectra for the PFPA derivatives of the N-ethyl regioisomers (Figures 1.2a and 1.2e) is a rearrangement of the m/z 204 ion resulting in the loss of mass 28 (the N-ethyl group) via hydrogen transfer (Scheme 1.4). This coincidental common mass from two different fragmentation pathways is confirmed by examining the mass spectra for the HFBA derivatives of the N-ethyl-phenethylamines shown in Figure 1.3a and 1.3e. The loss of 28 mass units from the acylimine fragment at m/z 254 yields the equivalent fragment ion at m/z 226. Thus, the HFBA derivatives may offer more unique characteristic ions for individualization of these regioisomeric substances.

Scheme 1.4: Mechanism for the loss of mass 28 from the perfluoroacyl-N-ethyl-

imine cation.

79 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

A comparison of the PFPA derivatives for 3,4- and 2,3-

methylenedioxymethamphetamine (Figures 2.2b and 2.2f) with the HFBA derivatives

(Figures 1.3b and 1.3f) indicated unique ions at m/z 160 and m/z 210. This mass difference of 50 (CF2) suggests these ions contain the perfluoroalkyl group for each

derivative, C2F5 and C3F7, respectively the suggested mechanism of forming these masses

can be illustrated in Scheme 1.5. Additional information about these ions can be obtained

by a comparison of the mass spectra for the PFPA and HFBA derivatives of 3,4-MDMA

and NCD3-3,4-MDMA (MDMA-d3) in Figure 1.4. The corresponding ions in these

spectra occur at m/z 163 and 213 and the equivalent ions for the derivatives of d5-MDMA also occur at m/z 163 and 213. Thus, an analysis of the masses of the components which make up the fragment at m/z 160 for example include C2F5 (119 mass units) and CH3 (15 mass units) leaving only a mass of 26 available for the total of 160. The mass 26 would

+ correspond to CN and the proposed mechanism for the formation of (C2F5CNCH3) is

shown in Scheme 1.5. An equivalent fragmentation pathway has been reported [C.R.

Clark et al, 1995] for methamphetamine.

H3CN R2 H3CNC R2 H3C N C R2 O CH CH O

CH3 CH3 m/z = 160 (R2 = C2F5) m/z = 204 (R2 = C2F5) m/z = 210 (R2 = C3F7) m/z =254 (R2 = C3F7)

Scheme 1.5: Formation of m/z 160 and 210 from the PHPA and HFBA derivatives of 2,3- and 3,4-MDMA

80 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Figure 1.4: Mass spectra of the PFPA and HFBA derivatives for the d3 and d5- MDMA.

Scan 402 (8.407 min): 51104-4.D Abundance 207

1000000 CD3

900000 N C F O 2 5 162 800000 O 700000 O 600000 500000 a 45 135 400000

300000 77 200000 51 119 342 100000 89 147 179 223 269 303 0 m/ z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

Scan 405 (8.411 m in): 51104-2.D Abundance 208 H D CD3 45000 N C F O 2 5 40000

O 35000 D 163 O 30000

25000 b

20000

15000 41 136 344 10000 119 5000 78 51 0 m/ z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

81 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

CD3

N C F O 3 7

Scan 401 (8.386 min): 51104-3.D Abundance 257 O O 1500000

1400000 C 1300000

1200000

1100000

1000000

162 900000

800000

700000 213 600000

500000 45

135 400000

300000

392 6977 200000

100000 105 131 194 223 263 313 332 353 373 0 m/ z--> 50 100 150 200 250 300 350

Scan 399 (8.372 min): 51104-1.D Abundance 258 H D CD3

110000 N C F O 3 7 100000

O 90000 D O 80000

70000 d 60000

50000 213

40000 164 30000 136 20000 46 394 69 10000 78 107 133 196 315 0 m/z--> 50 100 150 200 250 300 350

82 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

The spectra for the derivatives of d3- and d5-MDMA in Figure 2.4 also lend support to the proposed mechanism for the formation of the alkene fragment at m/z 162 illustrated in Scheme 1.3. The exact structure for the d5-MDMA is shown in Scheme 1.6, the benzylic position contains one hydrogen and one deuterium and the transfer fragmentation can occur to remove either species to form the alkene radical cation. Thus, the resulting alkene can yield ions at m/z 163 or 164 depending on the probability of transfer.

Scheme 1.6: Formation of m/z 163 and 164 in the perfluoroacyl-derivatives of d5-

MDMA.

Gas chromatographic separation of perfluroacyl derivatives of 3,4- MDMA and their direct regioisomers

The PFPA and HFBA derivatives of the eight primary and secondary amines were compared on two stationary phases using capillary columns of the same dimensions, 30m x 0.25mm and 0.25um depth of film using instrument 1. Previous studies on the

83 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

chromatographic properties of the underivatized compounds [Aalberg et al., 2000 and

2004 ] have shown that other compounds in this series co-eluted with MDMA using some

common gas chromatographic stationary phases and conditions.

The stationary phases compared were the relatively nonpolar phases, 100%

dimethyl polysiloxane (Rtx-1) and 95% dimethyl-5% diphenyl polysiloxane (Rtx-5).

Several temperature programs were evaluated and the best compromises between resolution and analysis time were used to generate the data in Table 8 and the chromatograms in Figures 1.5 and 1.6

The two chromatograms for the PFPA derivatives in Figure 19 were generated using two temperature programs. The first program used was to hold the column temperature at 100 oC for 1 minute, ramped to 180 oC at 9 oC/minute, hold at 180 oC for 2 minutes ramp to 200 oC at 10 oC/minute [TP-1]. This program was used to separate

compounds 2-5 and 7-10 in their HFBA and PFPA forms on Rtx-5. The same program

was also used to separate the PFPA derivatives of the same compounds on Rtx-1. The

second temperature program used to resolve the HFBA derivatives of compounds 2-5 and

7-10 on Rtx-1. The program was set up to hold the column temperature at 70 oC for 1 minute, ramped to 150 oC at 7.5 oC/minute, hold at 150 oC for 2 minutes ramp to 250 oC

at 10 o /minute[ TP-2].

The resulting elution order and resolution are quite similar. In fact the elution

order is the same for all the chromatograms in Figures 1.5 and 1.6. The chromatograms

show that the 2,3-isomer elutes before the corresponding 3,4-isomer for all the side chain

regioisomers. For example, 2,3-MDMA elutes before 3,4-MDMA, and this pattern holds for all side chain regioisomers. When the ring substitution pattern is held constant (ie 2,3-

84 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

or 3,4-) and the side chain elution order is evaluated the two secondary amides elute

before the two tertiary amides. Additionally, in every case in this limited set of

compounds the branched side chain elutes before the straight chain isomer when the ring

substitution pattern and the degree of amide substitution are constant. Therefore, the 2,3-

phentermine-PFPA elutes first followed by 2,3-BDB-PFPA (both secondary amides),

then 2,3- MDMA-PFPA, and N-ethyl 2,3-methylenedioxyphenethylamine-PFPA the two

tertiary amides. Perhaps the most useful information in these chromatograms is the

relative elution of the derivatized controlled substance MDMA and its closest eluting

regioisomeric equivalents. Both the PFPA and HFBA derivatives of MDMA elute

between the N-ethyl-2,3- and 3,4-methylenedioxyphenethylamine PFPAs and HFBAs,

both the N-ethyl regioisomers show very distinct mass spectra with several characteristic

ions to differentiate these compounds from the drug of abuse MDMA. Thus, derivatization methods coupled with both chromatographic and mass spectral procedures can allow for the complete characterization of the side chain substitution pattern for these ten uniquely isomeric substances, however, the HFBA derivatives offer more unique fragment ions for additional discrimination among these regioisomeric substances.

85 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Abundance TIC: 111103-4.D 7 3 Abundance A

150000

140000 8

130000 5

120000 4 2 110000

100000 90000 80000

70000 10 60000 50000 40000 9 30000 20000 10000 0 Time--> 10.00 10.50 11.00 11.50 12.00 12.50 13.00 13.50

TIC: 30304-14.D 2 Abundance 7 5

4500000

4000000 B 8 3 3500000 4

3000000 9 10 2500000

2000000

1500000

1000000

500000

0 Time--> 9.00 10.00 11.00 12.00 13.00 14.00 15.00 Time (minutes)

Figure 1.5: Capillary gas chromatographic separation of the PFPA derivatives of

compounds (2-5) and (7-10). Columns used: A Rtx-1; B Rtx-5.

86 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Abundance 3 TIC: 20404-2.D Abundance A

1500000

1400000 1300000 1200000 9 8 5 1100000 10 1000000 900000 4

800000 700000 2 7 600000 500000 400000 300000 200000 100000 0 Time--> 20.00 21.00 22.00 23.00 24.00 25.00 26.00

3 TIC: 30204-13.D Abundance B

5500000

5000000 5 4500000 10 8

4000000 9 4 7

3500000 2 3000000

2500000

2000000 1500000

1000000

500000

0 Time--> 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00

Time (minutes)

Figure 1.6: Capillary gas chromatographic Separation of HFBA derivatives of compounds (2-5) and (7-10). Columns used: A Rtx-1; B Rtx-5

87 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Conclusions of Chapter 1

3,4-MDMA and nine other methylenedioxyphenethylamines are a unique subset

of regioisomeric molecules; each compound has a molecular weight of 193 and yields a

base peak at m/ z 58 in the MS from the loss of the corresponding methylenedioxybenzyl

group. Thus, the traditional EI MS provides little stru ctural information for diff e rentiating among these 10 compounds. Because of the unique similarity of these compounds by MS, the specific identification of a compound such as 3,4-MDMA requires methods to eliminate any of the other nine isomers.

This elimination process may be accomplished on the basis of chromatography alone but would ultimately require the analyst to use reference samples of each of the 10 amines. The reference samples would be necessary to determine if any of the isomeric methylenedioxyphenethylamines coeluted with 3,4-MDMA. Derivatization of the eight

primary and secondary amines with various acylating agents yields amides with similar

resolution to the underivatized amines by capillary GC on RTX-1 and RTX- 5 stationary

phases. However the perfluoroacyl derivatives significantly individualize the mass

spectra for these amides and allow for specific identification. The individualization is the

result of fragmentation of the alkyl carbon–nitrogen bond yielding hydrocarbon

fragments at m/ z 148, 162, and 176, as well as other unique fragments from these

regioisomeric amides. The PFPA and HFBA derivatives are essentially equivalent for

chromatographic purposes. However, the HFBA derivatives offer more unique fragment

ions for additional discrimination among these regioisomeric substances.

88 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Chapter 2

Mass Spectrometry and Gas Chromatographic Studies of Indirect Regioisomers Related to 3,4-MDMA, the Methoxymethcathinones.

The methoxymethcathinones constitutes a set of indirect regioisomers of the controlled drug substance 3,4-methylenedioxymethamphetamine. The various isomeric forms of the methoxymethcathinones have mass spectra essentially equivalent to 3, 4-

MDMA, all have molecular weight of 193 and major fragment ions in their electron ionization mass spectra at m/z 58 and 135/136. For these individual regioisomers the m/z

+ 135/136 ion is the methoxybenzoyl carbocation (C8H7O2) not the methylenedioxybenzyl

+ carbocation (C8H7O2) . The specific identification and differentiation between these compounds and the drug of abuse 3,4-MDMA must be based on a combination of mass spectral data as well as chromatographic resolution of these regioisomeric substances.

The mass spectra of the underivatized methoxymethcathinones as well as their perfluroacetyl derivatives will be compared with 3,4- and 2,3- MDMA. The chromatographic separation of the underivatized and derivatized methoxymethcathinones from 2,3- and 3,4-methylenedioxymethamphetamines will be discussed.

89 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Mass spectral studies of the underivatized and the perfluoroacyl derivatives of the methoxymethcathinones

Methoxymethcathinones represent a potentially significant challenge for

analytical drug chemistry. All the regioisomeric methoxymethcathinones have the same

molecular weight (193) and the same side chain as the drug of abuse 3,4-MDMA.

The mass spectra for the three methoxymethcathinone regioisomers (Figure 2.1) show a base peak at m/z 58 as seen for 2,3- and 3,4-MDMA (Figure 2.1). The major fragmentation pattern for the methoxymethcathinones is shown in Scheme 2.1. The

+ methoxybenzoyl (C8H7O2) fragment has the same mass and empirical formula as the

+ methylenedioxybenzyl (C8H7O2) cation occurring at m/z 135. Furthermore the m/z 58

ion in the methoxymethcathinones is the same imine structure as that obtained in the

mass spectra of both 3,4- and 2,3-MDMA.

O H N H O N

E E I I 70 O 70 ev OCH ev 3 MW=193 MW = 193

HC NH eI EI 70 ev 70 ev m/z = 58

O

O CH2

O OCH3 m/z = 135 m/z = 135 + + C8H7O2 C8H7O2

Scheme 2.1: EI fragmentation pattern of the underivatized 2,3- ,3,4-MDMAs and the methoxymethcathinones

90 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Figure 2.1: Mass spectra of the underivatized methoxymethcathinones.

Structure of regioisomers Mass spectrum

Scan 570 (10.338 min): 30104-9.D Abundance 58 3500000

O 3000000

H N 2500000

2000000

OCH 3 1500000

1000000

1 500000 77 92 135 42 63 160 80 105108 121 146147 175178 193 0 m/z--> 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Scan 597 (10.670 min): 30104-10.D Abundance 58

1000000

O 900000

H 800000 N 700000 600000 500000

400000 OCH3

300000 2 200000

100000 77 92 42 64 107 135 86 108 121 136 148 162164 178 191 0 m/ z--> 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

91 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Scan 683 (11.658 min): 30104-11.D Abundance 58

3000000

2800000

2600000

O 2400000

H 2200000 N 2000000

1800000

1600000

1400000 H3CO 1200000 1000000

800000 600000 3 400000 77 200000 92 135 64 42 107 79 108 121 137 150 162165 178 191 0 m/z--> 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Since the mass spectra of the methoxymethcathinones is almost identical to the

drug of abuse 3,4-MDMA, perfluoroacylated derivatives of 3,4- and 2,3-

methylenedioxymethamphetamines and their regioisomeric secondary amines, ortho,

meta and para-methoxymethcathinones, were prepared and evaluated in an effort to

individualize their mass spectra and to improve chromatographic resolution. Acylation

of the amines significantly lowered the basicity of nitrogen and allowed other

fragmentation pathways to play a more prominent role in the mass spectrum. The mass

spectra for the five pentaflouropropionyl and heptflourobutryl amides are shown in

Figures 2.2 and 2.3, respectively.

92 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Figure 2.2: Mass spectra of the PFPA derivatives of 3,4-MDMA (a); 2,3-MDMA

(b) ;ortho (c); meta (d) and para (e)-methoxymethcathinones.

Scan 494 (9.469 min): 110903-2.D Abundance 204

NC2F5 2000000 162 O

O O 1500000

135 42 1000000 a

77 339 119 500000 51

91 147 176 220 241 259269282 300 324 0 m/z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

Scan 431 (8.749 min): 110903-6.D Abundance 204

O 250000 O

NC2F5

200000 O

150000 b 162 100000 339

50000 42 119 135 51 77 91 147 177 220 0 m/z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

93 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Scan 388 (8.212 min): 110903-9.D C F Abundance O 2 5 135 O

N 400000

350000

OCH3 300000 250000 c

200000

150000

100000 77 204 160 50000 42 92 119 56 137 176 220 300 339 0 m/z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

C F O 2 5 O

Scan 401 (8.399 min): 11903-10.D N Abundance 135

30000

OCH3 25000 204 41 d 20000

15000

10000 160

5000 77 107 339 56 92

0 m/z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

94 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Scan 460 (9.072 min): 11903-11.D Abundance 135

C2F5 60000 O O

50000 N

40000 H3CO

30000 e

20000 41 204 10000 77 160 64 92 107 176 339 0 m/z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

95 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Figure 2.3: Mass Spectra for the HFBA derivatives of 3,4-MDMA (a); 2,3-MDMA

(b); ortho (c); meta (d) and para (e)-methoxymethcathinones.

Scan 887 (14.016 min): 30204-2.D Abundance 254 2000000

1800000

1600000 162

1400000 NCF O 3 7

1200000 O 1000000 210 O 135 800000 42 a

600000 389 77 69 400000

200000 105 131 192 220 263 291 310 332 350 374 0 m/ z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380

Scan 776 (12.730 min): 12804-6.D Abundance 254

2000000 O 1800000 O N C3F7 1600000

1400000 O

1200000 162

1000000 b 210

800000 42

600000 389

400000 69 77 135

200000 105 119 192 220 263 291 313 339350 374 0 m/ z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380

96 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Scan 739 (12.309 min): 30204-9.D Abundance C3F7 135 O 3500000 O

N 3000000

2500000 OCH3

2000000 c

1500000

1000000 77 254 500000 42 210 69 92 169 120 176 220 289 313322 350 370 389 0 m/z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380

Scan 762 (12.559 min): 30204-10.D Abundance 135 C F 1800000 O 3 7 O 1600000 N 254 1400000

1200000

1000000 OCH3

800000 d

600000 210

42 107 400000 77 69 200000 169 389 176 119 220 285 346 370 0 m/ z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380

97 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Scan 855 (13.647 min): 30204-11.D Abundance C F 135 O 3 7 O 4000000

N 3500000

3000000

H3CO 2500000 e 2000000

1500000

1000000 77 42 254 92 500000 69 210 169 176 119 220 285 313 358 374389 0 m/ z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380

From these spectra a common peak occurs at m/z 204 and 254 which corresponds to the loss of 135 mass units from the molecular ions at 339 and 389 for

PFPA and HFPA amides. This ion at m/z 204 and 254 is the PFPA and HFPA imine species likely formed from the alpha cleavage of the amide nitrogen to eliminate the 2, 3- and 3, 4-methylenedioxybenzyl and methoxybenzoyl radicals. Thus the m/z 204 and 254 in PFPA and HFPA amides are analogous to m/z 58 in the underivatized species because all these ions represent the (M-135) + species. The general fragmentation pattern and

structures for the m/z 204 and 254 ions are shown in Scheme 2.2

98 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

The relative abundances for the m/z 204 and 254 ions are always higher in the 3,4- and

2,3-methylenedioxymethamphetamines than in the methoxymethcathinones The

methylenedioxybenzyl and the methoxybenzoyl cations at m/z 135 are fragments

common to all the spectra (Figures 3.2 and 3.3). The relative abundance of m/z 135 in

perfluoroacyl derivatives of methoxymethcathinones is higher than that observed for 3,4-

and 2,3-methylenedioxymethamphetamines. The m/z 135 ion is the base peak in the mass spectra for the derivatives of the methoxymethcathinones likely due to the additional carbonyl site for initial radical cation formation in these compounds.

CH3 O CH3 H CO 3 R N R N O

O CH3 O CH3 O

EI/ 70ev EI/ 70ev

CH3 O

HC N R

CH3

m/z = 204 (R = C2F5) m/z =254 (R = C3F7)

Scheme 2.2: Formation of m/z 204 and m/z 254 for the PFPA and HFBA derivatives

of 2,3-, 3,4-MDMAs and methoxymethcathinones

The decreased role for alpha cleavage reaction in the fragmentation of these

amides as a result of perflouroacylation which weakens the bond between nitrogen and

the alpha-carbon of the substituted methylenedioxyphenethyl group, allowing the

99 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

formation of charged hydrocarbon species of increased relative abundance. These

hydrocarbons of varying mass significantly individualize the mass spectra and provide

specific structural information. The mass spectra in Figures 2.2 and 2.3 illustrate the role

of the hydrocarbon fragment at m/z 162 in the electron impact mass spectral

differentiation among these regioisomeric compounds. The spectra in Figures 2.2a, 2.2b,

2.3a and 2.3b show the 2,3- and 3,4-methyelenedioxyphenylpropene radical cation at m/z

162, identifying these molecules as the PFPA and HFBA derivatives of 2,3- and 3,4- methyelenedioxy methamphetamines, respectively. The formation of the m/z 162 ion has been described chapter 1 and requires the transfer of hydrogen from the benzylic carbon.

This fragmentation mechanism does not take place in the PFPA and HFBA derivatives of the methoxymethcathinones due to the absence of benzylic hydrogen (Scheme 2.3). One can conclude that the presence of alkene ions at m/z 162, can be used to identify the side

chain of 3,4- and 2,3-methyelenedioxymethamphetamines and exclude the regioisomeric

methoxymethcathinones. Conversely, the base peak at m/z 135 as well as the absence of

the m/z 162 ion would identify one of these substances as a methoxymethcathinone

regioisomer.

A comparison of the PFPA derivatives between the 3,4- and 2,3-

methylenedioxymethamphetamine (Figures 2.2a and 2.2b) with their HFBA derivatives

(Figures 3.3a and 3.3b) indicates unique ions at m/z 160 and m/z 210. This mass

difference of 50 (CF2) suggests these ions contain the perfluoroalkyl group for each

derivative, C2F5 and C3F7, respectively. These unique ions have been fully characterized

in chapter 1 using deuterated analogs of 3,4-MDMA and methamphetamine. These ions

at m/z 160 and 210 are the result of a rearrangement decomposition of ions 204 and 254

100 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

respectively (Scheme 1.2). The m/z 204 and 254 ions have the same structure whether

generated from derivatives of the MDMAs or the methoxymethcathinones. Therefore

these unique ions do not provide any information to differentiate between the two groups

of substances.

H H H O NR O CNR OH O O O

H R O O O CH

N O m/z 162

H CO 3 R = C2F5, PFPA derivative R= C3F7, HFBA derivative

Scheme 2.3: Benzylic hydrogen transefer to form m/z 162 occur only in MDMA

perfluroaceyl derivatives but not for methoxymethcathinones.

Gas chromatographic separation of 2,3-MDMA and 3,4 MDMA from

the methoxymethcathinones

Gas chromatographic properties of the PFPA and HFBA derivatives of the 2,3-

and 3,4-methylenedioxymethamphetamines and 2-, 3-, and 4-methoxymethcathinones

were compared on two stationary phases using capillary columns of the same dimensions,

30m x 0.25mm and 0.25um depth of film. The stationary phases compared in this study

101 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

were the relatively nonpolar phases, 100% dimethyl polysiloxane (Rtx-1) and 95% dimethyl-5% diphenyl polysiloxane (Rtx-5). The underivatized compounds were not

completely resolved with 2-methoxymethcathinone co-eluting with 3-

methoxymethcathinone using these common gas chromatographic stationary phases and

some common temperature programming conditions (Figure 2.4).

The PFPA and HFBA derivatives showed improved resolution when compared to

the underivatized amines. Several temperature programs were evaluated and the best

compromise between resolution and analysis time were used to generate the

chromatograms in Figures 2.5 and 2.6.

The two chromatograms for the PFPA derivatives (Figure 2.5) were generated

using two different temperature programs; the resulting elution order and resolution are

quite similar. In fact the elution order is the same for all the chromatograms shown in

Figures 2.5 and 2.6. In each case the derivatized 2-methoxymethcathinone (compound 1)

eluted first followed closely by the 3-methoxymethcathinone derivative (compound 2).

The third compound to elute is the 2,3-MDMA derivative (compound 4) and the

derivatized 4-methoxymethcathinone (compound 3) is the forth peak in each

chromatogram. The derivatized form of 3,4-MDMA (compound 5) showed the greatest

retention in each chromatogram.

102 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

TIC: 111703-6.D3 Abundance 4 1400000

1300000

1200000

1100000 1000000 5 900000 1+2

800000

700000

600000

500000

400000

300000

200000

100000

0 Time--> 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00

Time (minutes)

Figure 2.4: Capillary gas chromatogram for a physical mixture of underivatized

3,4 MDMA, 2,3-MDMA and methoxymethcathinones.

103 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

TIC: 11903-14.D AbundanceAbundance 700000 4 A 650000 1 2 5 600000 550000 500000 3 450000

400000

350000

300000

250000

200000

150000 100000 50000 0 Time--> 7.00 7.50 8.00 8.50 9.00 9.50 10.00 10.50

1 TIC: 30304-16.D Abundance

5500000 4 3 B 5 5000000

4500000

2 4000000

3500000

3000000

2500000

2000000

1500000

1000000

500000

0 Time--> 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 Time (minutes)

Figure 2.5: Capillary gas chromatographic separation of PFPA derivatives of

compounds 1-5. Columns used: A Rtx-1; B Rtx-5.

104 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

5 Abundance 3 TIC: 12904-4.D Abundance 6000000 5500000 2 A 5000000

4500000 1 4 4000000

3500000

3000000

2500000

2000000

1500000

1000000 500000

0 Time--> 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 5 TIC: 30204-14.D Abundance 6500000 3

6000000 B 5500000 5000000

4500000 4 4000000

3500000 1 3000000 2 2500000

2000000

1500000

1000000 500000

0 Time--> 9.00 10.00 11.00 12.00 13.00 14.00 15.00

Time (minutes)

Figure 2.6: Capillary gas chromatographic separation of HFBA derivatives of

compounds 1-5. Columns used; A: Rtx-1; B: Rtx-5.

105 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Conclusion of Chapter 2

3,4- and 2,3-MDMA and 2-, 3-, and 4-methoxymethcathinone are a unique subset of regioisomeric molecules; each compound has a Mw of 193 and yields a base peak for the

N-methyl imine of at m/z 58 in the mass spectrum from the loss of the corresponding C8H7O2 methylenedioxybenzyl and methoxybenzoyl groups, respectively.

Thus, the traditional EI-MS provides little structural information for differentiating among these five compounds. Because of the unique similarity of these compounds by

MS, the specific identification of a compound such as 3,4-MDMA requires methods to eliminate the other four isomers. This elimination process may be accomplished on the basis of chromatography alone but would ultimately require the analyst to use reference samples of each of the five amines. Derivatization of these amines with various acylating agents yields amides with improved resolution compared with the underivatized amines by capillary GC on Rtx-1 and Rtx-5 stationary phases. These perfluoroacyl derivatives significantly individualize the mass spectra for these amides. The individualization is the result of fragmentation of the alkyl carbon–nitrogen bond, yielding hydrocarbon fragments at m/z 162 as well as other unique fragments from the MDMA amides that were not formed for the methoxymethcathinones. The PFPA and HFBA derivatives are essentially equivalent for chromatographic purposes; however, the HFBA derivatives offer more unique fragment ions for additional mass spectral discrimination among these regioisomeric substances.

106 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Chapter 3

Mass Spectrometry and Gas Chromatographic Studies on Acylated

Derivatives of a Series of Side Chain Regioisomers of 2-Methoxy-4-

Methyl Phenethylamines

In this chapter GC-MS studies are described for a series of side chain isomers of 2-

methoxy-4-methylphenethylamines. These isomers have an isobaric relationship (equal

mass, different elemental composition) to the controlled substance 3,4-MDMA.

Mass Spectral Studies on Chain Regioisomers of 2-Methoxy-4-Methyl

Phenethylamines

Mass spectrometry is the primary method for confirming the identity of drugs and

other substances of abuse in forensic samples. The five side chain regioisomers of 2-

methoxy-4-methylphenethylamine (Figure 3.1, Compounds 1-5) have the potential to

yield mass spectra essentially equivalent to 3,4-MDMA (and 2,3-MDMA). All have

molecular weight of 193 and major fragment ions in their electron ionization mass

spectra at m/z 58 and 135/136 (Figure 3.2). The m/z 58 ion in the methoxy methyl

phenethylamine is regioisomeric with that obtained in the mass spectra of both 2,3 and

+ 3,4-MDMA. Additionally, the isobaric methoxy methyl benzyl (C9H11O) fragments

+ have the same nominal mass as the methylenedioxybenzyl (C8H7O2) cation occurring at

m/z 135 (Scheme 3.1). The individual mass spectra for 2,3- and 3,4-MDMA are also

107 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

presented in Figure 3.2 (Compounds 6 and 7). The data in Figure 3.2 show that the mass spectra do not provide any major fragment ions to differentiate among these compounds.

Figure 3.1: Structures of the side chain regioisomers of 2-methoxy-4- methylphenethylamines, and 2,3- and 3,4-MDMA.

H N N

H3C OCH3 H3C OCH3 2 1

H NH2 N

H3C OCH3 H3C OCH3 4 3

O NH2 H O N

H3C OCH3

5 6

H N O

O

7 (3,4-MDMA)

108 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

C2H8 H2 H2 C C CH3 N O C CH

HN O H3C OCH3 CH3 MW = 193

EI 70ev

CH3 CH2 CH2 C2H8 O HC CH3 CN N H O OCH3 H3C m/z = 58 m/z = 135

m/z = 135

Scheme 3.1: EI fragmentation pattern for compounds 1-7.

Figure 3.2: Mass Spectra of the underivatized amines 1-7.

Average of 10.725 to 10.848 min.: 71707--6.D Abundance 58 N 1800000

1600000

1400000 H3C OCH3 1200000 1

1000000

800000

600000 136 400000

200000 91 77 41 51 65 92 121 149 103 122 162163 176 191193 0 m/z--> 40 60 80 100 120 140 160 180 200

109 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Average of 9.175 to 9.253 min.: 110606-1.D Abundance 58 2400000 2200000

2000000 H 1800000 N

1600000

1400000

H3C OCH3 1200000 1000000

800000 2

600000

400000

200000 42 59 91 77 176 78 135 191 103 115120 133 149 160162 188 0 m/z--> 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Average of 9.961 to 10.261 min.: 71707--7.D Abundance 58 H N 2000000

1800000

1600000 H3C OCH3

1400000 3 1200000

1000000

800000

600000

400000

200000 91 105 42 7779 65 136 115121 131 146 160164 178 189192 0 m/z--> 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

110 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Average of 10.234 to 10.415 min.: 71707--8.D Abundance 58

1000000 NH2

900000

800000

700000 H3C OCH3

600000 4 500000

400000

300000

200000

100000 41 91 105 77 136 65 121 178 81 115 146148 161 176 193 0 m/z--> 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Average of 11.092 to 11.635 min.: 71707--9.D Abundance 58

200000 NH 190000 2

180000

170000

160000

150000 H C OCH 140000 3 3

130000 120000 110000 5 100000

90000 80000 70000

60000

50000 136 40000 41 30000

20000 77 91 105 10000 79 121 65 137 164 117 149 176 193 0 m/z--> 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

111 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Average of 9.215 to 9.325 min.: 110706-1.D Abundance 58 2400000

2200000 O

2000000 H O N 1800000

1600000

1400000

1200000 6 1000000 800000

600000

400000

200000 77 42 135 79 63 91 105 178 117120 146148 163 174 192 0 m/ z--> 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Average of 9.657 to 9.790 min.: 110606-6.D Abundance 58 2200000

2000000 H 1800000 N O

1600000

1400000 O 1200000

1000000 7

800000

600000

400000

200000 77 135 42 63 89 105 91 117120 137 148 162 174178 191 0 m/z--> 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

112 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

R3

N O

R R 1 2 X

H3C OCH3 H3C OCH3 m/z = 135

R1+R2+R3 = C2H7 C2F5= X,, MW = 339 C3F7= X, MW= 389

R2

R1 R3 R1 H3C OCH3 N H3C m/z = 105 R2 O m/z = 148, R1=R2=H m/z = 162, R = CH ; R =H X 1 3 2 m/z = 176, R1= CH3; R2= CH3 m/z = 176,R1= C2H5; R2= H

m/z = 204, X= C2F5 m/z = 254, X= C3F7

Scheme 3.2: Mass spectral fragmentation products for the acylated 2-methoxy-4- methyl phenethylamines.

In the next phase of this study various perfluoroacylated derivatives of the regioisomeric primary and secondary amines were prepared and evaluated in an effort to

individualize their mass spectra and provide unique marker ions for specific

identification. Generally, acylation of the amines significantly lowers the basicity of

nitrogen and can allow other fragmentation pathways to play a more prominent role in the

resulting mass spectrum.

The mass spectra for the pentafluoropropionyl and heptfluorobutyryl amides are

shown in Figures 3.3 and 3.4, respectively. From these spectra a common peak occurs at

m/z 204 and 254 which corresponds to the loss of 135 mass units from the molecular ions

113 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

at 339 and 389 for PFPA and HFBA amides. The m/z 204 and 254 ions in the PFPA and

HFBA amides are analogous to m/z 58 in the underivatized species because all these ions represent the (M-135)+ species. The general fragmentation pattern and structures for the m/z 204 and 254 ions are shown in Scheme 3.2. The 2-methoxy-4-methylbenzyl cation

(m/z 135) and the methylenedioxybenzyl cation (m/z 135) are fragments common to all spectra in Figures 3.3 and 3.4. However, the 2-methoxy-4-methylbenzyl cation at m/z

135 in the perfluoroacyl derivatives shows a very high relative abundance. Indeed the m/z

135 ion is the base peak in all the PFPA derivatives of compounds 2,4,5 and in the HFBA derivatives of compounds 4 and 5. The remaining two HFBA derivatives of compounds 2 and 3 and the PFPA derivative of compound 3 show the m/z 135 ions as a major fragment of at least 90% relative abundance. This would suggest that the perfluoroacyl derivatives of compounds 2, 3, 4 and 5 offer a distinct discrimination between the methylenedioxy and the 2-methoxy-4-methyl substitution patterns based on the difference in relative abundances of the substituted benzyl cation at m/z 135.

114 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Figure 3.3: Mass Spectra of the PFPA derivatives of compounds 2-7.

Average of 17.255 to 17.432 min.: 72407-8.D Abundance 135 148 750000

700000

650000 N C2F5

600000

550000 O

500000 H3C OCH3

450000

400000 350000 2 300000 250000 200000 150000 91 100000 176 119 339 77 204 50000 42 65 162 220 237 272 294 309 324 0 m/z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

Average of 15.319 to 15.441 min.: 72407-9.D Abundance 204

500000 N C F 162 2 5 450000 O 400000 H3C OCH3 350000 135 300000 250000 3 200000 105 150000 42

100000 56 79 91 50000 147 339 190 220 237 269282 308 324 0 m/z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

115 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Average of 14.531 to 14.675 min.: 72407-10.D Abundance 135 NH C2F5

600000 O

550000 H3C OCH3 500000 204 450000

400000

350000 4 105 59 300000

250000

200000 176 150000 42 79 91 339 100000 164 50000 146 324 215 257 282 306 0 m/z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

Average of 14.995 to 15.129 min.: 72407-11.D Abundance NH C2F5 135

500000 O

450000 H3C OCH3 176 400000 350000 5 300000 105 250000

200000 150000 41 161 100000 79 339 91 50000 204 65 145 220 237246 278 292 310 0 m/z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

116 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Average of 16.557 to 16.723 min.: 72407-12.D Abundance 204

O 800000 O N C2F5

600000 O

162 400000 6

42 200000 339 56 77 119 135 91 147 177 220233 259263 300 324 0 m/z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

Average of 18.845 to 19.066 min.: 72407-13.D Abundance N C F 204 O 2 5

700000 O 650000 O 600000

550000 162 7 500000 450000 400000 350000 300000 135 42 250000 200000 150000 77 339 100000 51 119 50000 91 147 176 220 237 259269282 300 324 0 m/z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

117 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Figure 3.4: Mass spectra of the HFBA derivatives of compounds 2-7.

Average of 17.802 to 17.982 min.: 72407-1.D Abundance 148 380000

360000

340000 N C3F7

320000

300000 O

280000 H3C OCH3

260000

240000 2 220000 200000 180000 160000 140000

120000

100000 80000 60000 91 226 40000 69 169 389 254 20000 42 92 119 178 197 322 344 370 0 m/ z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380

N C3F7 Average of 15.736 to 15.857 min.: 72407-2.D Abundance 254 O

H3C OCH3 500000 162 450000 3

400000

350000 135 300000

250000 210 200000

150000 105 42 100000

69 91 50000 115 389 192 220 309 358 374 0 m/ z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380

118 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Average of 14.994 to 15.094 min.: 72407-3.D Abundance 135 NH C3F7 260000

240000 O

H C OCH 220000 3 3 254 4 200000

180000 160000 140000 120000

100000 105

59 80000 176 60000

40000 41 91 389 214 20000 121 169 226 273 313 350 374 0 m/ z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380

Average of 15.458 to 15.613 min.: 72407-4.D Abundance 135

650000 NH C3F7

600000 O

550000 H3C OCH3 176 500000

450000

400000 5 350000 105 300000 250000

200000

150000 41 161 100000 6979 389 254 50000 121 226 360 214 266 296 313328 361 0 m/z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380

119 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Average of 17.093 to 17.314 min.: 72407-5.D Abundance 254 O

1000000 O N C3F7

900000

O 800000

700000 6 600000

500000 210 162 400000 300000 42

200000

69 389 77 100000 135 105 131 192 220 263 291 309 339350 370 0 m/ z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380

N C F O 3 7

O O

Average of 19.525 to 19.788 min.: 72407-7.D Abundance 254

750000 7 700000

650000 600000 550000 162 500000 450000 400000 210 350000 300000

250000 135 42 200000 150000 6977 100000 389 50000 105 131 191 220 263 293 309 350 370 0 m/z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380

120 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

The decreased role for the alpha cleavage reaction in the fragmentation of these amides allows the formation of more diagnostic ions of each individual isomer. Acylation weakens the bond between nitrogen and the alkyl carbon of the phenethyl side chain, allowing the formation of charged side chain specific hydrocarbon species of increased relative abundance. These hydrocarbons of varying mass significantly individualize the mass spectra and provide specific structure information. The spectra for the N-ethyl isomer (compound 2) in Figures 3.3-2 and 3.4-2 show a base peak at m/z 148 corresponding to the alkene radical cation which occurs from hydrogen rearrangement and subsequent fragmentation of the alkyl carbon to nitrogen bond of the phenethylamine side chain (see Scheme 3.2). This ion at m/z 148 would only occur for the N-ethyl regioisomer. The spectra in Figures 3.3-3, 3.3-6, 3.3-7, 3.4-3, 3.4-6 and 3.4-7 show the substituted phenylpropene hydrocarbon radical cation at m/z 162, identifying these molecules as the PFPA and HFBA derivatives of 2-methoxy-4-methylmethamphetamine and the 2,3-, 3,4-methylenedioxymethamphetamines respectively. The spectra for the

PFPA and HFBA derivatives of the primary amines (compounds 4 and 5) show ions at m/z 176 from the corresponding substituted phenylbutene radical cation. The lower abundance of m/z 176 for the 4-methoxy-3-methylphentramine (compound 4) may be the result of steric inhibition of hydrogen transfer in the alpha, alpha-dimethyl substitution pattern.

While the alkene ions at 148, 162, and 176 help to identify the side chain regioisomers, one complicating factor in the PFPA derivatives for the N- ethylphenethylamines (Figure 3.3-2) is the appearance of an ion at m/z 176 in addition to the base peak at m/z 148. The 176 ion suggests a four carbon chain directly attached to

121 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

the aromatic ring as occurs for the alpha-ethyl- (compound 5) and alpha, alpha-dimethyl-

(compound 4) phenethylamines (Figures 3.3-4, 3.3-5 and 3.4-4, 3.4-5). The m/z 176 ion

in the spectra for the PFPA derivatives of the N-ethyl regioisomers (Figure 3.3-2) is a

rearrangement of the m/z 204 ion resulting in the loss of mass 28 (the N-ethyl group) via

hydrogen transfer This coincidental common mass from two different fragmentation

pathways is confirmed by examining the mass spectra for the HFBA derivatives of the N-

ethyl-phenethylamines shown in Figure 3.4-2. The loss of 28 mass units from the

acylimine fragment at m/z 254 yields the equivalent fragment ion at m/z 226. Thus, the

HFBA derivatives may offer more characteristic ions for individualization of these

regioisomeric substances.

A comparison of the mass spectra for the PFPA and HFBA derivatives of all three

ring substituted methamphetamines (Compounds 3, 6 and 7) indicates unique ions at m/z

160 and m/z 210 (see Figures 3.3-3, 3.3-6, 3.3-7; 3.4-3, 3.4-6, and 3.4-7). This mass

difference of 50 (CF2) suggests these ions contain the perfluoroalkyl group for each

derivative, C2F5 and C3F7 respectively. This ion has been described in previous chapters as the cationic methylated C2F5CNCH3 or C3F7CNCH3. The equivalent

fragmentation further supported by the analysis of the mass spectra of the PFPA and

HFBA derivatives of d3- and d5-MDMA in previous studies [Chapter 1]. This

fragmentation pathway appears unique to the acylated N-methyl C-methyl pattern

(methamphetamine side chain).

The presence of relatively high abundances of the m/z 105 ion in the spectra of

the PFPA and HFBA derivatives of compound 3 allows for significant discrimination of

this 2-methoxy-4-methylmethamphetamine from the two isobaric methylenedioxy-

122 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

methamphetamines isomers (compounds 6 and 7). This ion at m/z 105 represents the loss

of 30 mass units (, CH2O) from the methoxymethylbenzyl cation at m/z

135. Previous reports suggested that the m/z 105 ion is characteristic of all o-methoxy

substitution patterns regardless the position of the on the aromatic ring

[Chapter 6]. However, the absence of this fragment from the spectra of the derivatives of

compound 2 suggests the necessity of further structure fragmentation studies for these

compounds.

Gas Chromatographyic separation of the perflouroacyl derivatives of 2- methoxy-4-

methylphenethylamines from 2,3- and 3,4-MDMA

The PFPA and HFBA derivatives of the six primary and secondary amines were

compared on two stationary phases using two GC-MS systems, The relatively nonpolar

100% dimethyl polysiloxane (Rtx-1) and the more polar trifluoropropyl methyl

polysiloxane (Rtx-200). Several temperature programs were evaluated and one program

showing the best compromise between resolution and analysis time was used to generate

the chromatograms in Figures 3.5 and 3.66. The elution order was the same for both

stationary phases and all temperature programs evaluated in this study. The

chromatograms of the perfluoroacyl compounds show that the 2,3-MDMA elutes before the corresponding 3,4-isomer, which elutes last. When the ring substitution pattern is held

constant (2-methoxy-4-methyl), the side chain elution order is secondary amides before

the tertiary amides and in this limited set of examples branched isomers elute before the

more linear ones. Therefore, the amides of compound 4 elute first followed by the amide

123 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

of compound 5 (both secondary amides), then the amides of compound 3 (the methamphetamine side chain) and finally the amides of compound 2 (the more linear of these two tertiary amides). The amides of 2,3-MDMA elute between the secondary and tertiary amides in this group of compounds.

Perhaps the most useful information in these chromatograms is the relative elution of the derivatized controlled substance 3,4-MDMA and its closest eluting regioisomeric and isobaric equivalents. Both the PFPA and HFBA derivatives of 3,4-MDMA elute last and the N-ethyl-2-methoxy-4-methylphenethylamine PFPAs and HFBAs are the closest eluted compounds in the 2-methoxy-4-methyl phenethylamine series. The isobaric acylated N-ethyl amides show very distinct mass spectra with several characteristic ions to differentiate it from the corresponding amides of the drug of abuse 3,4-MDMA. Thus, derivatization methods coupled with both chromatographic and mass spectral procedures can allow for the complete differentiation of the side chain substitution pattern of the 2- methoxy-4-methylphenethylamines from 3,4-MDMA and its regioisomer, 2,3-MDMA.

Additionally in this limited study, the Rtx-200 stationary phase provided the greatest resolution of the amides of compound 7 (3,4-MDMA) from all the other isomers.

124 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Abundance

TIC: 72507-6.D 7 A Abundance 2400000 4 2200000 3

2000000 6 5

1800000 2 1600000 1400000

1200000

1000000

800000 600000

400000

200000

0 Time--> 12.00 14.00 16.00 18.00 20.00 22.00 24.00

Time (minutes) Abundance 6 TIC: 72507-4.D Abundance 2400000 5 2200000 7 B 2000000

1800000 3 2 1600000 4

1400000

1200000

1000000

800000

600000

400000 200000

0 Time--> 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00

Time (Minutes)

Figure 3.5: Chromatograms of the PFPA (A) and HFBA (B) derivatives of compounds 2-7. GC-MS system 1, Rtx-200 column.

125 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Abundance

Abundance 4 3 TIC: 0801207-14.D\ data.ms 5500000 7 A 5000000 6 2 5 4500000

4000000

3500000

3000000

2500000

2000000

1500000

1000000

500000

10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 Time--> Time (minutes) Abundance

Abundance

TIC5 : 0801207-07.D\ data.ms B

5500000 6 5000000 2 7 4500000 3 4000000

3500000

3000000 4

2500000

2000000

1500000

1000000

500000

10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 Time--> Time (minutes) Figure 3.6: Chromatograms of the PFPA (A) and HFBA (B) derivatives of compounds 2-7. GC-MS system2, Rtx-1 column.

126 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Conclusion of Chapter 3

Differentiation of the side chain substitution pattern of the 2-methoxy-4- methylphenethylamines from 3,4-MDMA and its regioisomer, 2,3-MDMA was accomplished using a combination of gas chromatography and mass spectrometry.

Derivatization of the primary and secondary amines with various acylating agents yields

amides with improved resolution compared to the underivatized amines by capillary gas

chromatography on Rtx-1 and Rtx-200 stationary phases.

Additionally, the perfluoroacyl derivatives significantly individualize the mass spectra for

these amides and allow for unambiguous identification. The individualization results

from fragmentation of the alkyl carbon-nitrogen bond yielding characteristic hydrocarbon

fragments at m/z 105, 148, 162, and 176 as well as other unique fragments.

127 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Chapter 4

GC-MS Analysis of Acylated Derivatives of the Side Chain

Regioisomers of 4-Methoxy-3-Methyl Phenethylamines Related to

Methylenedioxymethamphetamine

In this chapter all the side chain regioisomeric possibilities of 4-methoxy-3- methyl phenethylamines, as a representative of the m/z58 side chain regioisomers of the in the 4 position, will be compared from the mass spectral and chromatographic aspects to 2,3- and 3,4-MDMA.

Mass Spectral studies of 4-methoxy-3-methyl phenethylamines along with 2,3- and

3,4- MDMA

Mass spectrometry is the primary method for confirming the identity of drugs and other substances of abuse in forensic samples. The mass spectra of phenethylamines are characterized by a base peak formed from an amine initiated alpha-cleavage reaction involving the carbon-carbon bond of the ethyl linkage between the aromatic ring and the amine. In 3,4-methylenedioxymethamphetamine (MW=193) the alpha-cleavage reaction yields the substituted imine fragment at m/z 58 and the 3,4-methylenedioxybenzyl fragment at mass 135/136 (for the cation and the radical cation, respectively). Thus, the mass spectrum for 3,4-methylenedioxymethamphetamine contains major ions at m/z 58 and 135/136 as well as other ions of low relative abundance. There are a total of five regioisomeric forms of the m/z 58 imine species.

128 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

The five side chain regioisomers of 4-methoxy-3-methylphenethylamine

(Compounds 1-5) have the potential to yield mass spectra essentially equivalent to 3,4-

MDMA and 2,3-MDMA ( structures shown in Figure 4.1). All have molecular weight of

193 and major fragment ions in their electron ionization mass spectra at m/z 58 and

+ 135/136 (Figure 4.2). The isobaric methoxy methyl benzyl (C9H11O) fragments have the

+ same mass as the methylenedioxybenzyl (C8H7O2) cation occurring at m/z 135.

Furthermore the m/z 58 ion in the methoxy methyl phenethylamine is regioisomeric with

that obtained in the mass spectra of both 2,3 and 3,4-MDMA (Scheme 4.1). The

individual mass spectra for 2,3- and 3,4-MDMA are also presented in Figure 4.2

(Compounds 6 and 7).

Figure 4.1: Structures of side chain regioisomers of methamphetamine

H N N

2 1 N-ethylphenethylamine N,N-Dimethylphetheylamine

H N NH2

3 4 Methamphetamine α, α-Dimethylphenethylamine

NH2

5 1-Phenyl-2-butanamine

129 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Figure 4.2: Mass Spectra of the undreivatized amines:

Average of 9.175 to 9.253 min.: 110606-1.D Abundance 2400000 58

2200000 N

2000000

1800000

1600000 H3CO

1400000 CH3 1200000

1000000 1

800000 600000

400000

200000 42 59 91 77 176 78 135 191 103 115120 133 149 160162 188 0 m/z--> 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Average of 9.792 to 9.928 min.: 110606-2.D Abundance 58 1000000

900000

800000 H N

700000

600000

500000 H3CO

400000 CH3 136 300000

200000 2

91 100000 77 41 65 121 137 103 149 191 80 117 163 174176 0 m/z--> 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

130 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

H N Average of 9.352 to 9.497 min.: 110606-3.D Abundance 2000000 58

1800000

H3CO 1600000

CH 1400000 3 3 1200000

1000000 800000

600000

400000

200000 91 136 42 65 77 82 103 115121 137 147 162 174178 191 0 m/z--> 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Average of 9.053 to 9.210 min.: 110606-4.D Abundance 58

1200000 NH2

1100000

1000000

900000 H3CO

800000 CH3 700000 600000 4

500000

400000

300000 200000

100000 41 91 135 65 7782 121 178 103 115 137 148 161 175 193 0 m/z--> 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

131 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Average of 10.110 to 10.279 min.: 110606-5.D NH2 Abundance 58

800000 H3CO

CH3 600000 5

400000

136 200000

41 91 59 74 121 164 78 103105 132 148 159 176 193 0 m/ z--> 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

Average of 9.215 to 9.325 min.: 110706-1.D Abundance 58 2400000

2200000 O

2000000 H O N

1800000

1600000

1400000

1200000 6 1000000 800000

600000

400000

200000 77 42 135 79 63 91 105 178 117120 146148 163 174 192 0 m/z--> 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

132 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Average of 9.657 to 9.790 min.: 110606-6.D Abundance 58 2200000

2000000

1800000 H N 1600000 O

1400000

1200000 O

1000000 7 800000 600000

400000

200000 77 135 42 63 89 105 91 117120 137 148 162 174178 191 0 m/z--> 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

H2 H2 C C H C CH 2 8 O 3 C CH

N HN O H3CO CH3 MW = 193 CH3 EI 70ev

CH3 CH2 CH2 C2H8 O HC CH3 CN N H O

H3CO m/z = 58 CH3

m/z = 135 m/z = 135

Scheme 4.1: EI fragmentation pattern of the underivatized compounds 1-7

This lack of mass spectral specificity in addition to the possibility of chromatographic co-elution, with 3,4-MDMA, could result in misidentification of the

133 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

target drug. Furthermore, the lack of available reference samples could complicate the individual identification of any one of these substances. This constitutes a significant

analytical challenge where the specific identification by gas chromatography-mass

spectrometry (GC-MS) must be based primarily upon the ability of the chromatographic system to separate the regioisomeric/isobaric non-drug substance from the actual drug of interest. Additionally, the ability to distinguish between these regioisomers directly enhances the specificity of the analysis for the target drugs of interest.

In the next phase of this study various perfluoroacylated derivatives of the regioisomeric primary and secondary amines were prepared and evaluated in an effort to

individualize their mass spectra and provide unique marker ions for specific

identification. Acylation of the amines significantly lowers the basicity of nitrogen and

can allow other fragmentation pathways to play a more prominent role in the resulting

mass spectrum.

The mass spectra for the twelve pentafluoropropionyl and heptfluorobutryl

amides are shown in Figures 4.3 and 4.4, respectively. From these spectra a common

peak occurs at m/z 204 and 254 which corresponds to the loss of 135 mass units from the molecular ions at 339 and 389 for PFPA and HFPA amides. This ion at m/z 204 and 254 is the PFPA and HFPA imine species likely formed from the alpha cleavage of the amide nitrogen to eliminate the 4-methoxy-3-methylbenzyl radical as well as the 2, 3- and 3, 4- methylenedioxybenzyl radical. Thus the m/z 204 and 254 ions in the PFPA and HFPA

amides are analogous to m/z 58 in the underivatized species because all these ions

represent the (M-135)+ species. The general fragmentation pattern and structures for the

m/z 204 and 254 ions are shown in Scheme 4.2. The 4-methoxy-3-methylbenzyl cation

134 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

and the methylenedioxybenzyl cation (m/z 135) are fragments common to all spectra in

Figures 4.3 and 4.4. However, the 4-methoxy-3-methylbenzyl cation at m/z 135 in the

perfluoroacyl derivatives shows a very high relative abundance. Indeed the m/z 135 ion is the base peak in all the PFPA derivatives of compounds 2-5 and in the HFBA derivatives of compounds 4 and 5. The remaining two HFBA derivatives of compounds 2 and 3 show the m/z 135 ions as a major fragment of at least 90% relative abundance. This would suggest that the pentafluoroacyl derivatives offer a distinct discrimination between the methylenedioxy and the 4-methoxy-3-methyl substitution patterns based on the difference in relative abundances of the substituted benzyl cation at m/z 135.

The decreased role for the alpha cleavage reaction in the fragmentation of these amides allows the formation of ions more diagnostic of each individual isomer. Acylation weakens the bond between nitrogen and the alkyl carbon of the phenethyl side chain, allowing the formation of charged hydrocarbon species of increased relative abundance.

These hydrocarbons of varying mass significantly individualize the mass spectra and provide specific structure information. The mass spectra in Figures 4.3 and 4.4 illustrate the role of hydrocarbon fragments at m/z 148, 162 and 176 in the electron impact mass spectral differentiation among these regioisomers.

135 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Figure 4.3: Mass Spectra of the PFPA derivatives of compounds 2-7.

Average of 12.672 to 12.805 min.: 111306-3.D Abundance 135148

700000

N C2F5

600000 O H CO 500000 3

CH3 400000 2 300000

200000

91 339 100000 176 119 204 77 42 65 191 220 272281294 324 355 0 m/z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

Average of 12.109 to 12.332 min.: 111306-4.D N C2F5 Abundance 135 O 700000 162 H3CO 650000

600000 CH3

550000 204

500000

450000 3 400000 350000 300000 250000 200000 42 150000 91 119 339 100000 56 147 50000 77 176 220228 259269282 300 324 0 m/ z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

136 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Average of 10.712 to 11.001 min.: 111306-5.D Abundance NH C2F5 135

1800000 O

H3CO 1600000

CH3 1400000 1200000 4

1000000

800000 600000 204

400000 59 176 91 339 200000 42 119 77 164 146 220 237 257263 282 306 324 0 m/ z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

Average of 11.537 to 11.727 min.: 111306-6.D Abundance NH C2F5 135 1200000 O

H3CO 1000000

CH3

800000 5

600000 176

400000

339 200000 91 41 161 119 65 77 204 147 220 237246 263 294 310320 0 m/ z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

137 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Average of 11.758 to 11.926 min.: 111306-2.D Abundance 204 O 650000 O N C2F5 600000

550000 O 500000 450000 400000 6 350000

300000 162 250000

200000 339 150000 42

100000 77 119 50000 56 135 91 147 177 220 242 259263 282 300 324 0 m/z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

Average of 12.777 to 13.078 min.: 111306-1.D Abundance N C F 204 O 2 5

O O 800000

7 162 600000

400000 135 339 42 200000 77 119 51 91 147 191 220 243 259269282 300 324 0 m/ z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

138 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Figure 4.4: Mass spectra of the HFBA derivatives of compounds 2-7

Average of 13.152 to 13.339 min.: 111306-9.D Abundance 148

650000 N C3F7

600000

550000 O

H3CO 500000

CH 450000 3

400000 2 350000 300000 250000 200000

150000

91 389 100000 226

69 254 169 50000 77 42 119 178 197 271281 313322 341 370 0 m/z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380

Average of 12.605 to 12.795 min.: 11130610.D Abundance 254

800000 N C3F7 750000 135 162 700000 O 650000 H3CO 600000

550000 CH3

500000

450000 3

400000

350000 210 300000 250000

200000 42

150000 91 69 100000 389

50000 77 120 220 191 256 281 313319 341 374 0 m/z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380

139 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Average of 11.193 to 11.472 min.: 11130611.D Abundance 135 NH C3F7 1600000

1500000 O

1400000 H3CO

1300000 CH3 1200000 1100000 4 1000000

900000

800000

700000 254

600000

500000

400000 389 59 176 300000 91

200000 42

100000 77 121 169 214 374 256 281 313 330 356 0 m/z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380

Average of 12.087 to 12.298 min.: 11130612.D Abundance 135 NH C3F7 700000

650000 O

600000 H3CO

550000 CH3 500000

450000

400000 5

350000 176 300000

250000

200000

389 150000 100000 41 91 161 69 50000 254 77 120 226 360 207 255 281 313328 344 0 m/z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380

140 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Average of 12.311 to 12.479 min.: 111306-8.D Abundance 254

1400000 O

1300000 O N C3F7 1200000

1100000 O 1000000 900000

800000 6

700000

600000

500000 210

162 400000

300000 389 42 200000 69 100000 77 135 105 131 192 220 256 281 313327 350 374 0 m/z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380

Average of 13.268 to 13.512 min.: 111306-7.D Abundance 254

1100000

1000000 N C F O 3 7 900000

800000 O O 700000

600000 162 500000 210 7 400000

300000 135

42 200000 389

6977 100000 105 131 191 220 263 293 310 332 350 370 0 m/z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380

141 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

N R N R

H2C O O H3CO

CH3

N R N R

O

H3CO O

CH3

NH R H N R O

H3CO O

CH3

NH R H N R

O O H3CO

CH3

O

O N R N R

O O

N R N R O

O O O

R=C2F5 , m/z =204 R=C2F5 , m/z =339 R=C3F7 , m/z =254 R=C3F7 , m/z =389

Scheme 4.2: Formation of the (M-135)+ ions in the perfluoroacyl derivatives of the regioisomeric 4-methoxy-3-methylphenethyl amines, 2,3- and 3,4-MDMA.

The spectra for the N-ethyl isomer (compound 2) in Figures 4.3-2 and 4.4-2 show

a base peak at m/z 148 corresponding to the alkene radical cation which occurs from

142 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

hydrogen rearrangement and subsequent fragmentation of the alkyl carbon to nitrogen

bond of the phenethylamine side chain (see Scheme 4.3). This ion at m/z 148 would only

occur for the N-ethyl regioisomer. The spectra in Figures 4.3-3, 4.3-6, 4.3-7, 4.4-3, 4.4-6

and 4.4-7 show the substituted phenylpropane hydrocarbon ion at m/z 162, identifying

these molecules as the PFPA and HFBA derivatives of 4-methoxy-3-

methylmethamphetamine and the 2,3-, 3,4-methylenedioxymethamphetamines

respectively. The proposed mechanism for the formation of the hydrocarbon fragment is

illustrated in Scheme 4.3.

R H 4 R4 O O

H N R H 3 N R3 C C R2 H CH R R5 2 C R2 R1 R 5 R5 R 1 R1

R =R = H, m/z= 148 (Compound 2) R3 = C2H5 (Compound 2) 1 2 R = H, R = CH , m/z =162 (Compounds 3,6,7) CH3 (Compounds 3,6,7) 1 2 3 R =R = CH , m/z =176 (Compound 4) H2 (Compound 4,5) 1 2 3 R =H, R = C H , m/z=176 (Compound 5) R4 = C2F5, PFPA Derivatives 1 2 2 5 C3F7, HFBA Derivatives R5 = 4-Methoxy-3-methyphenyl (Compounds 2-5) = 2,3-Methylenedioxyphenyl (Compound 6) =3,4-Methylenedioxyphenyl (compound 7)

Scheme 4.3: Mechanism for the formation of the alkene radical cation in the perfluroacyl derivatives ofthe regioisomeric 4-methoxy-3-methylphenethyl amines, 2,3- and 3,4-MDMA.

However the base peak of m/z 135 in the spectra of the PFPA derivative of compound 3 offer a significant discrimination of 4-methoxy-3-methylmethamphetamines over its two isobaric methylenedioxymethamphetamines isomers (compounds 6 and 7) .

The spectra for the PFPA and HFBA derivatives of the primary amines (compounds 4

143 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

and 5) show ions at m/z 176 from the corresponding substituted phenylbutene radical cation. This m/z 176 results from hydrogen rearrangement and subsequent fragmentation of alkyl carbon to nitrogen bond. The lower abundance of m/z 176 for the 4-methoxy-3- methylphentramine (compound 4) may be attributed to steric inhibition of hydrogen transfer in the alpha, alpha-dimethyl substitution pattern.

While the alkene ions at 148, 162, and 176 help to identify the side chain regioisomers, one complicating factor in the PFPA derivatives for the N- ethylphenethylamines (Figure 4.3-2) is the appearance of an ion at m/z 176 in addition to the base peak at m/z 148. The 176 ion suggests a four carbon chain directly attached to the aromatic ring as occurs for the alpha-ethyl- (compound 5) and alpha, alpha-dimethyl-

(compound 4) phenethylamines (Figures 4.3-4, 4.3-5 and 4.4-4, 4.4-5). The m/z 176 ion in the spectra for the PFPA derivatives of the N-ethyl regioisomers (Figure 4.3-2) is a rearrangement of the m/z 204 ion resulting in the loss of mass 28 (the N-ethyl group) via hydrogen transfer (see Scheme 4.4). This coincidental common mass from two different fragmentation pathways is confirmed by examining the mass spectra for the HFBA derivatives of the N-ethyl-phenethylamines shown in Figure 4.4-2. The loss of 28 mass units from the acylimine fragment at m/z 254 yields the equivalent fragment ion at m/z

226. Thus, the HFBA derivatives may offer more characteristic ions for individualization of these regioisomeric substances.

A comparison of the mass spectra for the PFPA and HFBA derivatives of all three ring substituted methamphetamines (Compounds 3, 6 and 7) indicates unique ions at m/z

160 and m/z 210 (see Figures 4.3-3, 4.3-6, 4.3-7; 4.4-3, 4.4-6, and 4.4-7). This mass difference of 50 (CF2) suggests these ions contain the perfluoroalkyl group for each

144 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

derivative, C2F5 and C3F7 respectively. An analysis of the masses of the components

which make up the fragment at m/z 160 for example include C2F5 (119 mass units) and

CH3 (15 mass units) leaving only a mass of 26 available for the total of 160. The mass 26

would correspond to CN and the proposed mechanism for the formation of

+ (C2F5CNCH3) is shown in Scheme 4.5. An equivalent fragmentation pathway has been further supported by the analysis of the mass spectra of the PFPA and HFBA derivatives of d3- and d5-MDMA in chapter 1.

H CH2 H

CH2 H2CN

H2CN O C R R O

R=C2F5, m/z = 204 R=C2F5, m/z = 176 R=C3F7, m/z = 254 R=C3F7, m/z = 226

Scheme 4.4: Mechanism for the loss of mass 28 from the perfluoroacyl-N-ethyl- imine cation.

145 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

H C R H3C R 3 NC N C H3C NCR CH O H3C CH O

H3C R= C2F5, m/z= 160 R= C2F5, m/z= 204 R= C3F7, m/z= 210 R= C3F7, m/z= 254

Scheme 4.5: Mechanism for the formation of the m/z 160 and m/z 210 ions in the mass spectra of the perfluoroacyl derivatives of the ring substituted methamphetamines (Compounds 3, 6 and 7).

Gas Chromatography of the regioisomeric 4-methoxy-3-methylphenethyl amines, 2,3- and 3,4-MDMA.

The PFPA and HFBA derivatives of the six primary and secondary amines were compared on two stationary phases of the same dimensions, 30 m x 0.25 mm and 0.25

µm depth of film. The stationary phases compared in this study were the relatively nonpolar phase 100% dimethyl polysiloxane (RTX-1) and the more polar trifluoropropyl methyl polysiloxane (Rtx-200). Several temperature programs were evaluated and one program showing the best compromise between resolution and analysis time was used to generate the chromatograms in Figure 4.5. The chromatograms of the perfluoroacyl compounds show that the 2,3-MDMA elutes before the corresponding 3,4-isomer, which elutes last. When the ring substitution pattern is held constant (4-methoxy-3-methyl), the side chain elution order is secondary amides before the tertiary amides and in this limited set of examples branched isomers elute before the more linear ones. Therefore, the

146 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

amides of compound 4 elute first followed by the amide of compound 5 (both secondary

amides), then the amides of compound 3 (the methamphetamine side chain) and finally

the amides of compound 2 (the more linear of the tertiary amides). The amides of 2,3-

MDMA elute between the secondary and tertiary amides in this group of compounds.

Perhaps the most useful information in these chromatograms is the relative elution of the derivatized controlled substance 3,4-MDMA and its closest eluting regioisomeric and isobaric equivalents. Both the PFPA and HFBA derivatives of 3,4- MDMA elute last and

the N-ethyl-4-methoxy-3-methylphenethylamine PFPAs and HFBAs are the closest

eluted compounds in the 4-methoxy-3-methyl phenethylamine series. The isobaric N-

ethyl amides show very distinct mass spectra with several characteristic ions to

differentiate it from the corresponding amides of the drug of abuse 3,4-MDMA. Thus,

derivatization methods coupled with both chromatographic and mass spectral procedures

can allow for the complete differentiation of the side chain substitution pattern of the 4-

methoxy-3-methylphenethylamines from 3,4-MDMA and its regioisomer, 2,3-MDMA.

147 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Abundance 4 TIC: 121206-1.D Abundance

3200000

3000000 2800000 3 2600000 5 6 7 2400000 2 2200000

2000000 1800000 1600000 1400000 1200000 1000000 800000 600000 400000 200000

0 Time--> 12.00 14.00 16.00 18.00 20.00 22.00 24.00

Time (minutes) Abundance

4TIC: 121206-4.D Abundance 4000000 3 3500000 5 2 6 3000000 7

2500000

2000000

1500000

1000000

500000

0 Time--> 12.00 14.00 16.00 18.00 20.00 22.00

Time (Minutes)

Figure 4.5: GC Chromatograms of the PFPA (A) and HFBA (B) derivatives of compounds 2-7. Rtx-200 column.

148 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Conclusions of Chapter 4

3,4-MDMA , 2,3-MDMA and the five side chain regioisomers of 4-methoxy-3-

methyl phenethylamines are a unique subset of regioisomeric and isobarc molecules; each compound has a molecular weight of 193 and yields a base peak at m/z 58 in the mass spectrum from the loss of the corresponding methylenedioxybenzyl and 4- methoxy-3-methylbenzyl groups respectively. Thus the traditional electron impact mass spectrum provides little structural information for differentiating among these seven compounds. Because of the unique similarity of these compounds by mass spectrometry, the specific identification of a compound such as 3,4-MDMA requires methods to eliminate other regioisomeric and isobaric substances.

This elimination process could be accomplished on the basis of chromatography alone but ultimately would require the analyst to use reference samples of the other substances. Derivatization of the primary and secondary amines with various acylating agents yields amides with improved resolution compared to the underivatized amines by capillary gas chromatography on TRx-1 and TRX-200 stationary phases. Additionally, the perfluoroacyl derivatives significantly individualize the mass spectra for these amides and allow for specific identification. The individualization is the result of fragmentation of the alkyl carbon-nitrogen bond yielding characteristic hydrocarbon fragments at m/z

148, 162 and 176 as well as other unique fragments.

149 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Chapter 5

Gas Chromatographic and Mass Spectral Studies on Acylated Side

Chain Regioisomers of 3-Methoxy-4-methyl-phenethylamine and 4-

Methoxy-3-methyl-phenethylamine

This chapter describes the MS and GC behavior of a set of selected compounds having nonequivalent ring substituents at the 3- and 4-position of the aromatic ring. Thus, these ten compounds represent all the possible regioisomeric methoxy methyl phenethylamines having the same 3,4 substitution pattern as 3,4-MDMA.

Mass Spectral Studies on Side Chain Regioisomers of 3-Methoxy-4-methyl-

phenethylamine and 4-Methoxy-3-methyl-phenethylamine

Mass spectrometry is the primary method for confirming the identity of drugs and related substances in forensic samples. The mass spectra of phenethylamines are characterized by a base peak formed from an amine initiated alpha-cleavage reaction involving the carbon-carbon bond of the ethyl linkage between the aromatic ring and the amine. In 3,4-methylenedioxymethamphetamine (MW=193) the alpha-cleavage reaction yields the substituted imine fragment at m/z 58 and the 3,4-methylenedioxybenzyl fragment at mass 135/136 (for the cation and the radical cation, respectively). Thus, the mass spectrum for 3,4-methylenedioxymethamphetamine contains major ions at m/z 58 and 135/136 as well as other ions of low relative abundance [ Chapter 1].

The side chain regioisomers of 3-methoxy-4-methyl phenethylamine and 4- methoxy-3-methyl phenethylamine (Compounds 1-10, Figure 5.1) have the potential to

150 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

yield a mass spectrum essentially equivalent to 3,4-MDMA. All have molecular weight

of 193 and major fragment ions in their electron ionization mass spectra at m/z 58 and

135/136 (Figure 5.2). The individual mass spectra for 2,3- and 3,4-MDMA are also

presented in Figure 5.2 (Compounds 11 and 12). The isobaric methoxy-methyl-benzyl

+ + (C9H11O) fragments have the same mass as the methylenedioxybenzyl (C8H7O2) cation occurring at m/z 135. Furthermore the m/z 58 ion in the ring substituted methoxy-methyl phenethylamine is regioisomeric with that obtained in the mass spectra of both 2,3 and

3,4-MDMA (Scheme5.1). This lack of mass spectral specificity for the isomers shown in

Figure 5.2, in addition to the possibility of chromatographic co-elution with 3,4-MDMA, could result in misidentification in this series of drugs and drug-like substances

Figure 5.1: Structures of Side Chain Regioisomers of 3-Methoxy-4-methyl- phenethylamine, 4-Methoxy-3-methyl-phenethylamine, 2,3- and 3,4-MDMA

N N

H3CO H3C

CH3 OCH3 N,N-Dimethyl-4-methoxy-3-methyl N,N-Dimethyl-3-methoxy-4-methyl phenethylamine phenethylamine

1 6 H H N N

H3CO H3C

CH3 OCH3 N-Ethyl-4-methoxy-3-methyl N-Ethyl-3-methoxy-4-methyl phenethylamine phenethylamine 2 7

151 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

H H N N

H C 3 H3CO

OCH 3 CH3 3-Methoxy-4-methyl methamphetamine 4-Methoxy-3-methyl methamphetamine

3 8

NH2 NH2

H3C H3CO

OCH3 3-Methoxy-4-methyl phentramine CH3 3-Methoxy-4-methyl phentramine

4 9

NH2

NH2

H3C

H3CO OCH3 3-Methoxy-4-Methyl BDB CH3 5 4-Methoxy-3-Methyl BDB 10

O H N O H O N

O 12 11 (3,4-MDMA) (2,3-MDMA)

.

152 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

C2H8 H2 H2 C C CH3 N O C CH

H3CO HN O

CH3 CH3 MW = 193

EI 70ev

CH3 CH2 CH2 C2H8 O HC CH3 CN N H3CO H O

CH3 m/z = 135 m/z = 58 m/z = 135

Scheme 5.1: Structures of the major EI fragments for 3-Methoxy-4-methyl- phenethylamine, 4-Methoxy-3-methyl-phenethylamine, 2,3- and 3,4-MDMA

Figure 5.2: Mass Spectra of 3-Methoxy-4-methyl-phenethylamine, 4-Methoxy-3- methyl-phenethylamine, 2,3- and 3,4-MDMA.

N

H3C

OCH3 1 Abundance

Average of 12.281 to 12.316 min.: 071022-01.D\ data.ms 60000 58.1

55000

50000

45000

40000

35000

30000

25000

20000

15000

10000

5000 91.1 42.1 77.0 103.1 115.0 135.1 149.1 161.9 176.0 193.1 0 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 m/z-->

153 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

H N

H3C

OCH3 2 Abundance

Average of 13.073 to 13.143 min.: 071022-02.D\ data.ms 58.1 70000 65000 60000 55000 50000 45000 40000 35000 30000 25000 20000 15000 136.1 10000 91.1 5000 77.0 44.0 103.1 121.1 149.1 161.1 176.1 191.1 0 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 m/z-->

H N

H3C

OCH3 3 Abundance

Average of 12.391 to 12.520 min.: 071022-03.D\ data.ms 58.1 2200000

2100000

2000000

1900000

1800000

1700000

1600000

1500000

1400000

1300000

1200000

1100000

1000000

900000

800000

700000

600000

500000

400000

300000

200000 91.1 135.1 77.1 100000 42.1 103.1 120.1 147.1 162.1 178.1 192.1 0 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 m/z-->

154 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

NH2

H3C

OCH3 4 Abundance

Average of 11.995 to 12.024 min.: 071022-04.D\ data.ms 58.1 1000000

950000

900000

850000

800000

750000

700000

650000

600000

550000

500000

450000

400000

350000

300000

250000

200000

150000

100000 91.1 135.1 50000 42.1 77.1 178.1 103.1 121.1 148.1 161.1 191.1 0 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 m/z-->

NH2

H3C

OCH3 5 Abundance

Average of 13.359 to 13.435 min.: 071022-05.D\ data.ms 58.1 340000

320000

300000

280000

260000

240000

220000

200000

180000

160000

140000

120000

100000

80000

60000

136.1 40000 91.1 20000 41.1 77.1 121.1 103.1 164.1 149.1 176.1 193.1 0 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 m/z-->

155 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

N

H3CO

CH3 6 Abundance

Average of 12.391 to 12.461 min.: 071022-06.D\ data.ms 1250000 58.1

1200000

1150000

1100000

1050000

1000000

950000

900000

850000

800000

750000

700000

650000

600000

550000

500000

450000

400000

350000

300000

250000

200000

150000

100000 91.1 42.1 50000 77.1 135.1 149.1 193.2 103.1 120.1 162.1 176.1 0 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 m/z-->

H N

H3CO

CH3 7 Abundance

Average of 13.528 to 13.767 min.: 071022-07.D\ data.ms 58.1 4600

4400

4200

4000

3800

3600

3400

3200

3000

2800

2600

2400

2200

2000 136.1 44.0 1800

1600

1400

1200

1000

800

600 91.0

400 77.0 200 121.0 149.0 191.1 103.0 176.0 0 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 m/z-->

156 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

H N

H3CO

CH3 8 Abundance

Average of 12.619 to 12.683 min.: 071022-08.D\ data.ms 58.1 1150000

1100000

1050000

1000000

950000

900000

850000

800000

750000

700000

650000

600000

550000

500000

450000

400000

350000

300000

250000

200000

150000 136.1 100000 91.1

50000 77.1 42.1 103.1 121.1 150.1 162.1 178.1 192.2 0 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 m/z-->

NH2

H3CO

CH3 9 Abundance

Average of 12.240 to 12.386 min.: 071022-09.D\ data.ms 58.1 280000

260000

240000

220000

200000

180000

160000

140000

120000

100000

80000

60000

40000 135.1 91.1 20000 42.1 77.0 121.1 178.1 103.1 161.1 148.1 193.1 0 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 m/z-->

157 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

NH2

H3CO

CH3 10

Abundance

Average of 13.662 to 14.321 min.: 071022-10.D\ data.ms 50000 58.1

48000

46000

44000

42000

40000

38000

36000

34000

32000

30000

28000

26000

24000

22000 136.1 20000

18000

16000

14000

12000

10000

8000

6000 91.1

4000 41.1 121.0 74.5 2000 164.1 103.1 149.1 176.1 191.1 0 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 m/z-->

O

H O N

11 Abundance

Average of 12.444 to 12.555 min.: 080907-06.D\ data.ms 58.1 1600000

1500000

1400000

1300000

1200000

1100000

1000000

900000

800000

700000

600000

500000

400000

300000

200000 77.1 100000 135.0 42.1 88.6 105.1 118.1 147.1 163.1 178.1 192.1 0 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 m/z-->

158 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

H N O

O 12 Abundance

Average of 13.027 to 13.167 min.: 080907-07.D\ data.ms 58.1 1500000

1400000

1300000

1200000

1100000

1000000

900000

800000

700000

600000

500000

400000

300000

200000 135.0 100000 77.0 42.1 88.6 105.0 120.1 148.1 163.1 178.1 193.1 0 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 m/z-->

The second phase of this study involved the preparation and evaluation of various perfluoroacylated derivatives of the regioisomeric primary and secondary amines, in an effort to individualize their mass spectra via formation of unique marker ions and improved chromatographic resolution. Acylation of the amines generally lowers the basicity of nitrogen and can allow other fragmentation pathways to play a more prominent role in the resulting mass spectrum. Of course the tertiary amine (compounds 1 and 6) do not form a stable amide derivative.

The mass spectra for the twenty pentafluoropropionyl and heptfluorobutryl amides are shown in Figures 5.3 and 5.4, respectively. From these spectra a common peak occurs at m/z 204 and 254 which corresponds to the loss of 135 mass units from the molecular ions at 339 and 389 for PFPA and HFPA amides. This ion at m/z 204 and 254 is the PFPA and HFPA imine species likely formed from the alpha cleavage of the amide

159 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

nitrogen to eliminate the methoxy-methyl-benzyl or methylenedioxybenzyl radical. Thus the m/z 204 and 254 in PFPA and HFPA amides are analogous to m/z 58 in the underivatized species because all these ions represent the (M-135)+ species (Scheme 5.2).

The 3-methoxy-4-methylbenzyl cation, 4-methoxy-3-methylbenzyl cation and the

methylenedioxybenzyl cation (m/z 135) are fragments common to all spectra in Figures

5.3 and 5.4.

Figure 5.3: Mass spectra of the PFPA derivatives of compounds 2-5 and 7-12

N C2F5

O

H3C

OCH3 2 Abundance

Average of 15.976 to 16.209 min.: 071023-11.D\ data.ms 2600000 148.1 2400000

2200000

2000000

1800000

1600000

1400000

1200000

1000000

800000 176.0 600000 204.1

400000 339.1 91.1 119.0 200000 56.1 229.1 251.0 272.1 310.1 0 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 m/z-->

160 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

N C2F5

O

H3C

OCH3 3 Abundance

Average of 15.358 to 15.737 min.: 071023-12.D\ data.ms 3000000 204.1 2800000

2600000

2400000

2200000

2000000 162.1 1800000

1600000

1400000

1200000

1000000

800000

600000 135.1 400000 42.1 91.1 200000 339.1 65.1 113.0 228.1 269.0 300.1 0 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 m/z--> NH C2F5

O

H3C

OCH3 4 Abundance

Average of 13.895 to 14.117 min.: 071023-13.D\ data.ms 3000000 204.1 2800000

2600000

2400000

2200000

2000000

1800000

1600000

1400000

1200000

1000000

800000 136.1

600000 176.1 59.1 400000 339.1 91.1 200000 114.0 237.1 260.1 282.1 306.1 0 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 m/z-->

161 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

NH C2F5

O

H3C

OCH3 5 Abundance

Average of 14.822 to 14.979 min.: 071023-14.D\ data.ms 1800000 176.1

1600000 135.1 1400000

1200000

1000000

800000 204.1 600000 339.1 400000 91.1 200000 41.1 65.1 310.1 113.0 237.1 260.1 282.1 0 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 m/z-->

N C2F5

O

H3CO

CH3 7 Abundance

Average of 16.495 to 16.839 min.: 071023-15.D\ data.ms 2800000 135.1 2600000

2400000

2200000

2000000

1800000

1600000

1400000

1200000

1000000

800000

600000

400000 91.1 176.0 200000 204.1 339.1 65.1 42.1 113.0 229.1 272.1 294.0 0 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 m/z-->

162 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

N C2F5

O

H3CO

CH3 8 Abundance

Average of 15.807 to 16.250 min.: 071023-16.D\ data.ms 2200000 135.1

2000000

1800000 162.1 1600000

1400000 204.1

1200000

1000000

800000

600000

400000 91.1 42.1 200000 339.1 65.0 228.0 269.0 308.0 0 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 m/z--> NH C2F5

O

H3CO

CH3 9 Abundance

Average of 14.111 to 14.665 min.: 071023-17.D\ data.ms 3000000 135.1

2800000

2600000

2400000

2200000

2000000

1800000

1600000

1400000

1200000

1000000

800000 204.0

600000 176.1 400000 91.0 59.0 339.1 200000 113.1 237.1 263.1 306.1 0 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 m/z-->

163 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

NH C2F5

O

H3CO

CH3 10 Abundance

Average of 15.148 to 15.358 min.: 071023-18.D\ data.ms 3000000 135.1 2800000

2600000

2400000

2200000

2000000

1800000

1600000

1400000

1200000 176.1 1000000

800000

600000

400000 91.1 339.1 200000 41.1 65.1 204.1 113.0 237.0 263.1 288.1 310.1 0 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 m/z-->

O

O N C2F5

O 11 Abundance

Average of 15.597 to 15.941 min.: 071023-19.D\data.ms 204.1 3000000

2800000

2600000

2400000

2200000

2000000

1800000

1600000

1400000 162.1 1200000

1000000

800000

600000

400000 119.0 339.1 42.1 77.1 200000 241.1 263.1 300.1 0 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 m/z-->

164 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

N C F O 2 5

O O 12

Abundance

Average of 16.769 to 17.048 min.: 071023-20.D\ data.ms 204.1 2000000

1800000

1600000 162.1 1400000

1200000

1000000 135.1

800000

600000

400000 339.1 42.1 77.1 200000 105.1 243.1 269.0 300.1 0 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 m/z--> Figure 5.4: Mass Spectra of the HFBA derivatives of compounds 2-5 and 7-12

N C3F7

O

H3C

OCH3 2 Abundance

Average of 16.611 to 16.786 min.: 071023-01.D\ data.ms 3000000 148.1

2800000

2600000

2400000

2200000

2000000

1800000

1600000

1400000

1200000

1000000

800000 226.0

600000 254.1

400000

91.1 389.1 200000 117.1 56.1 178.0 282.0 322.1 360.1 0 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 m/ z-->

165 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

N C3F7

O

H3C

OCH3 3 Abundance

Average of 15.953 to 16.221 min.: 071023-02.D\ data.ms 254.1 3200000

3000000

2800000

2600000

2400000

2200000

2000000 162.1

1800000

1600000

1400000

1200000

210.0 1000000

800000

600000

135.1 400000

42.1 91.1 200000 389.1

293.1 319.0 350.1 0 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 m/ z-->

NH C3F7

O

H3C

OCH3 4 Abundance

Average of 14.431 to 14.723 min.: 071023-03.D\ data.ms 254.1 3200000

3000000

2800000

2600000

2400000

2200000

2000000

1800000

1600000

1400000

1200000

1000000

800000

136.1 600000 176.1

59.1 400000 389.1 91.1 214.0 200000

280.0 307.1 356.1 0 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 m/ z-->

166 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

NH C3F7

O

H3C

OCH3 5 Abundance

Average of 15.358 to 15.661 min.: 071023-04.D\ data.ms 2000000 176.1 1900000 1800000 1700000 1600000 135.1 1500000 1400000 1300000 1200000 1100000 1000000 900000 254.1 800000 700000 600000 500000 400000 389.1 300000 91.1 226.0 200000 41.1

100000 360.1 280.0 307.1 334.1 0 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 m/ z-->

N C3F7

O

H3CO

CH3 7 Abundance

Average of 17.089 to 17.386 min.: 071023-05.D\ data.ms 2600000 135.1

2400000

2200000

2000000

1800000

1600000

1400000

1200000

1000000

800000

600000

400000 91.1 226.0 200000 169.0 254.0 389.1 65.1 40.1 196.9 279.1 322.1 359.1 0 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 m/ z-->

167 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

N C3F7

O

H3CO

CH3 8 Abundance

Average of 16.425 to 16.740 min.: 071023-06.D\ data.ms 135.1 2300000 2200000 2100000

2000000 162.1 1900000 1800000 1700000 254.1 1600000 1500000 1400000 1300000 1200000 1100000 1000000 900000 800000 700000 600000 210.0 500000 400000 300000 91.1

200000 42.1 100000 389.1 293.1 319.0 350.1 0 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 m/ z--> NH C3F7

O

H3CO

CH3 9 Abundance

Average of 14.764 to 15.218 min.: 071023-07.D\ data.ms 3600000 135.1 3400000 3200000 3000000 2800000 2600000 2400000 2200000 2000000 1800000 1600000 1400000 1200000 254.1 1000000 800000 600000 176.1 400000 91.1 59.1 389.1 200000 214.0 288.0 313.1 356.1 0 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 m/ z-->

168 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

NH C3F7

O

H3CO

CH3 10 Abundance

Average of 15.731 to 16.267 min.: 071023-08.D\ data.ms 3800000 135.1

3600000

3400000

3200000

3000000

2800000

2600000

2400000

2200000

2000000

1800000 1600000 176.1 1400000

1200000 1000000

800000

600000

400000 91.1 389.1 200000 41.1 254.1 226.0 66.0 201.0 288.0 313.1 360.1 0 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 m/z-->

O

O N C3F7

O 11

Abundance

Scan 2013 (16.320 min): 071023-09.D\ data.ms 254.1 3400000 3200000 3000000 2800000 2600000 2400000 2200000 2000000 1800000 1600000

1400000 162.1 210.1 1200000 1000000 800000 600000 135.1 400000 389.1 42.1 77.1 200000 105.1 291.0 320.1 350.1 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 m/z-->

169 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

N C F O 3 7

O O 12 Abundance

Average of 17.357 to 17.841 min.: 071023-10.D\ data.ms 254.1 2300000

2200000

2100000

2000000

1900000

1800000

1700000 162.1 1600000

1500000

1400000

1300000

1200000

1100000

1000000 135.1 900000 210.0

800000

700000

600000

500000

400000

300000 77.1 42.1 200000 389.1 105.1 100000 282.9 310.0 350.1 0 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 m/z--> R3

R1 R3 N O N

H3CO R1 R2 X R2 O

CH3 X

R1+R2+R3 = C2H7 m/z = 204, X= C2F5 C2F5= X,, MW = 339 m/z = 254, X= C3F7 C3F7= X, MW= 389

H C N XC R2 3

H3CO R1

m/z = 160 (X = C2F5) CH3 m/z = 210 (X = C3F7) m/z = 148, R1=R2=H,cpd 2 and 7 Cpds ,3,8,11 and 12 m/z = 162, R1= CH3; R2=H,cpds ,3,8, 11 and 12 m/z = 176, R1= CH3; R2= CH3, cpds 4 and 9 m/z = 176,R1= C2H5; R2= H, cpds 5 and 10

Scheme 5.2: Structures of the major EI fragments for the perfluoroacylated 3- Methoxy-4-methyl-phenethylamines and 4-Methoxy-3-methyl-phenethylamines

170 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Indeed the m/z 135 ion is the base peak in all the PFPA and HFBA derivatives of

compounds 7-10 and this increased relative intensity may serve as an indicator ion for discrimination of the 4-methoxy-3-methyl ring substitution pattern from other ring substitution patterns in this study. The decreased role for alpha cleavage reaction in the fragmentation of these amides allows the formation of ions more diagnostic of each individual isomer. Acylation weakens the bond between nitrogen and the alpha-carbon

allowing the formation of charged hydrocarbon species of increased relative abundance.

These hydrocarbons of varying mass identify the number of carbons attached directly to

the aromatic ring. The mass spectra in Figures 5.3 and 5.4 show hydrocarbon fragments

at m/z 148, 162 and 176 for a two-carbon, three-carbon and four-carbon chain attached

directly to the aromatic ring.

The spectra for the N-ethyl derivatives in Figures 5.3-2, 5.-7, 5.4-2 and 5.4-7 show a base peak at m/z 148 corresponding to the two-carbon alkene radical cation which occurs from hydrogen rearrangement and subsequent fragmentation of the alkyl carbon to nitrogen bond of the phenethylamine side chain. This ion at m/z 148 would only occur for the N-ethyl regioisomer. The relative abundance of both m/z 148 and 135 offer a clear discrimination of compound 2 from its direct regioisomer (compound 7) as well as from the other isomers. The spectra in Figures 5.3-3, 5.3-8, 5.3-11, 5.3-12, 5.4-3, 5.4-8, 5.4-11

and 5.4-12 show the ring substituted methoxy-methyl or the

methylenedioxyphenylpropene hydrocarbon ion at m/z 162 (the three-carbon alkene

radical cation), identifying this molecules as the PFPA and HFBA derivatives containing the methamphetamine side chain, compounds 3, 8, 11 and 12 respectively. The spectra for the PFPA and HFBA derivatives of the primary amines 4, 5, 9 and 10 show ions at

171 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

m/z 176 from the four-carbon alkene radical cation of the 3-methoxy-4-methyl- and 4-

methoxy-3-methyl-phenethylamines. This m/z 176 results from hydrogen rearrangement

and subsequent fragmentation of the alkyl carbon to nitrogen bond yielding the

methoxymethyl-phenylbutene radical cation. The lower abundance of m/z 176 for

compounds 4 and 9 may be attributed to steric inhibition of hydrogen transfer in the

alpha, alpha-dimethyl substitution pattern.

While the alkene ions at 148, 162, and 176 help to identify the side chain

regioisomers, one complicating factor in the PFPA derivatives for the N-

ethylphenethylamines (Figures 5.3-2 and 5.3-7) is the appearance of an ion at m/z 176 in

addition to the base peak at m/z 148. Based on the previous discussion, the m/z 176 ion

suggests a four carbon chain directly attached to the aromatic ring as occurs for the alpha-

ethyl- and alpha, alpha-dimethyl-phenethylamines (Figures 5.3-4, 53-5, 5.3-9, 5.3-10 and

5.4-4, 5.4-5, 5.4-9, 5.4-10). The m/z 176 ion in the spectra for the PFPA derivatives of

the N-ethyl regioisomers (Figures 5.3-2 and 5.3-7) is a rearrangement of the m/z 204 ion resulting in the loss of mass 28 (the N-ethyl group) via hydrogen transfer. This

coincidental common mass from two different fragmentation pathways is confirmed by

examining the mass spectra for the HFBA derivatives of the N-ethyl-phenethylamines

shown in Figures 5.4-2 and 5.4-7. The loss of 28 mass units from the acylimine fragment

at m/z 254 yields the equivalent fragment ion at m/z 226. Thus, the HFBA derivatives

may offer more characteristic ions for individualization of these regioisomeric substances

compared to the PFPA derivatives.

A comparison of the PFPA derivatives for compounds 3, 8, 11 and 12 (Figures

5.3-3, 5.3-8, 5.3-11 and 5.3-12) with their HFBA derivatives (Figures 5.4-3, 5.4-8, 5.4-

172 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

11 and 5.4-12) indicates unique ions at m/z 160 and m/z 210. This mass difference of 50

(CF2) suggests these ions contain the perfluoroalkyl group for each derivative, C2F5 and

C3F7 respectively. Additional information about these ions were obtained in previous

deuterium labeling studies which confirmed that methyl group on nitrogen is a part of this

resulting fragment. The remaining mass 26 would correspond to CN and the proposed

structures of m/z 160 and 210 are shown in Scheme 5.2.

Gas Chromatography of 3-Methoxy-4-methyl-phenethylamine, 4-Methoxy-3-

methyl-phenethylamine, 2,3- and 3,4-MDMA

The PFPA and HFBA derivatives of the primary and secondary amine side chain

regioisomers of the ring substituted methoxy methyl phenethyl amines, 2,3-MDMA and

3,4-MDMA were compared on a 100% dimethyl polysiloxane (Rtx-1) stationary phase.

Several temperature programs were evaluated and one program showing the best compromise between resolution and analysis time was used to generate the chromatograms in Figure 5.5. The chromatograms show that when the ring substitution pattern is held constant (i.e. 3-methoxy-4-methyl- or 4-methoxy-3-methyl-) the two secondary amides elute before the two tertiary amides. Additionally, in every case in this limited set of compounds the branched side chain elutes before the straight chain isomer when the ring substitution pattern and the degree of amide substitution are constant, regardless of the derivatizing agent. Therefore, the alpha, alpha-dimethyl isomer elutes first followed by the alpha-ethyl isomer (both secondary amides), then the methamphetamine, and N-ethyl phenethylamines (the two tertiary amides).

173 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

When the side chain is held constant, the 3-methoxy-4-methyl ring substitution

pattern elutes before the 4-methoxy-3-methyl ring substitution pattern and this elution

order is the same for both the PFPA and the HFBA derivatives. Perhaps the most useful

information in these chromatograms is the relative elution of the derivatized controlled

substance 3,4-MDMA and its closest eluting regioisomeric equivalents. Both the PFPA

and HFBA derivatives of 3,4-MDMA elute after the N-ethyl-3-methoxy-4-methyl

phenethylamine and 4-methoxy-3-methylphenethylamine PFPAs and HFBAs, both the

N-ethyl regioisomers show very distinct mass spectra with several characteristic ions to differentiate these compounds from the drug of abuse 3,4-MDMA. Thus, derivatization methods coupled with chromatographic and mass spectral procedures can allow for the characterization and differentiation of these ten uniquely isomeric substances. The individualization is possible without the need for reference samples of all these uniquely similar substances.

174 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Abundance 11 8 TIC: 071031-02.D\5 data.ms 2200000 A 10 3 2000000 9 1800000

1600000 4

1400000 2 12

1200000

1000000

800000

600000

400000

200000

11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 Time-->

9 Abundance

TIC: 071101-01.D\ 5 data.m10 3 s 1600000 11 1500000

1400000 7 12 4 1300000 8

1200000 1100000 B 1000000 2 900000

800000

700000

600000

500000

400000

300000

200000

100000

11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 Time-->

Figure 5.5: GC Separation of the PFPA (A) and HFBA (B) derivatives of compounds 2-5 and 7-12; Rtx-1 column.

175 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Conclusions of Chapter 5

3,4-MDMA , 2,3-MDMA and ten side chain regioisomers of 3-methoxy-4- methyl-phenethylamine and 4-methoxy-3-methyl-phenethylamine are a unique subset of regioisomeric and isobaric molecules; each compound has a molecular weight of 193 and yields a base peak at m/z 58 in the mass spectrum from the loss of the corresponding methylenedioxybenzyl or the mass equivalent isobaric ring substituted methoxy methyl benzyl groups. Thus the traditional electron impact mass spectrum provides little structural information for differentiating among these ten compounds.

Derivatization of the eight primary and secondary amines with various acylating agents yields amides which significantly individualize the mass spectra for these amides and allow for specific identification. The individualization is the result of fragmentation of the alkyl carbon-nitrogen bond yielding hydrocarbon fragments at m/z 148, 162 and

176 as well as other unique fragments from these regioisomeric amides. The PFPA and

HFBA derivatives are essentially equivalent for chromatographic purposes however; the

HFBA derivatives offer more unique fragment ions for additional discrimination among these regioisomeric substances. Chromatographic resolution of the acylated amines was achieved on relatively non polar stationary phase Rtx-1 (100% dimethyl polysiloxane).

176 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Chapter 6

Mass Spectral and Gas Chromatographic Studies of Methoxy Methyl

Methamphetamines Isobaric to 3, 4-MDMA.

Isobaric substances are compounds of the same nominal mass but with different elemental composition. There are isobaric substances, which do not contain the methylenedioxy substitution pattern in the aromatic ring, yet they are able to yield the same major fragments in their mass spectra as the controlled drug substance MDMA.

Among these MDMA isobaric substances are the ring substituted methoxy methyl methamphetamines.

Mass Spectral Studies of Methoxy Methyl methamphetamines Isobaric to 3,4-MDMA

The mass spectrum of 3,4-MDMA is characterized by a base peak formed by an

-cleavage reaction involving the carbon-carbon bond of the ethyl linkage between the aromatic ring and the amine. In 3,4-MDMA (MW=193) and its direct regioisomer, 2,3-

MDMA, the -cleavage reaction yields the 3,4-methylenedioxybenzyl and 2,3- methylenedioxybenzyl fragments at mass 135/136 (for the cation and the radical cation, respectively) and the substituted imine fragment at m/z 58. Thus, the mass spectrum for

3,4-MDMA contains major ions at m/z 58 and 135/136 as well as other ions of low relative abundance.

The various methoxy methyl ring substitution patterns of methamphetamine have the potential to yield mass spectra essentially equivalent to 3,4-MDMA and 2,3-MDMA,

177 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

all have molecular weight of 193 and major fragment ions in their electron ionization mass spectra at m/z 58 and 135/136 (Figure 6.1). The isobaric methoxy methyl benzyl

+ + (C9H11O) fragments have the same mass as the methylenedioxybenzyl (C8H7O2) cation occurring at m/z 135. Furthermore the m/z 58 ion in the methoxymethamphetamine is the same imine structure as that obtained in the mass spectra of both 3,4 and 2,3-MDMA

(Scheme 6.1).

H3CO CH2

H3CO H3C m/z = 135 70ev HN CH3 H3C

MW = 193 HC CH3 N H

m/z = 58

Scheme 6.1: General mass spectral fragmentation for the ring substituted methoxy

methyl methamphetamines.

178 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Figure 6.1: Structures and mass spectra of ring substituted methoxy methyl methamphetamines

Structures Mass spectra

Scan 208 (6.163 min): 110605-3.D Abundance 58 4500000 4000000

3500000

3000000

2500000 HN OCH CH 2000000 3 3 1500000 CH3 1 1000000

500000 91 42 77 105 65 115 135 82 121 146147 163 174178 192 0 m/z--> 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Scan 895 (14.093 min): 100605-2.D Abundance 58

4500000

4000000

3500000

3000000

HN 2500000

H3C OCH3 CH3 2000000

1500000 2 1000000

500000 91 105 42 7779 65 136 115121 146147 160 174178 192194 0 m/ z--> 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

179 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Scan 869 (13.789 min): 100605-3.D Abundance 58 2800000 2600000 2400000

2200000 2000000 1800000 1600000 H3C 1400000 1200000 HN 1000000 OCH3 CH3 800000 600000

3 400000

200000 91 77 105 42 65 79 136 115121 146147 160 178 192 0 m/z--> 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Scan 226 (6.372 min): 110605-2.D Abundance 58 5000000 4500000 CH3 4000000

3500000

3000000

HN 2500000

OCH3 CH3 2000000

1500000 4 1000000

500000 91 105 42 77 65 135 115121 146 178 82 147 160 174 193 0 m/ z--> 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Scan 971 (14.956 min): 11206-2.D Abundance 58

2800000

2600000

2400000

2200000 HN

2000000 CH3 CH3 1800000 OCH3 1600000 1400000 5 1200000 1000000 800000

600000 400000

200000 91 42 77 105 65 79 115 135 121 136 147 162 174178 192 0 m/z--> 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

180 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Scan 935 (14.406 min): 100605-4.D Abundance 58 3200000 3000000 2800000 2600000

2400000 2200000 2000000

1800000

1600000

HN 1400000

H3C CH3 1200000

1000000

OCH3 800000 600000 6 400000 200000 91 42 77 135 65 79 103 115120 137 147 163 174178 191 0 m/ z--> 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Scan 241 (6.496 min): 122005-1.D Abundance 58

3000000

2500000 H3C

2000000

HN 1500000 CH3

1000000 OCH3

500000

7 91 41 59 135 7779 103 115121 131 147 161162 178 192 0 m/z--> 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

Scan 964 (14.898 min): 11206-1.D Abundance 58 2000000 1800000 cH3 1600000

1400000

1200000

1000000 HN 800000 CH3

600000 OCH 3 400000

200000 91 42 77 135 65 103 8 82 115121 146147 162 174178 193 0 m/ z--> 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

181 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Scan 958 (14.711 min): 100605-5.D Abundance 4500000 58

4000000

3500000

3000000

HN 2500000 H3CO CH3

2000000 CH3 1500000

9 1000000

500000 91 136 42 65 77 82 103 121 115 137 147 162 174178 192 0 m/ z--> 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Scan 916 (14.336 min): 111005-3.D Abundance 58 3500000

3000000

2500000

HN H3CO CH3 CH3 2000000

10 1500000

1000000

500000

77 42 135 79 89 105 63 117120 146148 163 178 192 0 m/ z--> 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

The mass spectra for the ten ring substituted methoxy methyl methamphetamines in Figure 6.1 show only the major fragment ion at equivalent masses. This lack of mass

182 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

spectral specificity in addition to the possibility of chromatographic co-elution, with 3,4-

MDMA, could result in misidentification of the target drug. Furthermore, the lack of

available reference samples for all ten of these isobaric molecules complicates the

individual identification of any one of these substances. This constitutes a significant

analytical challenge, where the use of gas chromatography-mass spectrometry (GC-MS)

must be based primarily upon the ability of the chromatographic system to separate the

“counterfeit substance” from the actual drug of interest. Additionally, the ability to distinguish between these regioisomers directly enhances the specificity of the analysis for the target drugs of interest.

Mass Spectral Studies of Perfluroacyl Derivatives Methoxymethyl Methamphetamines compared to 2,3- and 3,4-MDMA

The perfluoroacylated derivatives of the ten methoxy methyl methamphetamines were prepared and evaluated for their ability to individualize the mass spectral properties of these compounds and to maintain or improve chromatographic resolution. Acylation of the amines significantly lowers the basicisty of nitrogen and can allow other fragmentation pathways to play a more prominent role in the mass spectrum. These perfluoroacyl derivatives allowed the unique fragmentation reactions which characterized and served to individualize the side chain regioisomers. However, in these substances the perfluoroacyl derivatives were less successful at differentiating the 2,3- from the 3,4- ring substitution pattern of the identical side chain. Since all ten of the methoxy methyl methamphetamines have the same side chain and have ten different substitution patterens, perfluroacylation may not allow for complete compound individualization based only on

183 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

the observed mass spectrum. The mass spectra for the ten pentafluoropropionyl (PFPA)

and heptflourobutryl (HFBA) amides are shown in Figures 6.2 and 6.3. For comparative

purposes in this chapter 2,3- and 3,4-MDMA will be given the compounds number 11

and 12.

Figure 6.2: Mass spectra of the PFPA derivatives of methoxy methyl methamphetamines, 2,3- and 3,4-MDMA

Scan 602 (10.711 min): 12806-1.D Abundance 204

750000 CH3

700000 N C2F5 650000

600000

550000 O OCH 500000 3

450000 CH3 400000 162 350000 a 300000 250000

200000

150000 42 105 100000 91 56 50000 77 135 147 339 190 220 292 308 324 0 m/z--> 40 60 80 100 Scan120 651140 (11.286160 m180in): 12806-2.D200 220 240 260 280 300 320 340 Abundance 162 204

700000 650000 600000 CH3 550000 N C2F5 500000 135 450000 O 400000 H3C OCH3 350000 300000 105 b 250000 42 200000 150000 91 100000 56 79 339 50000 147 190 220 269282 308 324 0 m/z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

184 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Scan 631 (11.053 min): 12806-3.D Abundance 204 CH3

700000 H3C N C2F5

650000

600000 O

550000 OCH3

500000 162 450000 c

400000

350000

300000

250000 200000

150000 42 135 105 339 100000 56 91 50000 77 147 190 220 263 282 308320 0 m/z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

Scan 676 (11.576 min): 12806-4.D Abundance 204 1000000 CH3 CH3

900000 N C2F5

800000 O 700000 OCH3 600000 162 d 500000

400000 135 300000 42 105 200000 91 56 100000 79 339 147 190 220 282 308 324 0 m/z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

185 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

CH3 Scan 753 (12.383 min): 12806-5.D Abundance 204 N C2F5 700000

650000 O 600000 CH3 550000

500000 OCH3 450000 e 400000 350000 300000 162 250000 200000 150000 42 100000 339 119 91 50000 56 77 135147 176 220 300 324 0 m/z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

CH3

Scan 685 (11.683 min): 12806-7.D N C F Abundance 2 5 204

350000 O

H3C

300000 OCH3 f 250000

200000 162

150000

100000

42 339 50000 119 135 56 91 77 147 176 220 300 324 0 m/z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

186 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Scan 705 (11.909 min): 12806-8.D Abundance 204 300000 CH3

250000 H3C N C2F5

200000 O

162 150000 OCH3

100000 g

50000 42 119 339 56 91 135 77 147 176 0 m/z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

Scan 729 (12.185 min): 12806-11.D Abundance 204 400000 CH3 CH3

350000 N C2F5

300000

O 250000

200000 OCH3

150000 162 h

100000 42 339 50000 91 119 56 135 77 147 177 324 0 m/z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

187 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

CH3

Scan 728 (12.166 min): 12806-9.D Abundance N C2F5 135

600000 CH3 O 162 H CO 550000 3

500000 CH3 450000 204 400000 i

350000

300000

250000

200000 42 150000 91 100000 119 339 56 50000 77 147 176 220 263 324 0 m/z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

Scan 770 (12.668 min): 12806-10.D CH Abundance 3 135 N C2F5 650000

600000 CH3 O 550000 H3CO CH3 500000 450000 j 400000

350000 162

300000 204 250000

200000

150000 42 100000 91 119 339 50000 56 77 147 176 220 0 m/z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

188 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Scan 431 (8.749 min): 110903-6.D Abundance 204

O

250000 O N C2F5

200000 O

150000 k

162 100000 339

50000 42 119 135 51 77 91 147 177 220 0 m/z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

Scan 494 (9.469 min): 110903-2.D Abundance 204 NCF O 2 5

O O 2000000 162 l

1500000 135 42 1000000

77 339 119 500000 51

91 147 176 220 241 259269282 300 324 0 m/z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

189 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Figure 6.3: Mass spectra of the HFBA derivatives of methoxy methyl methamphetamines, 2,3- and 3,4-MDMA

CH3

Scan 641 (11.177 min): 12806-14.D Abundance N C F 254 3 7

700000

650000 O

600000 OCH3

550000 CH3 500000 a 450000 400000 350000 300000

250000

200000 162 210

150000

100000

42 50000 105 69 91 135 115 192 220 256 342 389 0 m/z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380

CH3 Scan 695 (11.785 min): 12806-15.D Abundance 254 N C3F7 1100000

1000000 O

H3C 900000 OCH3 162 800000 b 700000

600000 135 500000

400000 210

300000 105

42 200000 69 91 100000 389 115 192 220 269 313 332 358 374 0 m/ z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380

190 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Scan 671 (11.518 min): 12806-16.D Abundance 254

1100000 1000000 CH3 900000

H3C N C3F7 800000

700000 O

600000 OCH 162 3

500000 c 400000 210

300000

200000 42 135 105 389 69 100000 91 115 192 220 268 313 332 358372 0 m/ z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380

Scan 720 (12.079 min): 12806-17.D Abundance 254

1300000 1200000

1100000 CH3 CH3

1000000 N C3F7

900000

800000 O

700000 OCH3

600000 d 500000 162 400000 210 300000 135 42 200000 105 69 91 100000 389 115 192 220 269 332 358 374 0 m/ z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380

191 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Scan 791 (12.893 min): 12806-18.D Abundance 254

1300000 CH3

1200000 N C3F7 1100000

1000000 O

900000 CH3

800000 OCH3 700000 e 600000 500000

400000 210 162 300000

200000 42 100000 69 389 91 105 135 131 192 220 293 310 350 374 0 m/ z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380

Scan 730 (12.204 min): 12806-6.D Abundance 254 CH3

1000000 N C3F7

900000

800000 O

H3C 700000

OCH3 600000 f 500000

162 400000

300000 210

200000 42 100000 135 389 69 91 105 131 191 220 278 310 332 350 374 0 m/ z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380

192 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Scan 749 (12.415 min): 12806-19.D Abundance 254 1000000 CH3

900000 H3C N C3F7

800000 O 700000

600000 OCH3 500000 g 400000

162 300000 210

200000

42 100000 69 91 135 389 105 131 191 220 269 296 330 358 374 0 m/ z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380

Scan 778 (12.750 min): 12806-20.D Abundance 254 1600000 1500000 CH CH 1400000 3 3

1300000 N C3F7 1200000

1100000

1000000 O

900000

800000 OCH3 700000 600000 h 162 500000 210 400000

300000 389 42 200000 69 91 135 100000

105115 192 220 273 293 313 330 358 374 0 m/ z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380

193 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Scan 768 (12.637 min): 12806-21.D Abundance CH3 254

500000 N C3F7 135 162 450000

CH3 O 400000 H3CO

350000 CH3

300000 i 250000

200000 210

150000 42 100000 91 69 389 50000

92 120 192 220 278 319 0 m/ z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380

Scan 819 (13.194 min): 12806-22.D Abundance 135

CH3 900000

N C3F7 800000

700000 254 CH3 O H3CO CH3 600000 162 500000 j

400000

300000 210 200000 42 91 69 389 100000 105 119 192 220 313 330 372 0 m/ z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380

194 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Scan 776 (12.730 min): 12804-6.D Abundance 254

2000000

1800000

1600000 O

1400000 O N C3F7

1200000 162 O 1000000 210 k 800000 42 600000 389 400000 69 77 135 200000 105 119 192 220 263 291 313 339350 374 0 m/ z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380

Scan 887 (14.016 min): 30204-2.D Abundance 254 NCF 2000000 O 3 7

1800000 O O 1600000 162

1400000 l

1200000

1000000 210 135 800000 42

600000 389 77 69 400000

200000 105 131 192 220 263 291 310 332 350 374 0 m/ z--> 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380

All these spectra show major high mass fragment ion at m/z 204 or 254 corresponding to the loss of 135 mass units from the molecular ion 339 and 389 from the

PFPA and HFBA amides, respectively. The ions at m/z 204 and 254 are the PFPA and

195 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

HFBA imine species likely formed from the alpha cleavage of the amide nitrogen to

eliminate the methoxymethylbenzyl radical. Thus the m/z 204 and 254 ions in PFPA and

HFBA amides are analogous to m/z 58 in the underivatized species because all these ions

represent the (M-135)+ species. The general fragmentation pattern and structures for the

m/z 204 and 254 ions are shown in Scheme 6.2. The methoxymethylbenzyl cation and

radical cation at m/z 135/136 is also a common fragment in most of the spectra in Figures

6.2 and 6.3. The identical fragmentation pathways for the PFPA and HFBA derivatives of

2,3- and 3,4-MDMA produced ions of the same structure at m/z 204 and 254 and isobaric

ions at equivalent masses for the benzylic species at m/z135/136.

EI 70 ev

H3CO N R N R

O O

H3C H3CO

H3C

Scheme 6.2: Formation of m/z 204 (R=C2F5) and m/z 254 (R= C3F7) from

perfluoroaceyl derivatives of methoxy methyl methamphetamines.

Acylation, and in particular the perflouroacylation, weakens the bond between nitrogen and the alpha-carbon of the substituted methoxy methyl phenethyl group, allowing the formation of charged hydrocarbon species of increased relative abundance.

The mass spectra in Figures 6.2 and 6.3 illustrate the role of hydrocarbon fragments at

196 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

m/z 162, 105 and 210 in the electron impact mass spectral differentiation among these

isobaric compounds.

The mass spectra for all derivatives (Figures 6.2 and 6.3) show a common peak at

m/z 162 corresponding to the alkene radical cation which occurs from hydrogen

rearrangement and subsequent fragmentation of the alkyl carbon to nitrogen bond of the

phenethylamine side chain (Scheme 6.3). The isobaric methylenedioxyphenylpropene

radical cation is observed in the mass spectrum of the PFPA and HFBA derivatives of

2,3- and 3,4-MDMA.The presence of the m/z 162 ion (as described previously) indicates

that a 3-carbon chain is attached directly to the aromatic ring in an uninterrupted manner.

The companion ion identifying the substituent on nitrogen as the N-methyl group occurs at m/z160 in the PFPA derivatives (Figure 6.2) and at m/z 210 in the HFBA derivatives

(Figure 6.3)

Additionally the PFPA and HFBA derivatives of d3- and d5-MDMA, in Figure 1.4

and discussed earlier in chapter 1, also lend support to the proposed structure for the

formation of the alkene fragment at m/z 162 illustrated in Schemes 1.5 and 1.6 in chapter

1. A comparison of the PFPA derivatives (Figure 6.2) with the HFBA derivatives (Figure

6.3) indicated unique ions at m/z 160 and m/z 210. This mass difference of 50 (CF2) suggests these ions contain the perfluoroalkyl group for each derivative, C2F5 and C3F7 respectively. The PFPA and HFBA derivatives of d3- and d5-MDMA, (Figure 1.4;

chapter 1) showed that the m/z 160 and m/z 210 ions contain the N-methyl group and

supports the proposed structure of the characteristic nitrile fragment.The suggested

mechanism of forming these masses was illustrated previously in Scheme 1.5; chapter 1.

197 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

O R HO R H H H H3CO H CO H3CO C 3 CH N C N CH3 CH3

CH3 CH3 CH3

H3C H3C H3C m/z= 162

R = C2F5 PFPA derivatives R= C3F7 HFBA Derivatives

Scheme 6.3: Formation of m/z 162 from perfluoacyl derivatives of methoxy methyl

methamphetamines.

The mass spectra of the 2-methoxy-substituted methyl methamphetamines derivatives shown in Figure 6.2 a, b, c, and d for the PFPA derivatives and Figure 6.3 a, b, c and d for the HFBA derivatives show a more prominent m/z 105 ion than the other substitution patterns. This ion at m/z 105 represents the loss of 30 mass units

(formaldehyde, CH2O) from the methoxymethylbenzyl cation at m/z 135. The further loss of formaldehyde (CH2O) from those benzylic cations having an ortho-methoxy

group can be attributed to a 1,6-hydride shift from the carbon of the methoxy group to the methylene of the methoxymethyl benzyl cation followed by another hydride rearrangement and loss of formaldehyde to give the methyl benzyl cation (Scheme 6.4).

198 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

H2 CH2 CH2 C H H H H C H C 3 3 H3C

CH CH2 O 2 O

CH2

H3C

m/z = 105

Scheme 6.4: Formation of m/z 105 form methoxymethylbenzyl radical.

As expected in this study, acylation of the side chain nitrogen in these isobaric methamphetamines did not individualize the resulting mass spectra. Thus, differentiation among these compounds and differentiation from 3,4-MDMA remains a significant challenge for chromatographic studies. However, the mass spectra obtained for the PFPA and HFBA derivatives do provide information which could allow these ten methoxymethylmethamphetamines to be divided into three subsets based on the position of the methoxy-group ring substitution.

The mass spectra of the PFPA and HFBA derivatives of the ortho-methoxy subset

(compounds 1-4) all show m/z 105 ion formed through the mechanism described in

Scheme 6.4. This ion does not occur to any significant extent in the derivatives of the meta-methoxy of para-methoxy subsets. The m/z 105 ion is not observed in the mass spectrum of the PFPA and HFBA derivatives of 2,3- and 3,4-MDMA. Thus the m/z 105 ion may distinguish this ortho-methoxy subset from MDMA but no specific ions were observed to distinguish among the members of this subset, compounds 1-4.

The PFPA and HFBA derivatives of compounds 5-8 (methoxy group in the meta postion of the aromatic ring) can be differentiated from the PFPA and HFBA derivatives

199 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

of compounds 1-4 by the absence of m/z 105. Perfluroacylation did not offer an

advantage in distinguishing these compounds from each other and from the MDMAs.

The para-methoxy subset, the PFPA and HFBA derivatives of compounds 9 and

10, shows a very different distribution of ions than that observed for either of the other

two subsets. The low mass ions at m/z 135 and m/z 162 show a very high relative

abundance and actually appear as the base peak in several spectra. These are the only

derivatives not showing the perfluoroacylimine at m/z 204 or m/z 254 as the base peak.

In summary, perfluoroacylation did not allow mass spectrometry to individualize

these compounds. The presence of the m/z 105 ion suggests the methoxy group is in the

ortho-position of the aromatic ring while the significant abundance of the low mass ions

at m/z 135 and m/z 162 indicates the methoxy group is substituted at the para-position of

the aromatic ring. The meta-substituted aromatic ring methoxy group isomers did not

show any unique fragments to distinguish them from 2,3- and 3,4-MDMA.

Gas chromatographic separation of the perfluroacyl derivatives of ring substituted

methoxy methyl methamphetamines, 2,3- and 3,4- MDMA.

The underivatized and PFPA and HFBA derivatives of 2,3- and 3,4-MDMA and

their isobaric substituted methoxy methyl methamphetamines were compared on four

stationary phases using capillary columns of the same dimensions, 30m x 0.25mm and

0.25um depth of film.

Several temperature programs were evaluated, however only one program yielding the best compromises between resolution and analysis time was used to generate

the twelve chromatograms for the PFPA and HFBA derivatives in Figures 6.5-6.10,

200 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

respectively. The program (TP-2) was set up to hold the column temperature at 70 oC for

1 minute, ramped to 150 oC at 7.5 oC/minute, hold at 150 oC for 2 minutes and finally

ramped to 250 oC at 10 oC/minute. Only chromatograms generated on Rtx-1 and Rtx-35

are shown in Figures 6.5-6.10.

The co-elution of some underivatized, PFPA and HFBA derivatives of 2,3-, 3,4-

MDMA and their isobaric substances varied from one stationary phase to another.

Underivatized compound 2 co-elutes with compound 4 while underivatized compound 6

co-elutes with underivatized compounds 7 and 9 on Rtx-1 stationary phase. Each of the

PFPA and HFBA derivatives of compounds 8 and 9 co-elute, also the HFBA derivatives

of compounds 4 and 6 co-elute on the Rtx-1 stationary phase.

Four sets of underivatized compounds were found to co-elute on Rtx-5, 2,3-

MDMA co-elutes with compound 6, compound 2 co-elutes with compound 4, compound

5 co-elutes with compound 8 and finally compound 7 co-elutes with compound 9. In case

of the PFPA derivatives of the 2,3- , 3,4-MDMA and their isobaric substituted methoxy

methyl methamphetamine, there are two sets of compounds co-elute namely compound

11 co-elutes with compound 7 and compound 8 co-elutes with compound 9. Three sets of

the HFBA derivatives were found to co-elute, compound 11 co-elutes with compound 7,

compound 1 co-elutes with compound 3 and finally compound 5 co-elutes with

compound 8on the same column.

Three sets of underivatized compounds were found to co-elute on Rtx-35,

compound 4 co-elutes with compound 6, compound 5 co-elutes with compound 8 and

finally compound 7 co-elutes with compound 9. In case of the PFPA derivatives of the

2,3-, 3,4-MDMA and their isobaric substituted methoxy methyl methamphetamine, there

201 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

are two sets of compounds which co-elute where compound 5 co-elutes with compound 9 and compound 4 co-elutes with compound 6. The HFBA derivatives of compounds 2, 8

and 9 co-elute on the same column.

The best resolution, among the evaluated columns, was achieved on Rtx-200 where in a

physical mixture of the 12 PFPA derivatized compounds yielded 11 peaks with

compounds 7 and 9 co-elute (Figure 6.4). The PFPA derivatives allow more distinctive

differentiation between compounds 7 and 9 based on mass spectrometry. Compound 9

has a base peak at m/z 135 compared to m/z 204 base peak for compound 7. Thus a

sample containing compound 7 or 9 could be identified based on mass spectrometry. The

similarity in chromatographic properties among these regioisomeric and isobaric

molecules in the derivatized and underivatized form provides for a significant chromatographic challenge. However, all four of the stationary liquid phases evaluated in this study successfully resolved 3,4-MDMA from the other isomers. The variation in chromatographic selectivity among the phases resulted in various coelutions within the isobaric methoxy methyl methamphetamines. Since mass spectrometry of the perfluoroacyl derivatives of the isobaric methoxymethyl methamphetamines (compounds

1-10) successfully divided these compounds into subsets based on the ring position of the methoxy group, the chromatographic properties were evaluated using the same subsets.

The chromatographic properties of each subset of compounds was compared to 2,3- and

3,4-MDMA.

202 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

TIC: 32006-12.D AbundanceAbundance 7 + 9

700000 650000 600000 550000

500000 4 11 3 8 10 450000 2 6 400000 5 350000 12 300000 250000 1 200000

150000

100000

50000

0 Time--> 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00

Time (minutes)

Figure 6.4: Capillary gas chromatograph of a physical mixture of the PFPA derivatives of methoxy methyl methamphetamines (Compounds 1-10), 2,3- (11) and 3,4-MDMA (12) . Column used: RTX-200.

In all the chromatographic studies 3,4-MDMA elutes last in every subset and in

every form (derivatized and underivatized). In the first subset (the ortho-methoxy

substituted aromatic ring), compounds 1-4, along with 2,3-MDMA and 3,4-MDMA, the elution order of the perfluroacyl derivatives of these compounds was compound 1 followed by 3, 2, 4, 2,3-MDMA- and finally 3,4-MDMA (compound 12). The elution order, on Rtx-1 and Rtx-35, was the same for this subset of compounds. ( Figures 6.5 and

6.6). This subset of isobaric amines was identified as having a significant m/z 105 ion in their mass spectra.

In the second subset (the meta-methoxy substituted aromatic ring), compounds 5-

8 along with 2,3-MDMA and 3,4-MDMA, the PFPA derivative of compound 6 elutes

203 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

first followed by 2,3-MDMA-PFPA, 7-PFPA, 8-PFPA, 5-PFPA and finally 3,4-MDMA-

PFPA(compound 12); (Figure 6.7A). The elution order is the same for the HFBA derivatives of the same compounds on Rtx-1 (Figures 6.8A). This elution order has changed on Rtx-35, where compound 7 elutes before 2,3-MDMA, and most significantly

2,3-MDMA (compound 11) and 8 co-elute. This change in elution order takes place for the PFPA and HFBA of these compounds (Figures 6.7b and 6.8b) which suggests that

Rtx-35 is not the best column for resolving this subset of compounds. It is this subset of isobaric amines that showed no distinguishing characteristics (neither unique fragment ions nor unique relative abundance of fragment ions) in their mass spectra.

In the third subset (the para-methoxy substituted aromatic ring), compounds 9, 10,

2,3-MDMA and 3,4-MDMA, the elution order of the perfluroacyl derivatives was 2,3-

MDMA followed by 9, 10 and finally 3,4-MDMA. The elution order was the same on both Rtx-1 and Rtx-35 (Figures 6.9 and 6.10). It is this subset of compounds which showed mass spectra most easily distinguished from the other subsets and from 2,3- and

3,4-MDMA.

204 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Abundance TIC: 13106-6.D11 Abundance

2000000 1 A 1800000 2 4 1600000 2 3 1400000 1 1200000

1000000

800000

600000

400000

200000

0 Time--> 15.50 16.00 16.50 17.00 17.50 18.00 18.50 19.00 19.50

11 TIC: 21306-2.D Abundance 1 5500000 2

5000000 B

4500000

4000000 2 4 3500000 3 3000000 1

2500000

2000000

1500000

1000000

500000

0 Time--> 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00

Time (minutes) Figure 6.5: Capillary gas chromatographic separation of PFPA derivatives of

compounds 1-4, 2,3-MDMA and 3,4-MDMA. Columns used: A RTX-1;

B RTX-35.

205 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Abundance TIC: 20106-9.D 4 Abundance 1700000 2

1600000 11 12 1500000 3 A

1400000 1300000 1200000 1 1100000 1000000

900000

800000

700000 600000 500000

400000

300000

200000 100000 0 Time--> 14.50 15.00 15.50 16.00 16.50 17.00 17.50 18.00 18.50 19.00 19.50 20.00

TIC: 21306-7.D 12 Abundance

2000000 B 1800000

1600000

1400000 2 11 1200000 4 3 1000000 1 800000

600000

400000 200000

0 Time--> 16.00 16.50 17.00 17.50 18.00 18.50 19.00 19.50 20.00 20.50 21.00 21.50

Time (minutes)

Figure 6.6: Capillary gas chromatographic separation of HFBA derivatives of compounds 1-4, 2,3-MDMA and 3,4-MDMA. Columns used: A RTX- 1; B RTX-35.

206 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Abundance 11

TIC: 13106-9.D 7 Abundance 5 A 1 1000000 8

800000 6

600000

400000

200000

0 Time--> 14.00 15.00 16.00 17.00 18.00 19.00 20.00

TIC: 21306-3.D Abundance 12 8 + 11 4500000 B

4000000

3500000

3000000 7 6 2500000

2000000 5

1500000

1000000

500000

0 Time--> 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00

Time (minutes)

Figure 6.7: Capillary gas chromatographic separation of PFPA derivatives of

compounds 5-8, 2,3-MDMA and 3,4-MDMA. Columns used: A

RTX-1; B RTX-35.

207 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Abundance 8 TIC: 20106-12.D Abundance

750000 700000 11 A 7 650000 12

600000 5 550000 6 500000 450000 400000 350000

300000

250000 200000 150000 100000 50000

0 Time--> 16.00 16.50 17.00 17.50 18.00 18.50 19.00 19.50 20.00

8+11 1 TIC: 21306-6.D Abundance 2

2800000 2600000 7 B 2400000 2200000 6 5

2000000

1800000

1600000 1400000 1200000 1000000 800000 600000

400000

200000

0 Time--> 17.50 18.00 18.50 19.00 19.50 20.00 20.50 21.00 21.50

Time (minutes)

Figure 6.8: Capillary gas chromatographic separation of HFBA derivatives of

compounds 5-8, 2,3-MDMA and 3,4-MDMA. Columns used: A

RTX-1; B RTX-35.

208 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Abundance 11 TIC: 13106-10.D Abundance

3400000

3200000

3000000 10 A 2800000 12 2600000

2400000

2200000 2000000 1800000 9 1600000 1400000

1200000

1000000

800000

600000

400000

200000.

0 Time--> 15.00 15.50 16.00 16.50 17.00 17.50 18.00 18.50 19.00 19.50

TIC: 21306-5.D Abundance 11 10 5500000 9 B 5000000 12 4500000

4000000

3500000

3000000

2500000

2000000

1500000

1000000

500000

0 Time--> 17.00 17.50 18.00 18.50 19.00 19.50 20.00 20.50 21.00 21.50 22.00 22.50 Time (minutes)

Figure 6.9: Capillary gas chromatographic separation of PFPA derivatives of

compounds 9-10, 2,3-MDMA (11) and 3,4-MDMA(12) . Columns

used: A RTX-1; B RTX-35.

209 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Abundance TIC: 20106-16.D 12 Abundance A 10

900000

800000 11 700000 9 600000

500000

400000

300000

200000

100000

0 Time--> 16.00 16.50 17.00 17.50 18.00 18.50 19.00 19.50

TIC: 21306-8.D Abundance 9

5500000

5000000 11 B 4500000 12

4000000

3500000 3000000 10

2500000

2000000

1500000

1000000

500000

0 Time--> 16.00 16.50 17.00 17.50 18.00 18.50 19.00 19.50 20.00 20.50 21.00 21.50 Time (minutes)

Figure 6.10: Capillary gas chromatographic separation of HFBA derivatives of

compounds 9-10, 2,3-MDMA(11) and 3,4-MDMA(12). Columns

used: A RTX-1; B RTX-35.

210 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Conclusions of Chapter 6

The methoxy methyl methamphetamines have an isobaric relationship to the 2,3- and 3,4-methylenedioxymethamphetamines and represent a unique analytical challenge in forensic drug chemistry. Each of these compounds has a molecular weight of 193 and yields a base peak for the N-methyl imine of acetaldehyde at m/z 58 in the mass spectrum. This ion represents the loss of 135 mass units from the molecular ion corresponding to the substituted benzyl species, C8H7O2 (methylenedioxybenzyl) and

C9H11O (methoxy methyl benzyl). Thus, the traditional electron impact mass spectrum provides little structural information for differentiating among these 12 compounds.

Because of the unique similarity of these compounds by MS, the specific identification of a compound such as 3,4-MDMA requires methods to eliminate the other isomers. The ring-substituted methoxy methyl methamphetamines were evaluated for their chromatographic and mass spectral properties compared to 2,3- and 3,4-MDMA. The mass spectra studies showed almost identical mass spectra for all 10 methoxy methyl methamphetamines and 2,3- and 3,4-MDMA.

The perfluoroacylated derivatives of the 10 methoxy methyl methamphetamines were prepared and evaluated for their ability to individualize the mass spectra of these compounds and to maintain or improve chromatographic resolution. The perfluoroacylation process did not produce unique mass spectra characteristic of each compound. However, derivatization did subdivide the methoxy methyl methamphetamines into subgroups based on the position of the methoxy group on the aromatic ring relative to the alkylamine side-chain. The presence of the m/z 105 ion suggests the methoxy group is in the 2-position relative to the alkylamine side-chain, and

211 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

the significant abundance of the low mass ions at m/z 135 and m/z 162 indicates the

methoxy group is substituted at the 4-position of the aromatic ring. The 3-substituted

aromatic ring methoxy group isomers did not show any unique fragments to distinguish

them from 2,3- and 3,4-MDMA as the perfluoroacylated derivatives.

Different stationary phases and temperature programs were used in an effort to

separate the methoxy methyl methamphetamines from 2,3- and 3,4-MDMA. The best

resolution among the evaluated columns was achieved on Rtx-200, where a mixture of

the 12 compounds gave 11 peaks and only the PFPA derivatives of methoxy methyl

methamphetamines 7 and 9 coelute. The perfluoroacyl derivatives of the methoxy methyl methamphetamines were divided into three subsets based on the ring substitution pattern of the methoxy group. The derivatives of the individual subsets were each resolved on

Rtx-1.

212 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Chapter 7

GC–MS Analysis of Ring and Side Chain Regioisomers of

Ethoxyphenethylamines

The target compounds of this chapter are a series of ring substituted ethoxy

phenethylamines with molecular weight 193 and the potential to produce mass spectra

with major fragment ions at m/z 58 for the imine and m/z 135/136 for the substituted benzyl fragment. The major fragment ions observed in the EI mass spectrum for 3,4-

MDMA (MW = 193) occur at equivalent masses.

Mass spectrometry of Ring and Side Chain Regioisomers of Ethoxyphenethylamines MS is the primary method for confirming the identity of drugs and related substances in forensic samples. The mass spectra of phenethylamines are characterized by a base peak formed from an amine initiated alpha-cleavage reaction involving the carbon–carbon bond of the ethyl linkage between the aromatic ring and the amine. In 3,4- methylenedioxymethamphetamine (MW = 193) the alpha-cleavage reaction yields the substituted imine fragment at m/z 58 and the 3,4-methylenedioxybenzyl fragment at mass

135/136 (for the cation and the radical cation, respectively). Thus, the mass spectrum for

3,4-methylenedioxymethamphetamine contains major ions at m/z 58 and 135/136 as well as other ions of low relative abundance. The ring substituted ethoxy methamphetamines

(Compounds 1–3, Figure 7.1) have the potential to yield a mass spectrum essentially equivalent to 2,3- and 3,4-MDMA. There are five possible side chain regioisomers for each one of these ring substitution patterns.

213 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

The five side chain regioisomers of 2-ethoxyphenethylamine included in this study are

shown in Figure 7.1 (Compounds 1, 4–7). All five side chain regioisomers have

molecular weight of 193 and major fragment ions in their electron ionization mass

spectra at m/z 58 and 135/136 (Scheme 7.1). The individual mass spectra for 2,3- and

3,4-MDMA are also presented in Scheme 7.1 (Compounds 8 and 9). The isobaric ethoxy

+ + benzyl (C9H11O) fragments have the same mass as the methylenedioxybenzyl (C8H7O2) cation occurring at m/z 135. Furthermore the m/z 58 ion in the 2-ethoxyphenethylamines is regioisomeric with that obtained in the mass spectra of both 2,3 and 3,4-MDMA

(Figure 7.2).

C2H8 H2 H2 C C CH3 N O C CH

HN O

OC2H5 CH3 MW = 193

EI 70ev

CH3 CH2 CH2 C2H8 O HC CH3 CN N H O

OC2H5 m/z = 58 m/z = 135

m/z = 135

Scheme 7.1: EI fragmentation pattern for ring substituted ethoxy phenethylamines.

Figure 7.1: Structures of the ring substituted ethoxymethamphetamines, side chain regioisomerics of 2-ethoxyphenethylmethamphetamines, and 2,3- and 3,4-MDMA.

214 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

H H N N

OC2H5

OC2H5 1 2 H N N

C2H5O OC2H5 3 4

H NH2 N

OC2H5 OC2H5 6 5

O NH2 H O N

OC2H5

7 8

H N O

O

7 (3,4-MDMA)

215 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

This lack of mass spectral specificity for the isomers shown in Figure 7.2, in addition to the possibility of chromatographic co-elution with 3,4-MDMA, could result in misidentification in this series of drugs and drug-like substances.

Figure 7.2: Mass Spectra of compounds ring substituted ethoxy Phenethylamines, 2,3- and 3,4-MDMA. H N

OC2H5 1 Abundance

Average of 11.377 to 11.593 min.: 092607-01.D\ data.ms 2400000 58.1

2200000

2000000

1800000

1600000

1400000

1200000

1000000

800000

600000

400000

200000 77.1 91.1 42.1 107.1 119.1 135.1 149.1 163.1 178.1 192.1 0 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 m/ z-->

216 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

H N

OC2H5 2 Abundance

Average of 12.170 to 12.298 min.: 092607-02.D\ data.ms 850000 58.1

800000

750000

700000

650000

600000

550000

500000

450000

400000

350000

300000

250000

200000

150000

100000

50000 77.0 107.1 42.1 91.0 135.1 120.1 148.1 162.1 178.1 192.2 0 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 m/z--> H N

C2H5O 3 Abundance

Average of 12.555 to 12.706 min.: 092607-03.D\ data.ms 58.1

35000

30000

25000

20000

15000

10000

5000 44.0 107.0 77.0 135.0 91.0 121.0 148.0 162.1 178.1 191.1 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 m/z-->

217 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

N

OC2H5 4 Abundance

Average of 11.097 to 11.231 min.: 080907-01.D\ data.ms 2400000 58.1 2200000

2000000

1800000

1600000

1400000

1200000

1000000

800000

600000

400000

200000 42.1 77.1 91.1 107.1 121.1 133.1 146.1 162.1 178.1 193.1 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 m/z-->

H N

OC2H5 5 Abundance

Average of 11.972 to 12.182 min.: 080907-02.D\ data.ms 1800000 58.1

1600000

1400000

1200000

1000000

800000

600000

400000

200000 77.0 91.1 136.1 107.1 42.1 121.1 149.1 163.1 178.1 193.2 0 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 m/z-->

218 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

NH2

OC2H5 6

Abundance

Average of 11.098 to 11.232 min.: 080907-04.D\ data.ms 58.1 1550000

1500000

1450000

1400000

1350000

1300000

1250000

1200000

1150000

1100000

1050000

1000000

950000

900000

850000

800000

750000

700000

650000

600000

550000

500000

450000

400000

350000

300000

250000

200000

150000

100000 77.0 42.1 91.0 107.1 50000 135.1 178.1 119.0 149.1 161.1 193.1 0 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 m/z-->

NH2

OC2H5 7 Abundance

Average of 12.257 to 12.403 min.: 080907-05.D\ data.ms 58.1 450000

400000

350000

300000

250000

200000

150000

100000

50000 41.1 77.0 91.0 107.1 136.1 121.0 150.1 164.1 178.1 193.1 0 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 m/ z-->

219 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

O

H O N

8 Abundance

Average of 12.444 to 12.555 min.: 080907-06.D\ data.ms 58.1 1600000

1500000

1400000

1300000

1200000

1100000

1000000

900000

800000

700000

600000

500000

400000

300000

200000 77.1 100000 135.0 42.1 88.6 105.1 118.1 147.1 163.1 178.1 192.1 0 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 m/ z-->

H N O

O 9 Abundance

Average of 13.027 to 13.167 min.: 080907-07.D\ data.ms 58.1 1500000

1400000

1300000

1200000

1100000

1000000

900000

800000

700000

600000

500000

400000

300000

200000 135.0 100000 77.0 42.1 88.6 105.0 120.1 148.1 163.1 178.1 193.1 0 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 m/ z-->

220 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

In the next phase of this study, various Acylated derivatives of the ring substituted ethoxy methamphetamines and the primary and secondary amines of the side chain regioisomers of 2-ethoxyphenethylamine were prepared and evaluated in an effort to individualize their mass spectra and provide unique marker ions for specific identification. Acylation of the amines significantly lowers the basicity of nitrogen and can allow other fragmentation pathways to play a more prominent role in the resulting mass spectrum. Of course the tertiary amine (compound 4) does not form a stable amide derivative. The mass spectra for the pentafluoropropionyl and heptafluorobutyryl amides are shown in Figures 7.3 and 7.4, respectively. Perfluroacyl derivatives of the ring substituted ethoxy methamphetamines (Compounds 1–3) have almost identical mass spectra with the derivatized 2,3- and 3,4-MDMA (Compounds 8 and 9) except for a unique ion at m/z 107. This ion at m/z 107 represents the loss of 28 mass units (,

C2H4) fromthe ethoxybenzyl cation at m/z 135 (Scheme 7.2). Although the relative abundance varies significantly, them/z 107 ion is present in all mass spectra of the PFPA and HFPA of compounds (1–3 and 5–7) and offers a unique fragment ion to discriminate these compounds from 3,4- and 2,3-MDMA. The m/z 107 ion is also present in relatively low abundance in the mass spectra of the underivatized ethoxy amines shown in Figure

7.2.

Figure 7.3: Mass Spectra of the HFBA derivatives of ring substituted ethoxy Phenethylamines, 2,3- and 3,4-MDMA.

221 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

N C3F7

O

OC2H5 1

Abundance

Average of 14.787 to 14.892 min.: 092607-22.D\ data.ms 254.1 2400000 2300000 2200000 2100000 2000000 1900000 1800000 1700000 1600000 1500000 1400000 1300000 1200000 1100000 162.1 1000000 900000 800000 700000 210.0 600000 500000 400000 135.1 300000 91.1 200000 42.1 100000 283.1 309.0 342.1 389.1 0 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 m/z-->

N C3F7

O

OC2H5 2 Abundance

Average of 15.819 to 15.900 min.: 092607-23.D\ data.ms 254.0

1600000

1500000

1400000

1300000

1200000

1100000

1000000

900000

800000 162.1

700000

600000

500000 210.0

400000

300000

200000

42.1 100000 77.1 107.1 135.1

389.1 282.0 309.0 350.1 0 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 m/z-->

222 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

N C3F7

O

C2H5O 3 Abundance

Average of 16.518 to 16.629 min.: 092607-24.D\ data.ms 162.1

700000 254.0

650000

600000

550000

135.1 500000

107.1 450000

400000

350000

300000

250000 210.0

200000

150000

100000 42.1 77.0

50000

389.1 291.1 319.0 360.1 0 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 m/z-->

N C3F7

O

OC2H5 5 Abundance

Average of 15.591 to 15.702 min.: 080707-6.D\ data.ms 148.1 950000 900000 850000 800000 750000 700000 650000 600000 550000 500000 450000 400000 350000 91.1 226.0

300000 254.1 250000 200000 150000 120.1 100000 389.1 56.1 50000 178.0 295.1 342.1 0 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 m/ z-->

223 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

NH C3F7

O

OC2H5 6 Abundance

Average of 13.878 to 13.965 min.: 080707-6.D\ data.ms 650000 254.1

600000

550000

500000

450000

400000

350000

300000

250000

200000 136.1

150000

59.1 107.1 100000 176.1

50000 214.0 389.1 302.0 350.1 0 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 m/z-->

NH C3F7

O

OC2H5 7 Abundance

Average of 14.221 to 14.315 min.: 080707-6.D\ data.ms 135.1

600000

550000

500000

176.1 450000

400000

350000

300000

250000 107.1

200000

254.1 150000

77.1 100000 41.1

50000 226.0 389.1

285.0 324.1 360.1 0 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 m/z-->

224 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

O

O N C3F7

O 8 Abundance

Average of 16.058 to 16.168 min.: 092607-25.D\ data.ms 254.0 1300000

1200000

1100000

1000000

900000

800000

700000

600000

162.1 500000

210.0 400000

300000

200000 135.0 42.1 77.0 389.1 100000 105.0

282.9 308.9 350.0 0 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 m/ z-->

N C F O 3 7

O O 9 Abundance

Average of 17.264 to 17.410 min.: 092607-26.D\ data.ms 254.0 600000

550000

500000 162.1

450000

400000

350000

300000 135.0

250000 210.0

200000

150000

100000 42.1 77.0

50000 389.1 105.0

292.9 318.9 350.1 0 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 m/ z-->

225 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Figure 7.4: Mass Spectra of the PFPA derivatives of the ring substituted ethoxy Phenethylamines, 2,3- and 3,4-MDMA.

N C2F5

O

OC2H5 1 Abundance

Average of 14.286 to 14.519 min.: 092607-27.D\ data.ms 204.1 3200000

3000000

2800000

2600000

2400000

2200000

2000000

1800000

1600000 162.1

1400000

1200000

1000000

800000

600000 135.1

400000 91.1 42.1 200000 65.0 339.1 113.1 233.0 258.9 294.1 0 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 m/z-->

N C2F5

O

OC2H5 2 Abundance

Average of 15.259 to 15.446 min.: 092607-28.D\ data.ms 204.0 2200000

2000000

1800000

1600000

1400000

1200000 162.1 1000000

800000

600000

400000 119.0 200000 42.1 77.0 339.1 232.0 254.0 278.0 300.1 0 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 m/z-->

226 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

N C2F5

O

C2H5O 3 Abundance

Average of 15.912 to 15.993 min.: 092607-29.D\ data.ms 220000 162.1 204.0 200000 180000 107.0 135.1 160000 140000 120000 100000 80000 60000 40000 42.1 77.0 20000 339.1 240.9 268.9 309.9 0 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 m/z-->

N C2F5

O

OC2H5 5

Abundance

Average of 15.032 to 15.125 min.: 080708-14.D\ data.ms 150000 148.1 140000 130000 120000 110000 100000 90000 80000

70000 91.1 60000 176.0 50000 204.0 40000 119.0 30000 20000 10000 56.0 339.1 244.9 292.1 0 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 m/ z-->

227 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

NH C2F5

O

OC2H5 6 Abundance

Average of 13.394 to 13.476 min.: 080708-14.D\ data.ms 450000 204.0

400000

350000

300000

250000

200000 136.1 150000

100000 59.1 107.1 176.1 50000 339.1 84.0 245.0 282.1 311.0 0 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 m/ z--> NH C2F5

O

OC2H5 7 Abundance

Average of 13.726 to 13.802 min.: 080708-14.D\ data.ms 135.1 220000 200000 180000 176.1 160000 140000 120000 100000 107.1 80000 60000 77.0 204.0 41.1 40000 20000 339.1 250.1 274.0 310.1 0 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 m/z-->

228 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

O

O N C2F5

O 8

Abundance

Average of 15.463 to 15.580 min.: 092607-30.D\ data.ms 900000 204.0

800000

700000

600000

500000

400000 162.1 300000

200000 119.0 100000 42.1 77.0 339.1 140.7 240.9 262.9 300.1 0 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 m/ z-->

N C F O 2 5

O O 9 Abundance

Average of 16.646 to 16.804 min.: 092607-31.D\ data.ms 204.0 1100000

1000000

900000 162.1 800000

700000

600000 135.0 500000

400000

300000

200000 42.1 77.0 339.1 100000 105.0 242.9 268.9 300.1 0 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 m/ z-->

229 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

CH2 CH2 CH2

H HO H2 O C O H C 2 C H3C H2 and / or

CH2 CH2 CH2 R R

H 2 HO C O HO

H3C Scheme 7.2: mass spectral fragmentation of ethoxyphenethylamines yielding cation at m/z 107

These spectra in Figures 7.3 and 7.4 show a common peak at m/z 204 and 254, which corresponds to the loss of 135 mass units from the molecular ions at 339 and 389 for the PFPA and HFBA amides. This ion at m/z 204 and 254 is the PFPA and HFBA imine species formed from the alpha cleavage of the amide nitrogen to eliminate the ethoxy benzyl radical or themethylenedioxybenzyl radical. Thus the m/z 204 and 254 ions in the PFPA and HFBA amides are analogous to m/z 58 in the underivatized species because all these ions represent the (M-135)+ species. The general fragmentation pattern and structures for the m/z 204 and 254 ions are shown in Scheme7.3. The ethoxy benzyl cation (m/z 135) and the methylenedioxybenzyl cation (m/z 135) are fragments common to all spectra in Figures 7.3 and 7.4. However, the ethoxy benzyl cation in the perfluoroacyl derivatives shows a very high relative abundance in some of these isobaric compounds.

Indeed them/z 135 ion is the base peak in the PFPA andHFBA derivatives of Compound

7. This would suggest that the perfluoroacyl derivatives offer some level of

230 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

discrimination between the methylenedioxy and ethoxy ring substitution patterns based

on the difference in relative abundances of the substituted benzyl cation at m/z 135.

R3

R1 R3 N O N

R1 R2 X R2 O

OC2H5 X

R1+R2+R3 = C2H7 m/z = 204, X= C2F5 C2F5= X,, MW = 339 m/z = 254, X= C3F7 C3F7= X, MW= 389

R2 H3C N XC

R1

OC2H5 m/z = 160 (X = C2F5) m/z = 210 (X = C3F7) m/z = 148, R1=R2=H,cpd 5 Cpds 1,2,3,8 and 9 m/z = 162, R1= CH3; R2=H,cpds 1,2,3,8 and 9 m/z = 176, R1= CH3; R2= CH3, cpd 6 m/z = 176,R1= C2H5; R2= H, cpd 7

Scheme7.3: Mass spectral fragmentation products for the acylated ethoxy phenethylamines.

The decreased role for the alpha cleavage reaction in the fragmentation of these amides allows the formation of ions more diagnostic of individual side chain isomers.

Acylation weakens the bond between nitrogen and the alkyl carbon of the phenethyl side chain, allowing the formation of charged hydrocarbon species of increased relative abundance. These hydrocarbons of varying mass significantly individualize the mass spectra and provide specific structural information. The mass spectra in Figures 7.3 and

7.4 illustrate the role of hydrocarbon fragments at m/z 148, 162, and 176 in the electron impact mass spectral discrimination among the side chain regioisomers. The spectra for

231 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

the N-ethyl isomer (compound 5) in Figures 7.3-5 and 7.4-5 show a base peak at m/z 148 corresponding to the alkene radical cation which occurs from hydrogen rearrangement and subsequent fragmentation of the alkyl carbon to nitrogen bond of the phenethylamine side chain (see Scheme 7.3). This ion at m/z 148 would only occur for the N-ethyl regioisomer. The spectra in Figures 7.3-1, 7.3-2, 7.3-3, 7.3-4,7.3-9, 7.4-1, 7.4-2, 7.4-3,

7.4-4 and 7.4-9 show the substituted phenylpropane hydrocarbon ion at m/z 162, identifying these molecules as the

PFPA and HFBA derivatives of 2-, 3-, 4-ethoxymethamphetamines and the 2,3-, 3,4- methylenedioxymethamphetamines, respectively. However, the base peak of m/z 162 and relatively high abundance m/z 107 in the spectra of the perfluroacyl derivatives of compound 3 offer a significant discrimination of 4-ethoxymethamphetamines over the 2-,

3-ethoxymethamphetamines and the two isobaric methylenedioxymethamphetamines isomers (Compounds 1, 2, 8, and 9 in Figures 7.3 and 7.4). The spectra for the PFPA and

HFBA derivatives of the primary amines (compounds 6 and 7 in Figure 7.3 and 7.4) show ions at m/z 176 from the corresponding substituted phenylbutene radical cation.

The lower abundance of m/z 176 for the 2-ethoxy phentermine (Compound 6) may be attributed to steric inhibition of hydrogen transfer in the alpha, alpha-dimethyl substitution pattern.

While the alkene ions at 148, 162, and 176 help to identify the side chain regioisomers, one complicating factor in the PFPA derivatives for the N- ethylphenethylamines [Figure 7.4-5] is the appearance of an ion at m/z 176 in addition to the base peak at m/z 148. The 176 ion might suggest a four carbon chain directly attached to the aromatic ring as occurs for the alpha-ethyl- (Compound 7) and alpha, alpha-

232 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

dimethyl- (Compound 6) phenethylamines [Figures 7.3-6, 7.3-7, and 7.4-6, 7.4-7]. The m/z 176 ion in the spectra for the PFPA derivatives of the N-ethyl regioisomers [Figure

7.4-5] is a rearrangement of the m/z 204 ion resulting in the loss of mass 28 (the N-ethyl group) via hydrogen transfer. This coincidental common mass from two different fragmentation pathways is confirmed by examining the mass spectra for the HFBA derivatives of the N-ethyl-phenethylamines shown in Figure 7.3-5. The loss of 28 mass units from the acylimine fragment at m/z 254 yields the equivalent fragment ion atm/z

226. Thus, the HFBA derivatives may offer more characteristic ions for individualization of these regioisomeric substances.

A comparison of the mass spectra for the PFPA and HFBA derivatives of all ring substituted methamphetamines (Compounds 1, 2, 3, 8, and 9) indicates unique ions at m/z

160 and m/z 210 [see Figures 7.3-1, 7.3-2, 7.3-3, 7.3-8, 7.3-9, 7.4-1, 7.4-2, 7.4-3, 7.4-8 and 7.4-9]. This mass difference of 50 (CF2) suggests these ions contain the

perfluoroalkyl group for each derivative, C2F5 and C3F7, respectively. An evaluation of

the masses of the components which make up the fragment at m/z 160 for example

include C2F5 (119 mass units) and CH3 (15 mass units).

Previous deuterium labeling studies have confirmed that methyl group on nitrogen is a part of this resulting fragment (Chapter 1). The remaining mass 26 would correspond to

CN and the proposed structures of m/z 160 and 210 are shown in Scheme 7.3. An equivalent fragmentation pathway has been reported for methamphetamine and further supported by the analysis of the mass spectra of the PFPA and HFBA derivatives of d3- and d5-MDMA in a previous study (Chapter1).

233 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Gas Chromatography of Ring substituted Ethoxy Phenethylamines, 2,3- and 3,4- MDMA.

The PFPA and HFBA derivatives of the ring substituted ethoxy methamphetamines and the primary and secondary side chain regioisomers of the 2- ethoxyphenethylamine were compared on the relatively non polar 100% dimethyl polysiloxane (Rtx-1).

Four physical mixtures were prepared, two containing the HFBA and the PFPA derivatives of 2-, 3-, and 4-ethoxymethamphetamine along with 2,3- and 3,4 MDMA, while the other two contained the side chain regioisomers of 2-ethoxyphenethylamine

(Compounds 1, 5, 6 and 7) with the isobaric 2,3- and 3,4-MDMAs. Several temperature

programs were evaluated and one program showing the best compromise between

resolution and analysis time was used to generate the retention data in Table I and the

chromatograms in Figures 7.5 and 7.6. Chromatograms shows that 3,4- MDMA has the

highest affinity for the stationary phase among this set of compounds both in the free

amine form and the two amide forms investigated in this study.

The chromatograms in Figure 7.5 show the separation of the PFPA (Figure 7.5A)

and HFBA (Figure 7.5B) derivatives of the five compounds having the methamphetamine

side chain. This common side chain allows for a comparison of relative stationary phase

affinity as a function of ring substituents in this set of compounds. The 2-ethoxy

substitution pattern shows the least retention and compound 1 has the lowest retention

time. The 3-ethoxymethamphetamine (Compound 2) elutes second followed by 2,3-

MDMA (Compound 8) then the 4-ethoxy substituent compound 3. The compound

showing the highest retention time and eluting last is 3,4-MDMA (Compound 9). Among

234 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

the ethoxy substituents the 2-isomer shows the least retention followed by the 3-isomer, and the 4-ethoxy isomer has the greatest retention on the Rtx-1 phase. The elution order

is the same for both the PFPA and HFBA derivatives with the HFBA derivatives having

slightly greater retention under identical chromatographic conditions.

The chromatograms in Figure 7.6 show the separation of the side chain regioisomers as

the ring substitution pattern is held constant (2-ethoxy). The side chain elution order is

secondary amides (Compounds 6 and 7) before the tertiary amides (Compounds 1 and 5)

and in this limited set of examples branched isomers elute before the more linear ones.

Therefore, the amides of compound 6 elute first followed by the amide of compound 7

(both secondary amides), then the amides of compound 1 (the methamphetamine side

chain) and finally the amides of compound 5 (the more linear of the tertiary amides).

The methylenedioxy isomers (Compounds 8 and 9) elute later than any of the side chain

isomers of the 2-ethoxy ring substitution pattern. Thus, these chromatographic results

coupled with the mass spectral data allow for the individualization of each member of

this series. The derivatized side chain isomers separated in Figure 7.6 can be

differentiated by unique fragment ions in their mass spectra in addition to the well

resolved chromatographic results. The compounds having a common side chain are well

resolved in Figure 7.5 and them/z 107 fragment ion allows for the identification of those

compounds having the ethoxy ring substituent.

235 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Abundance 1

TIC: 070927-08.D\ data.ms

2600000 8 9

2400000 2

2200000 3

2000000 A 1800000

1600000

1400000

1200000

1000000

800000

600000

400000

200000

11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 Time-->

2

Abundance 1

TIC: 070927-07.D\ data.ms 1400000

1300000

1200000 8 1100000 3 1000000 9 900000

800000 B

700000

600000

500000

400000

300000

200000

100000

11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 Time-->

Figure 7.5: GC Separation of the PFPA (A) and HFBA (B) derivatives of compounds 1-3,8 and 9; Rtx-1 column

236 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Abundance 6

TIC: 080708-14.D\data.ms 9 2800000

2600000 1 7 2400000 8 2200000 5 2000000

1800000

1600000

1400000

1200000

1000000

800000

600000

400000

200000

10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 Time-->

Abundance 5 1 TIC: 080707-6.D\ data.ms 8500000 8000000 7500000 7000000 7 8 9 6500000 6000000 5500000 6 5000000 4500000 4000000 3500000 3000000 2500000 2000000 1500000 1000000 500000

10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 Time-->

Figure 7.6: GC Separation of the PFPA (A) and HFBA (B) derivatives of compounds 1, 5,6,7,8 and 9; Rtx-1 column

237 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Conclusions of Chapter 7

3,4-MDMA, 2,3-MDMA, and the three ring substituted ethoxy

methamphetamines are a unique subset of regioisomeric and isobaric molecules; each

compound has a molecular weight of 193 and yields a base peak at m/z 58 in the mass

spectrum from the loss of the corresponding methylenedioxybenzyl and ring substituted

ethoxybenzyl groups, respectively. The traditional electron impact mass spectrum

provides little structural information for differentiating among these seven compounds.

Derivatization with acylating agents yields amides with improved resolution compared to

the underivatized amines by capillary gas chromatography on the Rtx-1 stationary phase.

Additionally, the perfluoroacyl derivatives significantly individualize the mass spectra for these amides and allow for specific identification. The ring substituted ethoxy methamphetamines are characterized from 2,3- and 3,4-MDMA by the presence of m/z

107. Side chain regioisomers yield unique hydrocarbon fragment ions at m/z 148, 162

and 176.

238 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Chapter 8

GC-MS Studies on Direct Side Chain Regioisomers Related to

Substituted Methylenedioxyphenethylamines; MDEA, MDMMA and

MBDB

There are an additional seven direct side chain regioisomeric phenethylamines

related to the controlled substances MDEA, MDMMA, and MBDB. The structures of this

set of compounds are shown in Figure 8.1.

A previous report from our research group included the synthesis and mass spectral

evaluation of these ten regioisomeric compounds. The mass spectra of the underivatized

compounds provided very little structural information for the specific differentiation

among these regioisomers even though these regioisomers were separated by capillary

gas chromatography.

In this chapter, derivatization of the primary and seconday amines was carried out in an effort to obtain more specific ions that would help discriminating among the members of this set of compounds.

Mass Spectral Studies

Mass spectrometry is the primary method for confirming the identity of drugs in

forensic samples. Figure 8.2 shows representative electron impact mass spectra of the

three drugs of abuse; MDEA, MBDB and MDMMA, involved in the study (Compounds

6, 7, 9). The MS spectra of all ten underivatized regioisomers were previously reported.

The mass spectra of the ten regioisomeric compounds (MW=207) are characterized by a

239 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

base peak at m/z 72 formed by α-cleavage reaction involving the carbon–carbon bond of the ethyl linkage between the aromatic ring and amine nitrogen.

Figure 8.1: Structures of the side chain regioisomeric phenethylamines related to MDEA, MDMMA, and MBDB.

O NH2 O NH2

O O 1 2

1-(3,4-Methylenedioxyphenyl)-3- 1-(3,4-Methylenedioxyphenyl)-2- methyl-2-butanamine pentanamine

NH O NH2 O

O O 5 3 N-propyl -1-(3,4- 1-(3,4-Methylenedioxyphenyl)-2- Methylenedioxyphenyl)-2-ethanamine methyl-2-butanamine

NH O NH O

O O 5 N-isopropyl-1-(3,4- 6 Methylenedioxyphenyl) -2-ehanamine MDEA 3,4-Methylenedioxy-N- ethylamphetamine

240 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

O NH H O N

O 7 O 8

N-methyl-3,4- MBDB methylenedioxyphentermine N-methyl-1-(3,4-

Methylenedioxyphenyl)-2-butanamine

N O N O

O O 9 10 MDMMA 3,4-Methylenedioxy-N,N- N-ethyl-N-methyl-3,4- methylenedioxyphenyl)-2-ethanamine

Other less abundant peaks were observed at m/z 135/136 from the 3,4- methylenedioxybenzyl cation and radical cation fragments, respectively as well as other ions of low relative abundance. The EI mass spectra of these regioisomers show some variation in the relative intensity of the major ions with only one or two minor ions that might be considered side-chain specific fragments. Thus, the ultimate identification of any one of these amines with the elimination of the other nine regioisomeric substances can not depend on their mass spectra alone.

This lack of mass spectral specificity in addition to the possibility of chromatographic co-elution with any of the drugs of abuse; MDEA, MBDB and

MDMMA could result in misidentification of the target drug. Furthermore, the lack of available reference samples for the seven regioisomeric 3,4-methylenedioxy-

241 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

phenethylamines compounds complicates the individual identification of any one of these substances. This constitutes a significant analytical challenge, where the specific identification by GC–MS must be based primarily upon the ability of the chromatographic system to separate the regioisomeric substance from the actual drug of interest. Additionally, the ability to distinguish between these regioisomers directly enhances the specificity of the analysis for the target drugs of interest.

Figure 8.2: EI Mass Spectra of MDEA (compound 6) MBDB (compound 7) and MDMMA (compound 9).

O NH

O 6

Abundance

Scan 1404 (12.270 min): 080506-27.D\ data.ms 72.1

4500000

4000000

3500000

3000000

2500000

2000000

1500000

1000000 44.1

135.1 500000

105.1 163.1 57.1 91.1 121.1 148.1 176.1 192.1 206.2 0 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 m/ z-->

242 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

O NH

O 7

Abundance

Average of 12.888 to 12.964 min.: 080506-28.D\ data.ms 1800000 72.1 1700000 1600000 1500000 1400000 1300000 1200000 1100000 1000000 900000 800000 700000 600000 500000 400000 300000 200000 135.1 57.1 88.7 100000 42.1 178.1 105.1 120.1 148.1 163.1 191.2 206.2 0 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 m/ z-->

O N

O 9 Abundance

Scan 659 (7.678 min): 090223-01.D\ data.ms 72.1 4400000

4200000

4000000

3800000

3600000

3400000

3200000

3000000

2800000

2600000

2400000

2200000

2000000

1800000

1600000

1400000

1200000

1000000

800000

600000

400000 42.1 135.0 56.1 200000 105.0 91.1 121.0 147.1 163.1 177.1 192.1 204.1 0 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 m/ z-->

Various perfluoroacyl derivatives of the regioisomeric primary and secondary amines (Compounds 1-8) were prepared and evaluated in an effort to individualize their

243 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

mass spectra and maintain or improve chromatographic resolution. Acylation of the amines significantly lowers the basicity of nitrogen and can allow other fragmentation pathways to play a more prominent role in the mass spectrum. The trifluoroacetyl, pentafluoropropionyl and heptafluorobutryl derivatives of compounds 1-8 were evaluated for their ability to individualize the mass spectra through the formation of specific fragments. Compounds 9 and 10 are tertiary amines and do not form a stable amide derivative.

The mass spectra for the eight pentaflouropropionyl (PFPA) amides are shown in

Figure 8.3. The spectra for the PFPA derivatives are representative of all the perfluoroacyl amides in this study. From these spectra, a common peak occurs at m/z 218 which corresponds to the loss of 135 mass units from the molecular ion at 353. This ion is the PFPA imine species, likely formed from the α-cleavage of the amide nitrogen to eliminate the 3,4-methylenedioxybenzyl fragment at m/z 135. Thus this ion is analogous to m/z 72 in the underivatized species because it represents the (M–135)+ species.

The decreased role for the α-cleavage fragmentation of these amides allows the formation of more diagnostic ions for each individual isomer. Acylation, and in particular the perflouroacylation, weakens the bond between nitrogen and the α-carbon of the substituted phenethyl group, allowing the formation of charged hydrocarbon species of increased relative abundance. These (radical cations) of varying mass are formed due to the transfer of a benzylic hydrogen to the ionized carbonyl followed by the loss of a neutral amide species. The resulting alkene radical cations (3,4- methylenedioxyphenylalkenes) significantly individualize the mass spectra and provide specific structural information. The mass spectra in Scheme 8.1 illustrate the role of the

244 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

alkene fragments at m/z 148, 162, 176 and 190 in identification of these regioisomers.

These ions identify the number of carbons in the hydrocarbon chain attached directly to the aromatic ring in an uninterrupted manner.

Figure 8.3: Mass spectra of the PFPA derivatives of compounds 1-8.

H O N C2F5

O O 1 Abundance

Average of 8.255 to 8.302 min.: 090219-09.D\ data.ms 135.1 4500000

4000000

3500000

3000000 190.1 2500000

2000000

1500000

1000000 353.1 77.1 161.1 500000 55.1 105.0 218.1 252.1 280.1 310.1 0 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 m/ z-->

245 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

H O N C2F5

O O 2 Abundance

Average of 8.185 to 8.214 min.: 090219-10.D\ data.ms 135.1 4000000

3500000

3000000

190.1 2500000

2000000

1500000

1000000 353.1 55.1 77.1 500000 218.1 105.1 164.0 252.1 280.1 310.1 0 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 m/ z-->

O NH C2F5

O O 3 Abundance

Average of 8.179 to 8.214 min.: 090219-11.D\ data.ms 2200000 218.1

2000000

1800000

1600000

1400000 135.0 1200000

1000000

800000 55.1 600000 164.0 190.1 353.1 400000 77.1

200000 105.0 324.1 241.1 269.0 296.1 0 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 m/ z-->

246 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

O C2F5

O N

O 4 Abundance

Average of 8.593 to 8.634 min.: 090219-12.D\ data.ms 6500000 148.1

6000000

5500000

5000000

4500000

4000000

3500000

3000000

2500000

2000000

1500000

1000000 176.0 353.1 77.1 43.1 119.0 500000 218.1 244.1 266.1 294.1 324.1 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 m/ z-->

O C2F5

O N

O 5 Abundance

Average of 8.511 to 8.535 min.: 090219-13.D\ data.ms 148.1 3500000

3000000

2500000

2000000 176.0 1500000

1000000

353.1 500000 43.1 77.1 119.0 218.1 244.1 280.1 309.1 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 m/ z-->

247 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

O C2F5

O N

O 6 Abundance

Average of 8.360 to 8.406 min.: 090219-14.D\ data.ms 218.1 6500000

6000000

5500000

5000000

4500000

4000000 162.1

3500000 190.0 3000000

2500000

2000000 135.1

1500000

1000000 77.1 353.1 500000 51.0 105.1 243.1 273.1 309.1 0 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 m/ z-->

O C2F5

O N

O 7 Abundance

Average of 8.436 to 8.476 min.: 090219-15.D\ data.ms 218.1 2800000

2600000

2400000

2200000

2000000

1800000 176.1

1600000

1400000

1200000

1000000 135.0

800000

600000

400000 42.1 77.1 353.1 200000 105.1 244.1 269.1 293.0 324.1 0 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 m/ z-->

248 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

O C2F5

O N

O 8 Abundance

Average of 8.389 to 8.407 min.: 090219-16.D\ data.ms 5000000 218.1

4500000 160.0 4000000

3500000

3000000

2500000

2000000

1500000

1000000 135.0 56.1 500000 103.1 353.1 79.1 190.1 251.9 282.1 310.1 0 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 m/ z-->

Further examination of the mass spectra of the PFPA derivatives for the eight regioisomers (Figure 8.3) indicates unique ions at m/z 160 for both compounds 7 and 8.

An analysis of the masses of the components, which make up the fragment at m/ z 160 include for example C2F5 (119 mass units) and CH3 (15 mass units), leaving only a mass

of 26 available for the total of 160. The mass 26 would correspond to CN and the

+ proposed mechanism for the formation of (C2F5CNCH3) is shown in Scheme 8.2. The analogous ion occurs at m/z 110 and m/z 210 for the TFA and HFBA derivatives, respectively. An equivalent fragmentation pathway has been previously reported and this fragment is characteristic of N-methyl substituted phenethylamine such as compound 7 and 8.

249 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

X X CO HO C H N R H 3 H N R C R 3 O 2 CH C R C C O 2 O C R R1 2 R1 R1 O O O R1=H, R2= C3H7, m/z=190, cpd 1 R1=H, R2= CH(CH3)2, m/z=190, cpd 2 X= CF3, TFA R1=CH3, R2= C2H5, m/z= 190, cpd 3 C2F5, PFPA R1=H, R2=H, m/z=148, cpds 4 and 5 C3F7, HFBA R1=H, R2= CH3, m/z=162, cpd 6 R1=H, R2= C2H5, m/z= 176, cpd 7 R1=CH3, R2= CH3, m/z= 176, cpd 8

Scheme 8.1: Mechanism of the formation of the alkene radical cation in the perfluoroacyl derivatives of the primary and secondary regioisomeric amines

CH3 CH3 R2 CH3 N X O N N H C NCX R X 3 R1 X 1 R2 R1 O O O O R2 R1 = H, R2 = C2H5, cpd 7 m/z = 110, X = CF3 m/z = 168, X = CF3 R1 = CH3, R2 = CH3, cpd 8 = 160, X = C2F5 = 218, X = C2F5 X = CF3, TFA = 210, X = C3F7 =268, X = C3F7 C2F5, PFPA C3F7, HFBA Scheme 8.2: Formation of m/z 110, 160, 210 for compounds 7 and 8

An important fragmentation pathway characteristic to the PFPA derivative of compound 6 (the only N-ethyl compound in this limited series) and compounds 4, 5, which are N-propyl and isopropyl amines is illustrated in Scheme 8.3. This results in the formation of fragment ions at m/z 190 (Compound 6) or m/z 176 (Compounds 4, 5) for their PFPA amides. These ions came from the imine fragment at m/z 218 through hydrogen rearrangement and subsequent cleavage of the N-alkyl group on the nitrogen.

This occurs only with the N-alkyl group of ethyl or larger.

250 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

R2 R 1 R2 CH R 1 H CH2 H CH2 H N X O N NH H C X 3 H3C X CH3 O O O O m/z = 168, X = CF3 Compound 6 m/z = 140, X = CF3 R1=H, R2=H Compound 6 = 218, X = C2F5 = 190, X = C2F5 R1=H, R2=CH3 Compound 4 =268, X = C3F7 = 240, X = C3F7 R1=CH3, R2=CH3 Compound 5 Compound 4, 5 m/z = 126, X = CF3 = 176, X = C2F5 = 226, X = C3F7

Scheme 8.3 Formation of m/z 140, 190 and 240 for compound 6 and m/z 126, 176 and 226 for compounds 4 and 5.

Derivatization categorized this limited set of compounds into three subset groups depending on the mass recorded for base peak. The first group includes compounds 1 and

2 having m/z 135 as the base peak in their PFPA derivatives. The second group comprises compounds 4 and 5 having a base peak at m/z 148. Finally, the third group includes compounds 3, 6, 7 and 8 which are characterized by having the fragment ions at m/z 218 as the base peak.

Moreover, derivatization also enables the discrimination among some members within the same group. For the second group, compounds 4 and 5 could be differentiated by the difference in the relative abundance of the fragment ions at m/z 176. Among the members of the third group, compounds 7 and 8, which are the only two N-methyl compounds in this series, could be characterized by the fragment ions at m/z 160. In addition, they can also be differentiated by inverse intensities of the relative abundances of fragment ions at m/z 160 and 176.

251 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

The fragment ion m/z 190 in the mass spectra of the PFPA derivative of compound 6

(Scheme 8.3) can be confused with the same mass fragment ion found in the mass spectra of the PFPA derivatives of compounds 1-3 formed by another fragmentation pathway

(Scheme 8.1). The TFA and HFBA derivatives eliminated such confusion through the observance of analogous ions at m/z 140 and 240 for both derivatives respectively formed through the same fragmentation pathway shown in Scheme 11.3. Figure 11.4 shows representative mass spectra of the TFA derivatives of compounds 1-3 and 6.

Figure 8.4: Mass spectra of the TFA derivatives of compounds 1-3 and 6.

H O N CF3

O O 1

Abundance

Average of 8.307 to 8.336 min.: 090219-01.D\ data.ms 135.0 220000

200000

180000

160000

140000

120000 190.1 100000

80000

60000

40000 77.0 303.1 161.0 55.1 20000 105.1 222.0 242.1 264.1 284.1 0 40 60 80 100 120 140 160 180 200 220 240 260 280 300 m/ z-->

252 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

O NH CF3

O O 2 Abundance

Average of 8.197 to 8.226 min.: 090219-02.D\ data.ms 135.1 24000

22000

20000

18000

16000

14000

190.1 12000

10000

8000

6000 303.1 4000 55.0 77.0

168.1 2000 105.0

228.1 259.0 281.0 0 40 60 80 100 120 140 160 180 200 220 240 260 280 300 m/ z-->

O NH CF3

O O 3 Abundance

Scan 766 (8.302 min): 090219-03.D\ data.ms 168.1 6000000

5500000

5000000

4500000 135.1

4000000

3500000

3000000

2500000 55.1 2000000

303.1 1500000 190.1 77.1 114.0 1000000

500000 274.1 211.0 232.0 254.0 0 40 60 80 100 120 140 160 180 200 220 240 260 280 300 m/ z-->

253 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

O CF3

O N

O 6 Abundance

Average of 8.476 to 8.506 min.: 090219-06.D\ data.ms 168.1 6000000

5500000

5000000

4500000

4000000

3500000

3000000

2500000 140.1

2000000

1500000

1000000 77.1 303.1 500000 51.1 105.1

205.1 236.1 264.1 284.1 0 40 60 80 100 120 140 160 180 200 220 240 260 280 300 m/ z-->

The ion at m/z 176 can be formed through two different fragmentation pathways

(Scheme 8.1 and 8.3) for the PFPA derivatives of compounds 4, 5, 7 and 8. The use of

TFA and HFBA as derivatizing agents resolved this problem by providing characteristic peaks at m/z 126 and 226 for the TFA and HFBA derivatives of compounds 4 and 5, respectively. Figure 8.5 shows representative mass spectra of the HFBA of these four compounds. Hence, TFA and HFBA derivatives provide more structure specific fragment ions than the PFPA analog.

254 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Figure 8.5: Mass spectra of the HFBA derivatives of the compounds 4, 5, 7 and 8. O C3F7

O N

O 4 Abundance

Average of 8.680 to 8.756 min.: 090219-20.D\ data.ms 148.1

4500000

4000000

3500000

3000000

2500000

2000000

1500000

1000000 226.0

403.1 500000 43.1 77.1

119.0 268.1 177.1 294.1 344.1 374.1 0 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 m/ z-->

O C3F7

O N

O 5 Abundance

Average of 8.622 to 8.651 min.: 090219-21.D\ data.ms 148.1 5000000

4500000

4000000

3500000

3000000

226.0 2500000

2000000

1500000

1000000

43.1 77.1 403.1 500000

105.1 194.1 268.1 294.1 330.0 359.1 0 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 m/ z-->

255 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

O C3F7

O N

O 7 Abundance

Average of 8.535 to 8.564 min.: 090219-23.D\ data.ms 52000 268.1

50000

48000

46000

44000

42000

40000

38000

36000

34000

32000

30000

28000

26000 176.1 24000

22000

20000

18000 135.0 16000

14000 210.0

12000

10000

8000 42.0 6000 69.0

4000 403.1 240.0 2000 100.0 373.9 0 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 m/ z-->

O C3F7

O N

O 8 Abundance

Average of 8.512 to 8.529 min.: 090219-24.D\ data.ms 268.1 1700000 210.0 1600000 1500000 1400000 1300000 1200000 1100000 1000000 900000 800000 700000 600000 500000 400000 176.1 135.0 300000 56.1 200000

100000 103.1 403.1 239.9 306.0 331.9 360.1 0 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 m/ z-->

256 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Gas Chromatography of Side Chain Regioisomeric Phenethylamines Related to the

Controlled Substances MDEA, MDMMA, and MBDB.

GC-MS is a powerful tool that combines the identification power of mass

spectrometry with the separation power of gas chromatography. The separation of a physical mixture of the compounds 1-10 in the underivatized form was the subject of a

previous report from our laboratory.

Several stationary phases and different temperature programs were evaluated in

an effort to resolve the TFA, PFPA and HFBA derivatives in this study. The Rtx-200

phase provided adequate resolution for these compounds of closely related retention

properties. However, different temperature programs were necessary for resolving each

set of perfluoroacyl derivatives.

The separation was performed using three temperature programs for each

derivative studied. Program one was used to separate the trifluoroacetyl (TFA)

derivatives and consisted of an initial hold at 100°C for 1.0 min, ramped up to 180°C at a

rate of 12°C min-1, held at 180°C for 2.0 min then ramped to 200°C at a rate of 10°C min-

1 and held at 200°C for rest of the run duration. The second program was used to resolve the pentafluoropropionic anhydride (PFPA) derivatives. It started at 100°C for 1.0 min, ramped up to 180°C at a rate of 7.5°C min-1, held at 180°C for 2.0 min then ramped to

200°C at a rate of 10°C min-1 and held at 200°C. The third program utilized to separate

the heptafluorobutyric anhydride (HFBA) derivatives had an initial oven temperature at

100°C for 1.0 min, followed by temperature increase at a rate of 9°C min-1 to reach

257 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

180°C, held at 180°C for 2.0 min then ramped to 200°C at a rate of 10°C min-1 and held at 200°C for the remaining of the run.

Figure 8.6 shows the chromatographic separation of all derivatized forms (TFA,

PFPA and HFBA) of compounds 1-8. The chromatogram shows that the derivatives of the primary amines (compounds 1-3), the most branched side chain (compound 3) elutes first and the least branched (compound 1) elutes last. For the secondary amines

(compounds 4-8), the perfluroamides elute in a similar pattern. Thus the compound of greatest side chain branching (compound 8) elutes first followed by compound 6, 7, 5 and the most linear tertiary amide (compound 4) elutes last. The resolution of the PFPA and

HFBA derivatives was better than that of the TFA derivatives. However both TFA and

HFBA derivatives provide more structurally specific ions in the mass spectrum to help in discriminating among these compounds. Hence, the HFBA derivatives are considered the best choice to discriminate by mass spectrometry and resolve by gas chromatography this set of regioisomeric phenethylamine derivatives.

Abundance

TIC : 090406-3.D\ 1 data.ms 1100000 A 1000000 6 900000

800000 4 3 700000 2 8 7 5 600000

500000

400000

300000

200000

100000

18.00 20.00 22.00 24.00 26.00 28.00 30.00 32.00 34.00 36.00 Time-->

258 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Abundance

TIC: 090406-9.D\ data.ms 2500000

2400000

2300000 4

2200000 B 2100000

2000000

1900000

1800000

1700000 1600000 3 8 2 6 1 1500000

1400000

1300000 7 5

1200000

1100000

1000000

900000

800000

700000

600000

500000

400000

300000

200000

100000

18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.00 31.00 32.00 Time-->

Abundance

TIC: 090407-2.D\ data.ms

1400000 6 1300000 C 1200000

1100000 2

1000000 1 5 3 900000 800000 4 700000 8 600000 7

500000

400000

300000

200000

100000

17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.00 Time-->

Figure 8.6 Gas chromatographic separation of A: TFA; B: PFPA and C: HFBA derivatives of compounds (1-8), Column used; Rtx-200.

259 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Conclusion of Chapter 8

Three regioisomeric methylenedioxyphenethylamines (MDEA, MDMMA, and

MBDB), having the same molecular weight and major mass spectral fragments of

equivalent mass, have been reported as drugs of abuse. Seven additional phenethylamines have a side chain regioisomeric relationship with the controlled substances. Derivatization of the eight primary and secondary amines with various

perfluroacylating agents yields amides which significantly individualized their mass spectra and allowed for specific side chain identification. The individualization is the result of formation of unique marker ions or as a result of differences in the relative abundances of some common ions. The trifluoroacetyl and heptafluorobutryl derivatives offer more unique fragment ions over pentafluoropropionyl derivatives. Chromatographic resolution of the perfluroacyl amides was achieved on a relatively polar stationary phase

Rtx-200.

Chapter 9

GC-MS Evaluation of a Series of Acylated Derivatives of 3,4-

Methylenedioxymethamphetamine

The aim of this chapter is to study and compare the mass spectral properties of

MDMA after derivatization with different reagents commonly used for amine acylation.

The second task is to evaluate the retention properties of each acyl derivative under

chromatographic conditions regularly used by forensic chemists. The derivatizing agents

260 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

used in this study included trifluoroacetic anhydride (TFAA), pentafluoropropionic

anhydride (PFPA), heptafluorobutric anhydride (HFBA), pentafluorobenzoyl chloride,

acetic anhydride, propionic anhydride , butyric anhydride and benzoyl chloride.

Additionally, the formyl, d3-acetyl and d5-benzoyl derivatives were prepared to confirm

mass spectral fragmentation pathways.

Mass Spectrometry of Acylated Derivatives of 3,4-

Methylenedioxymethamphetamine

Mass spectrometry is the principal method used for confirming the identity of drugs and related substances in forensic samples. Figure 9.1 shows the structure of 3,4-

MDMA and the mass spectrum for the underivatized amine. The mass spectrum for 3,4-

MDMA is presented here primarily for comparison with the various acylated derivatives reported in this study. The fragmentation of phenethylamines is generally characterized by a base peak from an amine initiated alpha-cleavage reaction breaking the carbon- carbon bond of the ethyl linkage between the aromatic ring and the nitrogen atom of the amine group. With regards to 3,4-MDMA, initial ionization of nitrogen followed by cleavage of the alpha bond yields the m/z 58 imine cation, the base peak in the MDMA mass spectrum.

Figure 9.1: Mass Spectrum of the underivatized MDMA

261 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

H N O

O Abundance

Average of 13.027 to 13.167 min.: 080907-07.D\ data.ms 58.1 1500000

1400000

1300000

1200000

1100000

1000000

900000

800000

700000

600000

500000

400000

300000

200000 135.0 100000 77.0 42.1 88.6 105.0 120.1 148.1 163.1 178.1 193.1 0 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 m/z-->

Formation of the molecular ion via ionization of the aromatic pi-electrons followed directly by alpha-cleavage yields the benzylic cation at m/z 135 and hydrogen rearrangement from the equivalent molecular ion followed by alpha-cleavage initiated at

the distant radical site yields the radical cation at m/z 136 in Figure 9.1. The structures for

these fragment ions are shown in Scheme 9.1

The initial group of derivatives evaluated in this study were the simple alkyl amides of 3,4-MDMA obtained by derivatization with acetic, propionic and butyric

anhydrides. Acylation of the amine results in significantly lower nitrogen basicity and

this often results in the formation of unique and characteristic fragment ions.

262 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

CH3

HC CH3 N H m/z = 58

H N O EI 70eV O CH2

O O

m/z = 135

CH O 2

H O H . m/z = 136

Scheme 9.1. EI fragmentation pattern for the underivatized MDMA.

Figure 9.2 (A, B and C) shows the mass spectra for the homologous acetyl, propionyl and butyryl amides. These three spectra show molecular ions of low relative abundance at m/z 235, 249 and 263 respectively. Additionally, a second homologous series of fragment ions (M-135)+ occurs at m/z 100, 114 and 128 suggestive of the

acylated imine fragment for each of the amides. The mass spectrum in Figure 9.2D

provides evidence to support these structural assignments and shows the equivalent ion at

m/z 103 for the d3-. The structures for the acylated imine fragments included in

this study are shown in scheme 9.2

263 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

.

N O O N

O X O X

X = CF3, 289 m/z = 154, X = CF3 = C2F5, 339 = 204, X = C2F5 = C3F7, 389 = 254, X = C3F7 = C6F5, 387 = 252, X = C6F5 = H, 221 = 86, X = H = CH3, 235 = 100, X = CH3 = C2H5, 249 = 114, X = C2H5 = C3H7, 263 = 128, X = C3H7 = C6H5, 297 = 162, X = C6H5 = CD3, 238 = 103, X = CD3 = 167, X = C D = C6D5, 302 6 5

Scheme 9.2: Imine fragmentation pattern of acylated derivatives of MDMA.

The spectra in Figure 9.2A, B and C show two prominent ions occurring at the same mass for all three derivatives. The base peak for these derivatives is the m/z 58 ion and this ion is equivalent to the base peak in the underivatized amine whose mass spectrum is shown in Figure 9.1.

The m/z 58 ion in the spectrum of these derivatives is likely the result of hydrogen rearrangement from the alkyl group of the acyl imine fragments at m/z 100,

114 and 128 to yield the common imine fragment at m/z 58. This fragmentation pathway is illustrated in Scheme 9.3. Furthermore, the mass spectrum in Figure 9.2D for the d3- acetamide shows the deutrated imine species at m/z 59 providing support for the structural assignment and fragmentation pathway

264 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Figure 9.2. Mass spectra of acetyl, propanyl, butryl and d3-Acetyl amides of MDMA

N CH O 3

O O A

Abundance

Average of 22.947 to 23.186 min.: 071105-10.D\ data.ms 58.1 800000

700000 162.1

600000

500000

400000

300000 100.1

200000

135.1 77.1 100000 43.1

235.1 118.1 177.1 192.1 220.1 0 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 m/z-->

N C H O 2 5

O O B Abundance

Average of 25.809 to 26.118 min.: 071108-18.D\data.ms 1300000 58.1

1200000

1100000 162.1

1000000

900000

800000

700000

600000

500000

400000 114.1

300000

135.1 200000 77.1

100000 42.1 249.1 98.1 192.1 220.1 0 40 60 80 100 120 140 160 180 200 220 240 m/z-->

265 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

N C H O 3 7

O O C

Abundance

Scan 4487 (30.740 min): 080204-10.D\ data.ms 1400000 58.1

1300000

1200000

1100000

1000000

900000 162.1

800000

700000

600000

500000

400000

300000 128.1 200000 77.1 100000 41.1 105.1 146.1 192.1 220.1 246.1 263.1 0 40 60 80 100 120 140 160 180 200 220 240 260 m/z-->

N CD O 3

O O D Abundance

Average of 22.597 to 23.046 min.: 071113-20.D\ data.ms 59.1

450000

400000 162.1 350000

300000

250000

200000

103.1 150000

100000

135.1 77.1 50000

42.1 238.1 119.1 178.1 193.1 220.1 0 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 m/z-->

266 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Figure 9.3. Mass Spectra of the formyl, benzoyl and d5-benzoyl amides of MDMA.

N H O

O O A Abundance

Average of 21.735 to 21.997 min.: 071121-04.D\ data.ms 220000 86.1 162.1

200000

180000

160000

140000 58.1 120000

100000

80000

60000 135.0 40000

20000 42.1 105.1 221.1 72.0 121.0 177.0 191.1 206.9 0 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 m/ z-->

N O

O O B Abundance

Average of 65.304 to 66.236 min.: 071121-04.D\ data.ms 105.0 240000

220000

200000

180000 162.1 160000

140000

120000

100000

80000 77.1 60000

40000

20000 51.1 135.0 191.1 251.9 297.1 0 40 60 80 100 120 140 160 180 200 220 240 260 280 300 m/ z-->

267 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

D

D D

N O D O D O C Abundance

Scan 10447 (65.479 min): 071126-20.D\ data.ms 110.1 220000

200000

180000

160000

140000

120000

100000 162.1 80000 167 82.1 60000

40000

20000 135.1 54.1 191.1 302.1 0 40 60 80 100 120 140 160 180 200 220 240 260 280 300 m/z-->

The (N-formyl) and benzamide (N-benzoyl) derivatives were prepared and evaluated to determine the scope of the hydrogen rearrangement in the further decomposition of the acyl imine species. The mass spectra of these compounds are shown in Figure 9.3A-B. As shown in Scheme 9.3, the hydrogen of the formyl group does transfer in significant abundance; however the resulting m/z 58 fragment is not the base peak for this compound. The decreased likelihood of hydrogen transfer through the 3- membered ring transition leaves the formyl imine species (m/z 86) as the more prominent ion in its mass spectrum. The benzamide in Figure 9.3B does not show any indication of a m/z 58 ion demonstrating that the aromatic do not migrate in the same manner as the hydrogen of the alkyl groups in the previously described spectra.

268 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

N

O

H m/z = 86

N

H

m/z = 58 N

O H C H

R R=H, m/z = 100 R= CH3, m/z =114 R= C2H5, m/z = 128

Scheme 9.3 Formation of m/z 58 from the N-formyl, acetyl propionyl and butyryl imine fragments

O X HO X H H H H N N O O O

O O O m/z= 162

Scheme 9.4 Formation of m/z 162 in all amide derivatives of MDMA

The other common fragment seen in all the mass spectra in Figure 9.2 and those in Figure 9.3A and B is the m/z 162 ion. This fragment ion is the 3,4- methylenedioxyphenylpropene radical cation occurring through hydrogen transfer from

269 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

the to the carbonyl oxygen followed by loss of the neutral amide species.

This mechanism for formation of the m/z 162 radical cation is shown in Scheme 9.4. An interesting uniqueness was observed in the mass spectrum of the benzamide derivative in

Figure 9.3B. Two separate fragmentation pathways can yield ions at m/z 162, the 3,4- methylenedioxyphenylpropene radical cation and the benzoylimine cation. Figure 9.3C shows confirmation of this point with the mass spectrum for the d5-benzamide. The d5- benzoylimine is shifted to m/z 167 as expected while the 3,4- methylenedioxyphenylpropene fragment remains at m/z 162. Additionally, the benzoyl

+ fragment (C6H5CO ) at m/z 105 in Figure 9.3B is shifted to m/z 110 for the d5-benzoyl derivative.

The mass spectra for all the derivatives described to this point have some disadvantages for the identification of amines such as 3,4- methylenedioxymethamphetamine. The derivatives formed from alkanoic anhydrides (acetic, propionic and butyric) fragment to yield base peaks at m/z 58 equivalent to the underivatized amines. Thus without the aid of chromatographic separation, the completeness of the derivatization process itself could be questioned. The loss of significant ion current as m/z 58 is a drawback to the use of these derivatives for forensic analysis and the only unique major ion for identification of 3,4-MDMA is the m/z 162 ion and this ion appears regardless of the acylating species. The benzamide derivative yields significant ion current at unique masses such as m/z 105 and 162.

However the benzamide derivative of 3,4-MDMA was observed to have quite high GC retention properties as will be described later in this study. These relatively high retention properties may limit this derivative utility in some applications.

270 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

The mass spectra for a series of perfluoroacyl derivatives of 3,4-MDMA are

shown in Figure 9.4. One of the major features of these spectra is the absence of m/z 58

ion. This ion does not occur since no hydrogen is available for migration from the acyl

portion of these derivatives. The spectra in Figure 9.4A, B, C and D further show common ions at m/z 135 and m/z 162. These ions are the 3,4-methylenedioxybenzyl cation and the 3,4-methylenedioxyphenylpropene radical cation respectively. The formation of these ions occurs in an analogous manner to that described earlier in this report. The three perfluoroalkyl derivatives, trifluoroacetyl, pentafluoropropionyl and heptafluorobutyryl amides show several ions in a homologous series separated by 50 mass units (CF2). The m/z 154, m/z 204 and m/z 254 ions in these three spectra represent

the perfluoroacylimine species (see Scheme 9.2). These ions are the base peaks in the

three spectra and without hydrogen atom to migrate from the acyl group, no m/z 58

decomposition ion is formed. Additionally, these spectra do not show any evidence of

analogous fluorine transfer decomposition products.

The second homologous series of ions in Figure 9.4A, B and C occur at m/z 110,

160 and 210 respectively. This series of ions differing by 50 mass ions (CF2) indicates

that the perfluoro fragment is a component of these ions. Previous studies in chapter 1

using d3-3,4-MDMA in which the three deuterium atoms are bonded to the N-methyl

group (N-CD3) have shown that all three deuterium labels are contained in the m/z 160

ion for the PFPA derivative. This leaves only 26 mass units (CN) to account for all the

mass of the m/z 160 ion. The mechanism and account for these ions is shown in Scheme

17.5.

271 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Figure 9.4. Mass spectra of the fluorinated acyl derivatives of MDMA.

N CF O 3

O O A Abundance

Average of 16.920 to 17.025 min.: 071121-04.D\ data.ms 320000 154.0

300000

280000

260000

240000

220000

200000 135.0

180000

160000

140000

120000

100000 110.0

80000

60000 77.1 42.1 289.1 40000

20000 176.0 204.0 222.1 250.1 269.9 0 40 60 80 100 120 140 160 180 200 220 240 260 280 m/z-->

N C F O 2 5

O O B Abundance

Average of 16.670 to 16.722 min.: 071121-04.D\ data.ms 204.0 340000 320000 300000 280000 260000 162.1 240000 220000 200000 180000 135.0 160000 140000 120000 100000 80000 60000 42.1 77.1 40000 339.1 20000 105.1 242.9 269.9 300.0 0 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 m/z-->

272 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

N C F O 3 7

O O C

Abundance

Average of 17.357 to 17.841 min.: 071023-10.D\ data.ms 254.1 2300000

2200000

2100000

2000000

1900000

1800000

1700000 162.1 1600000

1500000

1400000

1300000

1200000

1100000

1000000 135.1 900000 210.0

800000

700000

600000

500000

400000

300000 77.1 42.1 200000 389.1 105.1 100000 282.9 310.0 350.1 0 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 m/z-->

F

F F

N O F O F O D

Abundance

Scan 6747 (43.913 min): 080204-11.D\ data.ms 55000 195.0

50000

45000

40000

35000

30000

162.1 25000

20000 252.1

15000

10000

44.0 135.1 5000 77.1 105.0 225.1 281.0 387.1 0 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 m/ z-->

273 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

N N

X NCX X O O

m/z = 110, X = CF3 m/z = 154, X = CF3 = 160, X = C2F5 = 204, X = C2F5 = 210, X = C3F7 = 254, X = C3F7

Scheme 9.5: Formation of m/z 110, 160 and 210 in the spectra of the TFAA, PFPA and HFBA derivatives of MDMA.

Based on our studies of numerous phenethylamines, this mechanism appears to be specific for the perfluoroacyl derivatives of N-methyl substituted compounds. Next chapter will address the scope of this mechanism.

While this project did not examine any perfluoroacyl derivatives in this homologous series beyond the heptafluorobutyramide, the perfluorooctanoyl (PFO) derivatives of 3,4-MDMA and methamphetamine have been reported. These derivatives show a major fragment ion at m/z 410 which extends this series of rearrangement ions

(see Scheme 9.5) to higher chain homologues. The additional four CF2 groups in the PFO

derivative beyond the HFBA derivative account for the 200 additional mass units. The

work of Westphal et al further described the PFO derivative of d5-MDMA and clearly

showed that only three deuterium labels were incorporated into the analogous fragment

ion at m/z 413. The base in the mass spectrum of the PFO derivative of MDMA occurs at

m/z 454 which is the perfluoroacylimine species and analogous to the base peaks in

Figure 9.4A, B and C. Thus these data are consistent with the experimental observations

reported in this study.

274 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

The remaining spectrum in Figure 9.4D is for the pentafluorobenzamide and the

base peak at m/z 195 is the pentafluorobenzoyl cation. This ion is analogous to the m/z

105 and m/z 110 ions for the benzoyl and d5-benzoyl cations respectively (Scheme 9.6).

These ions would be major fragments in the benzamide of most amines and thus do not

provide ions characteristic of 3,4-MDMA.

N O O O

X X O m/z = 195, X = C6F5 X = C6F5, 387 = 105, X = C6H5 = C6H5, 297 = 110, X = C6D5 = C6D5, 302

Scheme 9.6. Formation of m/z 195, 105 and 110 from the pentafluorobenzoyl, benzoyl and d5-benzoyl derivatives of MDMA.

Gas Chromatography The chromatogram in Figure 9.5 provides a comparison of the acyl group

structure and relative GC retention properties on a nonpolar stationary phase, 100%

dimethylpolysiloxane, Rtx-1. Several temperature programs were evaluated in this

project and one program showing the best compromise between resolution and analysis

time was used to generate the chromatogram in Figure 9.5.

The perfluoroalkylamides are the first group of derivatives to elute on the

dimethylpolysiloxane stationary phase. These amides elute much earlier than their

corresponding non-fluorinated hydrocarbon counterparts. Both the fluorinated and non-

fluorinated alkyl derivatives elute before the aromatic amides. In every case of direct

comparison, the perfluoro species eluted much earlier than its non-fluorinated

275 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

hydrocarbon counterpart. The most obvious example of this effect can be seen for the

benzamides in the last two peaks in the chromatogram (Figure 9.5). The high relative

retention for the benzamides coupled with the lack of major fragment ions could limit

their value in MDMA analysis and identification. The alkyl hydrocarbon derivatives

provide significantly increased chromatographic retention yet show the m/z 58 ion as the

base peak as does the derivatized amine, MDMA. Thus, the perfluoroalkyl derivatives

offer excellent chromatographic properties as well as a significant number of

characteristic fragment ions for MDMA identification.

Abundance 6 TIC: 080204-13.D\ data.ms 340000

320000 300000 5 280000 4 260000 3 240000 7 220000 200000 2 180000

160000 140000 8 120000 1 100000 9 80000

60000

40000

20000

10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00 60.00 65.00 70.00 75.00 80.00 Time-->

Figure 9.5. Gas chromatographic separation of MDMA derivatives. Peaks: 1, PFPA; 2, TFAA; 3, HFBA; 4, N-formyl; 5, acetyl; 6, propoinyl; 7, butyrl; 8, pentaflurobenzoyl and 9, benzoyl amides.

276 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Conclusions of Chapter 9

The perfluoroacyl derivatives of MDMA show excellent chromatographic properties and unique mass spectral fragment ions. The perfluoroalkyl amides of TFAA,

PFPA and HFBA yield a unique series of mass spectral fragments at m/z 110, 160 and

210 respectively. Additionally, the base peaks in these mass spectra occur at relatively higher masses at m/z 154, 204 and 254 respectively. These ions are the perfluoroacylimines resulting from loss of 135 mass units (3,4-methylenedioxybenzyl) from the molecular ion. This (M-135)+ species also occurs for the acetyl, propionyl and butyryl amides however these ions rearrange through loss of the acyl group to yield a common ion at m/z 58. Thus, the base peak for the non-fluorinated hydrocarbon derivatives is the same as that observed for the underivatized MDMA, m/z 58. The formyl, d3-acetyl, d5-benzoyl and pentafluorobenzoyl derivatives provided chromatographic and confirmatory mass spectral evidence for fragmentation pathways.

277 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

IV. Conclusions IV.1 Discussion of Findings.

The compounds investigated in this project are a series of closely related

regioisomeric and isobaric amines having mass spectra essentially equivalent to that of

MDMA, MDEA and MBDB. Mass spectral equivalence in the underivatized amines shows that MS methods do not provide confirmation of drug identity and molecular

individualization. Additional scientific data for molecular individualization can be

obtained following simple chemical derivatization with perfluoroacylating reagents.

Perfluoroacylamines provide specific and unique mass spectral fragments

for side chain and some ring substituent identification. Vapor phase infrared spectrometry

(GC-IRD) provides additional confirmation for other ring substituents and for those

compounds not forming stable acylation products. Thus the results of this research have

provided improved specificity in the analytical methods used to identify these

phenethylamine controlled substances. This improved specificity comes from methods

which allow the forensic analyst to eliminate non-drug imposter substances as the source

of analytical data matching that of the controlled drug substance.

IV.2 Implications for policy and practice:

The results of this project allow the forensic analyst to differentiate among most of the regioisomeric and isobaric equivalents of MDMA. This can be accomplished without having access to a large number of reference standards of these compounds.

278 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

IV.3 Implications for further research:

Perhaps the first implication from the results of this work is an educational

program to efficiently and effectively transfer the findings to practicing forensic analysts.

While we have published extensively on this subject in the scientific literature, a one or two day short course would allow us to put these data in the hands of forensic drug chemists in an organized and effective manner. The course would include background educational material on mass spectra and infrared interpretation as well as chromatographic theory. The course could be offered in conjunction with regional meetings of forensic scientists over a period of a year to 18 months and reach numerous individual forensic scientists.

Retention index studies for all the ring substituted amines of the same side-chain, especially the methamphetamine side-chain compounds. Since the methamphetamine side chain is perhaps the most likely to appear in new designer drugs, retention indexing studies on standardized GC columns and stationary phases could further decrease the need for reference standards in identification of these regioisomeric and isobaric amines.

Such studies should be done in cooperation with collaborators in forensic science laboratories.

Liquid Chromatographic studies on unique stationary phases to provide retention/separation/resolution data on as large a subset of these compounds as possible.

Again concentrating on those compounds having the same side chain structure. These are

279 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

the compounds for which mass spectrometry provides the least information for molecular individualization.

In concert with LC studies MS-MS techniques can be explored for evidence of specific fragment ions identifying aromatic ring substitution patterns. The initial phase of such a study would be to compare the fragment patterns for all the possible regioisomeric substitution patterns in each series. Since we have all the compounds available already, our group is well positioned to begin this study immediately.

280 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

V. References

Aalberg, L.; DeRuiter, J.; Noggle, F.T.; Sippola, E.; Clark,C. R. Chromatographic and mass spectral methods of identification for the side-chain and ring regioisomers of methylenedioxymethamphetamine. J. Chromatogr. Sci., 2000, 38, 329 – 337.

Aalberg, L.; DeRuiter, J.; Noggle, F.T.; Sippola, E.; Clark,C. R. Chromatographic and

Spectroscopic Methods of Identification for the Side Chain Regioisomers of 3,4-

Methylenedioxyphenethylamines Related to MDEA, MDMMA and MBDB. J.

Chromatogr. Sci., 2003, 41, 227-233.

Aalberg, L.; DeRuiter, J.; Sippola, E.; Clark,C. R. Gas Chromatographic Optimization

Studies on the Side Chain And Ring Regioisomers of Methylenedioxymetham- phetamine. J. Chromatogr. Sci., 2004, 42, 293-298.

Bell, S.E.J.; Burns, D.T.; Dennis, A.C.; Speers, J.S. Rapid analysis of ecstasy and related phenethylamines in seized tablets by Raman spectroscopy. Analyst 2000a, 125, 541-544.

Bell, S.E.J.; Burns, D.T.; Dennis, A.C.; Matchett, L.J.; Speers, J.S. Composition profiling of seized ecstasy tablets by Raman spectroscopy. Analyst 2000b, 125, 1811-1815.

Bogusz, M.J.; Krüger, K.-D.; Maier, R.-D. Analysis of underivatized amphetamines and

281 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

related phenethylamines with high-performance liquid chromatography-atmospheric

pressure chemical ionization mass spectrometry. J. Anal. Toxicol. 2000, 24, 77-84.

Borth, S.; Hänsel, W.; Rösner, P.; Junge, T. Synthesis of 2,3- and 3,4-methylenedioxy-

phenalkylamines and their regioisomeric differentiation by mass spectral analysis using

GC-MS-MS. Forensic Sci. Int. 2000a, 114, 139-153.

Borth, S.; Hänsel, W.; Rösner, P.; Junge, T. Regioisomeric differentiation of 2,3- and 3,4- methylenedioxy ring-substituted phenylalkylamines by gas chromatography / tandem mass spectrometry. J. Mass Spectrom. 2000b, 35, 705-710.

Braga, S.; Paz, F. A. ; Pillinger, M. ; Seixas, J. ; Romao, C. and Goncalves, I. Structural studies of β-cyclodextrin and permethylated β-cyclodextrin inclusion compounds of cyclopentadienyl metal carbonyl complexes. Eur. J. Inorg. Chem. 2006, 10, 1662-1669.

Brunnenberg, M.; Kovar, K.-A. Stereospecific analysis of ecstasy-like N-ethyl-3,4- methylenedioxyamphetamine and its metabolites in humans. J. Chromatogr. B 2001, 751,

9-18.

Buechler J, Schwab M, Mikus G, Fischer B, Hermle L, Marx C, Gron G, Spitzer M,

Kovar KA. Enantioselective quantitation of the ecstasy compound (R)- and (S)-N-ethyl-

3,4-methylenedioxyamphetamine and its major metabolites in human plasma and urine.

282 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

J. Chromatogr B Analyt Technol Biomed Sci., 2003, 793(2), 207-22.

Burns, D.T.; Lewis, R.J.; Stenson, P. Determination of 3,4-methylenedioxyamphetamine analogues (“ecstasy”) by proton nuclear magnetic resonance spectrometry. Anal. Chim.

Acta 1997, 339, 259-263.

Casale, J.F.; Hays, P.A.; Klein, R.F.X. Synthesis and characterization of the 2,3- methylenedioxyamphetamines. J. Forensic Sci. 1995, 40, 391.

Clark, C.R.; Valaer, A. K.; F.T. Noggle, F. T.; DeRuiter, J. GC-MS analysis of acylated derivatives of methamphetamine and regioiosomeric Phenethylamines. J. Chromatogr.

Sci., 1995, 33, 485

Clark, C.R.; DeRuiter, J.; Valaer, A.; Noggle, F.T. Gas chromatographic-mass spectrometric and liquid chromatographic analysis of designer butanamines related to

MDMA. J. Chromatogr. Sci. 1995a, 33, 328-337.

Clark, C.R.; DeRuiter, J.; Valaer, A.; Noggle, F.T. GC-MS analysis of acylated derivatives of methamphetamine and regioisomeric phenethylamines. J. Chromatogr. Sci.

1995b, 33, 485-492.

283 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Clark, C.R.; DeRuiter, J.; Noggle, F.T. Chromatographic and mass spectrometric

methods for the differentiation of N-methyl-1-(3,4-methylenedioxyphenyl)-2-butanamine

from regioisomeric derivatives. J. Chromatogr. Sci. 1996, 34, 230-237.

Clauwaert, K.M.; van Bocxlaer, J.F.; de Letter, E.A.; van Calenbergh, S.; Lambert, W.E.;

de Leenheer, A.P. Determination of the designer drugs 3,4-methylenedioxy-

methamphetamine, 3,4-methylenedioxyethylamphetamine, and 3,4-methylenedioxy-

amphetamine with HPLC and fluorescence detection in whole blood, serum, vitreous

humor, and urine. Clin. Chem. 2000, 46, 1968-1977.

Concheiro M, de Castro A, Quintela O, Lopez-Rivadulla M, Cruz A. Determination of

MDMA, MDA, MDEA and MBDB in oral fluid using high performance liquid

chromatography with native fluorescence detection. Forensic Sci Int. 2005, 150(2-3),

221-6.

da Costa JL, da Matta Chasin AA. Determination of MDMA, MDEA and MDA in urine by high performance liquid chromatography with fluorescence detection. J Chromatogr B

Analyt Technol Biomed Life Sci. 2004, 811(1), 41-5.

284 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Dal Cason, T.A.; Young, R.; Glennon, R.A. : an investigation of several N- alkyl and methylenedioxy-substituted analogs. Pharmacol. Biochem. Behav. 1997, 58,

1109-1116.

Dallakian, P.; Budzikiewicz, H.; Brzezinka, H. Detection and quantitation of

amphetamine and methamphetamine: electron impact and chemical ionization with --comparative investigation on Shimadzu QP 5000 GC-MS system. J. Anal.

Toxicol. 1996, 20, 255-261.

de Boer, D.; Tan, L.P.; Gorter, P.; van de Wal, R.M.A.; Kettenes-van de Bosch, J.J.; de

Bruijn E.A.; Maes, R.A.A. Gas chromatographic/mass spectrometric assay for profiling

the enantiomers of 3,4-methylenedioxymetamphetamine and its chiral metabolites using

positive chemical ionization ion trap mass spectrometry. J. Mass Spectrom. 1997, 32,

1236-1246.

DeRuiter, J.; Holston, P.L.; Clark, C.R.; Noggle, F.T. Liquid chromatographic and mass

spectral methods of identification for regioisomeric 2,3- and 3,4-methylenedioxy-

phenalkylamines. J. Chromatogr. Sci. 1998, 36, 131-138.

Drummer, O.H.; Horomidis, S.; Kourtis, S.; Syrjanen, M.L.; Tippett, P. Capillary gas

chromatographic drug screen for use in forensic toxicology. J. Anal. Toxicol. 1994, 18,

285 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

134-138.

Duncan, W; Soine, W.H. Identification of Amphetamine Isomers by GC/IR/MS, J.

Chromatogr. Sci.1988, 26, 521-526

Ecstasy Data, independent laboratory pill testing program co-sponsored by Erowid,

Dancesafe, MAPS, & the Promind Foundation http://www.ecstasydata.org/

Girod, C.; Staub, C. Analysis of drugs of abuse in hair by automated solid-phase

extraction, GC/EI/MS and GC ion trap/CI/MS. Forensic Sci. Int. 2000, 107, 261-271.

Helmlin, H.J.; Bracher, K.; Bourquin, D.; Vonlanthen, D.; Brenneisen, R.; Styk, J.

Analysis of 3,4-methylenedioxymethamphetamine (MDMA) and its metabolites in

plasma and urine by HPLC-DAD and GC-MS. J. Anal. Toxicol. 1996, 20, 432-440.

Kempfert, k. Forensic Drug Analysis by GC/FT-IR, Applied Spectroscopy 42 (1988)

845-849

Kronstrand, R. Identification of N-methyl-1-(3,4-methylenedioxyphenyl)-2-butanamine

(MBDB) in urine from drug users. J. Anal. Toxicol. 1996, 20, 512-516.

286 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Laing,R.R; Beyerstein, B.L; Siegel, J. A. . A Forensic Drug Handbook,

Academic Press (2003) 191-192, 197

Lee, G.S.H.; Taylor, R.C.; Dawson, M.; Kannangara, K.; Wilson, M.A. High-resolution

solid state 13C nuclear magnetic resonance spectra of 3,4-methylenedioxyamphetamine

hydrochloride and related compounds and their mixture with lactose. Solid State Nucl.

Magn. Reson. 2000, 16, 225-237.

Lillsunde, P.; Korte, T Determination of ring- and N-substituted amphetamines as heptafluorobutyryl derivatives. Forensic Sci. Int. 1991, 49, 205-213.

Lillsunde, P.; Michelson, L.; Forsström, T.; Korte, T.; Schultz, E.; Ariniemi, K.; Portman,

M.; Sihvonen, M.-L.; Seppälä, T. Comprehensive drug screening in blood for detecting abused drugs potentially hazardous for traffic safety. Forensic Sci. Int. 1996, 77, 191-

210.

Lim, H.K.; Foltz, R.L. In vivo formation of aromatic hydroxylated metabolites of 3,4-

(methylenedioxy)methamphetamine in the rat: Identification by ion trap tandem mass

spectrometric (MS/MS and MS/MS/MS) techniques. Biol. Mass Spectrom. 1991, 20,

677-686.

287 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Lim, H.K.; Zeng, S.; Chei, D.M.; Foltz, R.L. Comparative investigation of disposition of

3,4-(methylenedioxy)methamphetamine (MDMA) in the rat and the mouse by a capillary

gas chromatography-mass spectrometry assay based on perfluorotributylamine-enhanced

ammonia positive ion chemical ionization. J. Pharm. Biomed. Anal. 1992, 10, 657-665.

Mancinelli, R.; Gentili, S.; Guiducci, M.S.; Macchia, T. Simple and reliable high-

performance liquid chromatography fluorimetric procedure for the determination of

amphetamine-derived designer drugs. J. Chromatogr. B 1999, 735, 243-253.

Marquet, P.; Lacassie, E.; Battu, C.; Faubert, H.; Lachâtre, G. Simultaneous

determination of amphetamine and its analogs in human whole blood by gas

chromatography-mass spectrometry. J. Chromatogr. B 1997, 700, 77-82.

Maurer, H.H. On the metabolism and the toxicological analysis of

methylenedioxyphenylalkylamine designer drugs by gas chromatography-mass

spectrometry. Ther. Drug. Monit. 1996, 18, 465-470.

Michel, R.E.; Rege, A.B.; George, W.J. High-pressure liquid chromatography /

electrochemical detection method for monitoring MDA and MDMA in whole blood and

other biological tissues. J. Neurosci. Methods 1993, 50, 61-66.

288 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Mortier KA, Dams R, Lambert WE, De Letter EA, Van Calenbergh S, De Leenheer AP.

Determination of paramethoxyamphetamine and other amphetamine-related designer drugs by liquid chromatography/sonic spray ionization mass spectrometry. Rapid

Commun Mass Spectrom. 2002, 16(9), 865-70.

MTF (Monitoring the Future Study): Trends in Prevalence of Various Drugs for 8th-

Graders, 10th-Graders, and 12th-Graders, 2005, http://www.drugabuse.gov/drugpages/MTF.html

Noggle, F.T. Jr.; Clark, C.R.; Andurkar, S.; DeRuiter, J. Methods for the analysis of 1-

(3,4-methylenedioxyphenyl)-2-butanamine and N-methyl-1-(3,4-methylenedioxyphenyl)-

2-propanamine (MDMA). J. Chromatogr. Sci. 1991a, 29, 103-106.

Noggle, F.T. Jr.; Clark, C.R.; DeRuiter, J. Gas chromatographic and mass spectrometric

analysis of samples from a clandestine laboratory involved in the synthesis of ecstasy

from sassafras oil. J. Chromatogr. Sci. 1991b, 29, 168-173.

Noggle, F.T. Jr.; Clark, C.R.; Valaer, A.K.; DeRuiter, J. Liquid chromatographic and

mass spectral analysis of N-substituted analogues of 3,4-methylenedioxyamphetamine. J.

Chromatogr. Sci. 1988, 26, 410-415.

289 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Noggle, F.T. Jr.; DeRuiter, J.; Coker, S.T.; Clark, C.R. Synthesis, identification and acute

toxicity of some N-alkyl derivatives of 3,4-methylenedioxyamphetamines. J. Assoc. Off.

Anal. Chem. 1987, 70, 981-986.

Noggle, F.T.; Clark, C.R.; DeRuiter, J. Chromatographic and mass spectrometric analysis

of N-methyl-1-(3,4-methylenedioxyphenyl)-2-butanamine and regioisomeric derivatives.

Microgram 1995, 28, 321-328.

O’Connell, D.; Heffron, J.J.A. Rapid analysis of illicit drugs by mass spectrometry:

Results from seizures in Ireland. Analyst 2000, 125, 119-121.

Ortuño, J.; Pizarro, N.; Farre, M.; Mas, M.; Segura, J.; Cami, J.; Brenneisen, R.; de la

Torre, R. Quantification of 3,4-methylenedioxymetamphetamine and its metabolites in

plasma and urine by gas chromatography with nitrogen-phosphorus detection. J.

Chromatogr. B 1999, 723, 221-232.

Paul BD, Jemionek J, Lesser D, Jacobs A, Searles DA. Enantiomeric separation and

quantitation of (+/-)-amphetamine, (+/-)-methamphetamine, (+/-)-MDA, (+/-)-MDMA,

and (+/-)-MDEA in urine specimens by GC-EI-MS after derivatization with (R)-(-)- or

(S)-(+)-alpha-methoxy-alpha-(trifluoromethy)phenylacetyl chloride (MTPA). J Anal

Toxicol. 2004, 28(6), 449-55.

290 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Peters FT, Samyn N, Lamers CT, Riedel WJ, Kraemer T, de Boeck G, Maurer HH. Drug

testing in blood: validated negative-ion chemical ionization gas chromatographic-mass

spectrometric assay for enantioselective measurement of the designer drugs MDEA,

MDMA, and MDA and its application to samples from a controlled study with MDMA.

Clin. Chem. 2005, 51(10), 1811-22.

Sachs, S.B., Woo, F. A detailed mechanistic fragmentation analysis of methamphetamine and select regioisomers by GC/MS, J. Forensic Sci. 2007, 308-319.

Sagmuller B, Schwarze B, Brehm G, Schneider S. Application of SERS spectroscopy to the identification of (3,4-methylenedioxy)amphetamine in forensic samples utilizing matrix stabilized silver halides. Analyst. 2001, 126(11), 2066-71.

Schneiderman, E.and Stalcup, A. Cyclodextrins: a versatile tool in separation science. J.

Chromatogr. B. 2000, 745, 83-102.

Shulgin, A.T. The background and chemistry of MDMA. J. Psychoact. Drugs 1986, 18,

291-305.

Soine, W.H.; Shark, R.E.; Agee, D.T. Differentiation of 2,3-methylenedioxyamphetamine

from 3,4-methylenedioxyamphetamine. J. Forensic Sci. 1983, 28, 386-390.

291 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Sondermann, N.; Kovar, K.A. Screening experiments of ecstasy street samples using near

infrared spectroscopy. Forensic Sci. Int. 1999, 106, 147-156.

Szejtli, J. and Osa, T. Comprehensive supramolecular Chemistry, Cyclodextrins, vol 3, pergamon, Elsevier, Oxford, 1996.

Tagliaro, F.; De Battisti, Z.; Groppi, A.; Nakahara, Y.; Scarcella, D.; Valentini, R.;

Marigo, M. High sensitivity simultaneous determination in hair of the major constituents of ecstasy (3,4-methylenedioxymethamphetamine, 3,4-methylenedioxyamphetamine and

3,4-methylenedioxyethylamphetamine) by high-performance liquid chromatography with direct fluorescence detection. J. Chromatogr. B 1999, 723, 195-202

Talwar, D.; Watson, I.D.; Stewart, M.J. Routine analysis of amphetamine class drugs as their naphtaquinone derivatives in human urine by high-performance liquid chromatography. J. Chromatogr. B 1999, 735, 229-241.

TCADA. 2002. A dictionary of slang drug terms: (online). Texas Commission

on and Drug Abuse. http://www.tcada.state.tx.us/research/slang/stimulants

[Accessed 27 Sep. 2002].

UNODCCP (United Nations Office of Drug and Crime), Ecstasy and Amphetamine

global survey 2003, http://www.unodc.org/pdf/publications/report_ats_2003-09-23_1.pdf

292 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Weinman, W.; Renz, M.; Vogt, S.; Pollak, S. Automated solid-phase extraction and two- step derivatisation for simultaneous analysis of basic illicit drugs in serum by GC/MS.

Int. J. Legal Med. 2000, 113, 229-235.

Wood M, De Boeck G, Samyn N, Morris M, Cooper DP, Maes RA, De Bruijn EA.

Development of a rapid and sensitive method for the quantitation of amphetamines in human plasma and oral fluid by LC-MS-MS. J Anal Toxicol. 2003, 27(2), 78-87.

Young, K.A. Attenuated Total Reflectance – Fourier Transform Infrared Spectroscopy

(ATR-FTIR) for the Analysis and Profiling of Seized Ecstasy Tablets, Masters Thesis,

University of Strathydrochloric acidyde, Glasgow, UK, 2000.

293 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

VI. Dissemination of Research Findings

VI.1 Scientific Publications Related to this Project:

Ashley L Thigpen, Jack DeRuiter and C Randall Clark, “GC-MS Studies on the

Regioisomeric 2,3- and 3,4-Methylenedioxyphenethylamines Related to MDEA,

MDMMA and MBDB,” J. Chromatogr. Sci., 45, 229 (2007).

Tamer Awad, Jack DeRuiter and C. Randall Clark, “Chromatographic and Mass Spectral

Studies on Methoxy Methyl Methamphetamines Related to 3,4-Methylenedioxy-

methamphetamine,” J. Chromatogr. Sci., 45, 466 (2007).

Tamer Awad, Jack DeRuiter and C. Randall Clark, “GC-MS Analysis of Regioisomeric

Ring Substituted Methoxy Methyl Phenylacetones,” J. Chromatogr. Sci., 45, 458 (2007).

Tamer Awad, C. Randall Clark and Jack DeRuiter, GC-MS Analysis of Acylated

Derivatives of the Side Chain Regioisomers of 4-Methoxy-3-methyl-phenethylamines

Related to Methylenedioxymethamphetamine,” J. Chromatogr. Sci., 45, 477 (2007).

Tamer Awad, Jack DeRuiter and C. Randall Clark, “GC-MS Analysis of Acylated

Derivatives of a Series of Side Chain Regioisomers of 2-Methoxy-4-Methyl-

Phenethylamines,” J. Chromatogr. Sci., 46, 375-380 (2008).

294 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Tarek Belal, Tamer Awad, Jack DeRuiter and C. Randall Clark, “GC-MS Studies on

Acylated Derivatives of 3-Methoxy-4-methyl- and 4-Methoxy-3-methyl- phenethylamines: Regioisomers Related to 3,4-MDMA,” Forensic Science International,

178, 61-82 (2008).

Tamer Awad, Jack DeRuiter and C. Randall Clark, “GC- MS Analysis of Ring and Side

Chain Regioismoers of Ethoxyphenethylamines,” J. Chromatogr. Sci., 46, 671-679

(2008).

Ashley L. Thigpen Tamer Awad, Jack DeRuiter and C. Randall Clark

“GC-MS Studies on the Regioisomeric Methoxy-Methyl-Phenethylamines Related to

MDEA, MDMMA and MBDB,” J. Chromatogr. Sci., 46, 900-906 (2008).

C. Randall Clark, Tamer Awad and Jack DeRuiter, “GC-IRD Analysis of Regioisomeric

Substituted Phenethylamines of Mass Spectral Equivalence,” Chromatography Today, 1

#4, 27-30 (2008).

Tamer Awad, Jack DeRuiter, Tarek Belal and C. Randall Clark, “Gas Chromatographic and Mass Spectral Studies on the Acylated Side Chain Regioisomers of 3-Methoxy-4-

Methyl Phenethylamine and 4-Methoxy-3-Methyl Phenethylamine,” J. Chromatogr. Sci.,

47, 279-286 (2009).

295 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Tarek Belal, Tamer Awad, C. Randall Clark and Jack DeRuiter, “GC-MS Evaluation of a series of Acylated Derivatives of 3,4-Methylenedioxy-methamphetamine,” J.

Chromatogr. Sci., 47, 359-364 (2009).

Tamer Awad, Tarek Belal, Jack DeRuiter, Kevin Kramer, and C. Randall Clark,

“Comparison of GC-MS and GC-IRD methods for the differentiation of methamphetamine and regioisomeric substances,” Forensic Science International, 185,

67–77 (2009).

Tarek Belal, Tamer Awad, Jack DeRuiter and C. Randall Clark, “GC-IRD Methods for the Identification of Isomeric Ethoxyphenethylamines and Methoxymethcathinones,”

Forensic Science International, 184, 54–63 (2009).

Hadir M. Maher, Tamer Awad and C. Randall Clark, “Differentiation of the

Regioisomeric 2, 3, and 4-Trifluoromethylphenylpiperazines (TFMPP) by GC-IRD and

GC-MS,” Forensic Science International, 188, 31-39 (2009).

Hadir M. Maher, Tamer Awad, Jack DeRuiter and C. Randall Clark, “GC–MS Studies on

Acylated Derivatives of Dimethoxyamphetamines (DMA): Regioisomers Related to 2,5-

DMA,” Forensic Science International, 192, 115-125 (2009).

296 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Tamer Awad, Tarek Belal, C. Randall Clark, Jack DeRuiter, “GC-IRD Studies on

Regioisomeric Ring Substituted Methoxy Methyl Phenylacetones Related to 3,4-

Methylenedioxyphenylacetone,” Forensic Science International, 194, 39-48 (2010).

Hadir M. Maher, Tamer Awad, Jack DeRuiter and C. Randall Clark

“GC–IRD Methods for the Identification of Some Tertiary Amine Regioisomers of

MDMA,” Forensic Science International, 199, 18–28 (2010).

Abdullah M. Al-Hossaini, Tamer Awad, Jack DeRuiter and C. Randall Clark, “GC-MS and GC-IRD Analysis of Ring and Side Chain Regioisomers of Ethoxyphenethylamines

Related to the Controlled Substances MDEA, MDMMA and MBDB,” Forensic Science

International, 200, 73-86 (2010).

Tamer Awad, Tarek Belal, Hadir M. Maher, C. Randall Clark and Jack DeRuiter. “GC-

MS Studies on Side Chain Regioisomers Related to Substituted Methylenedioxy- phenethylamines; MDEA, MDMMA and MBDB” J. Chromatogr. Sci., 48, 726-732

(2010).

297 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

VI.2 Scientific Presentations Related to this Project:

Synthesis and Analytical Profiles for Regioisomeric and Isobaric Amines Related to

MDMA, MDEA and MBDB: Differentiation of Drug and non-Drug Substances of Mass

Spectral Equivalence—Progress Presentation

C. Randall Clark, 2007 General Forensics R&D Grantees Meeting, , San Antonio, Texas,

February 2007.

Synthesis and Analytical Profiles for Regioisomeric and Isobaric Amines Related to

MDMA, MDEA and MBDB: Differentiation of Drug and non-Drug Substances of Mass

Spectral Equivalence—Progress Presentation

C. Randall Clark, 2007 General Forensics R&D Advisory Group, Scottsdale, Arizona,

October 2007.

GC-MS Analysis of the Ring and Side Chain Regioisomers of Ethoxyphenethylamines

C. Randall Clark, Tamer Awad and Jack DeRuiter. American Chemical Society National

Meeting, New Orleans, Louisiana, USA; April 10, 2008.

Synthesis and Analytical Profiles for Regioisomeric and Isobaric Amines Related to

MDMA, MDEA and MBDB: Differentiation of Drug and non-Drug Substances of Mass

Spectral Equivalence—Progress

C. Randall Clark, 2009 General Forensics R&D Grantees Meeting, Denver, Colorado.

February 2009.

298 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

GC-IRD Identification of Isomeric Phenethylamines of Mass Spectral Equivalence

C. Randall Clark, Tamer Awad, Tarek Belal and Jack DeRuiter, Pittsburgh Conference,

Chicago, Illinois, March 8, 2009.

GC-MS Studies on Side Chain Regioisomers Related to the Substituted

Methylenedioxyphenethylamines MDEA, MDMMA AND MBDB, Tamer Awad, Jack

DeRuiter and C. Randall Clark, Pittsburgh Conference, Chicago, Illinois, March 8, 2009.

GC-MS and GC-IRD Studies on the Ring Isomers of N-Methyl-1-Methoxyphenyl-1-

Methyl-2-Propanamines Related to 3,4-MDMA, Tamer Awad, Hadir M. Maher, Jack

DeRuiter and C. Randall Clark, American Chemical Society Meeting, Salt Lake City,

Utah, April, 2009.

Abdullah M. Al-Hossaini, Tamer Awad, Jack DeRuiter and C. Randall Clark,

“GC-MS and GC-IRD Studies on Ethoxy- and Methoxymethyl-phenethylamines:

Isobaric Substances Related to the Methylenedioxyphenethylamine Drugs,”

Pittsburg Conference on Analytical Chemistry (Pittcon), March 2, 2010, Orlando, FL.

Tamer Awad, Karim M.Abdel-Hay, Jack DeRuiter and C. Randall Clark

“Comparison of GC-IRD and GC-MS Methods for the Identification of Isomeric Drug

Substances: and Phenethylamines,” Pittsburg Conference on Analytical

Chemistry (Pittcon), March 4, 2010, Orlando, FL.

299 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

C. Randall Clark, “Comparison of GC-MS and GC-IRD Methods for the Identification of

Isomeric Substituted Phenethylamine and Related Drug Substances,” Southwestern

Association of Forensic Scientists (SWAFS), Grapevine TX, Sept 23, 2010.

300