Gas Phase Ion/Molecule Reactions As Studied by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

Total Page:16

File Type:pdf, Size:1020Kb

Gas Phase Ion/Molecule Reactions As Studied by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry INIS-mf—10165 GAS PHASE ION/MOLECULE REACTIONS AS STUDIED BY FOURIER TRANSFORM ION CYCLOTRON RESONANCE MASS SPECTROMETRY STEEN INGEMANN J0RGENSEN GAS PHASE ION/MOLECULE REACTIONS AS STUDIED BY FOURIER TRANSFORM ION CYCLOTRON RESONANCE MASS SPECTROMETRY ACADEMISCH PROEFSCHRIFT ter verkrijging van de graad van doctor in de Wiskunde en Natuurwetenschappen aan de Universiteit van Amsterdam, op gezag van de Rector Magnificus dr. D.W. Bresters, hoogleraar in de Faculteit der Wiskunde en Natuurwetenschappen, in het openbaar te verdedigen in de Aula der Universiteit (tijdelijk in het Wiskundegebouw, Roetersstraat 15) op woensdag 12 juni 1985 te 16.00 uur. door STEEN INGEMANN J0RGENSEN geboren te Kopenhagen 1985 Offsetdrukkerij Kanters B.V., Alblasserdam PROMOTOR: Prof. Dr. N.M.M. Nibbering Part of the work described in this thesis has been accomplished under the auspices of the Netherlands Foundation for Chemical Research (SON) with the financial support from the Netherlands Organization for the Advancement of Pure Research (ZWO). STELLINGEN 1. De door White e.a. getrokken conclusie, dat het cycloheptatrieen anion omlegt tot het benzyl anion in de gasfase, is onvoldoende ondersteund door de experimentele gegevens. R.L. White, CL. Wilkins, J.J. Heitkamp, S.W. Staley, J. Am. Chem. Soc, _105, 4868 (1983). 2. De gegeven experimentele methode voor de lithiëring van endo- en exo- -5-norborneen-2,3-dicarboximide is niet in overeenstemming met de ge- postuleerde vorming van een algemeen dianion van deze verbindingen. P.J. Garratt, F. Hollowood, J. Org. Chem., 47, 68 (1982). 3. De door Barton e.a. gegeven verklaring voor de observaties, dat O-alkyl- -S-alkyl-dithiocarbonaten reageren met N^-dimethylhydrazine onder vor- ming van ^-alkyl-thiocarbamaten en ^-alkyl-thiocarbazaten, terwijl al- koxythiocarbonylimidazolen uitsluitend £-alkyl-thiocarbazaten geven, is hoogst twijfelachtig. D.H.R. Barton, J. Boivin, S. Legreneur, W.B. Motherwell, J. Chem. Soc, Perkin Trans. I, 1005 (1984). 4. De toepasbaarheid van de Marcus theorie op de deprotonering van carbon- zuren in de gasfase met behulp van ab initio berekeningen houdt te wei- nig rekening met tot nu toe verkregen experimentele gegevens. S. Wolfe, Can. J. Chem., 62_, 1465 (1984). 5. Het zou interessant zijn een structuur te zien van een molecuul met een massa van 100 daltons en een polariseerbaarheid van 100 8 , die door Comisarow wordt voorgesteld als een typisch geval. M.B. Comisarow, Lect. Notes Chem., 31, 484 (1982). 6. Hoewel het idee van Li, dat "Surfaced Enhanced Raman Scattering" (SERS) door een gestimuleerd Raman effect verklaard zou kunnen worden, is zijn uitwerking, die gebaseerd is op een klassieke benadering en die als resultaat enkele vrij in te stellen parameters geeft, onvoldoende. K. Li, Surf. Science, JJ5., 513 (1982). 7. De door Mclver en medewerkers voorgestelde methode voor nauwkeurige me- tingen van massa's van ionen met behulp van FT-ICR is niet op een be- vredigende wijze getest. T.J. Francl, M.G. Sherman, R.L. Hunter, M.J. Locke, W.D. Bowers, R.T. Mclver, Jr., Int. J. Mass Spectrom. Ion Processes, 54, 189 (1983). 8. De door Ross e.a. verworven resultaten geven geen indicatie voor een electron overdrachts mechanisme tijdens de nitrering van naftaleen in een mengsel van zwavelzuur (56-60%) en salpeterzuur, dat ook een kata- lytische hoeveelheid salpeterigzuur bevat. D.R. Ross, K.D. Moran, R. Malhorta, J. Org. Chem., 4£, 2118 (1983). 9. In tegenstelling tot een bewering van Savéant en medewerkers is nog niet bewezen, dat de dimerisatie van radikaal anionen gevormd door electrochemisehe reductie van enkele inonogesubstitueerde anthracenen, verloopt via een eenvoudige koppelingsreactie. L. Amatore, J. Pinson, J.M. Savéant, J. Electroanal. Chem., 137, 143 (1982). J.M. Savéant, Acta Chem. Scand. BJ7, 365 (1983). 10. De toekenning van m/z 603 in het positieve ionen FAB spectrum van cis, + trans-((As)2Fe(CO)2(C(0)Me)(ETPB))BF^(C20H3QAs2Fe06P BF4~) aan het kation van dit complex is te betwijfelen, vanwege het ontbreken van isotoop pieken. B. Gregory, C.R. Jablonski, Y.P. Wang, J. Organomet. Chem., 26£, 74 (1984). Steen Ingemann Jdrgensen Amsterdam, 12 juni 1985 tilegnet Sonja og Asbjdrn VOORWOORD Bij de voltooiing van dit proefschrift wil ik graag mijn dank betuigen aan allen die op wetenschappelijke of sociale wijze hebben bijgedragen aan de totstandkoming ervan. In de eerste plaats wil ik mijn promotor Nico M.M. Nibbering bedanken voor de unieke gelegenheid die hij mij bood om onderzoek te verrichten op een zeer boeiend terrein van de scheikunde. Mijn (ex)collega's J.C. Kleingeld, L.J. de Koning en H. van der Wel wil ik graag bedanken voor de plezierige samenwerking tijdens mijn promotieperiode. De heren F.A. Pinkse, J.P.J. Brandt en K.J. Jansen bedank ik voor hun her- haaldelijke technische steun, die onmisbaar is geweest voor het uitvoeren van de experimenten. Aan mijn (ex)collega's van de massaspectrometrie groep: R. Bregman, J.W. Dal- linga, J.H.J. Dawson, R.H. Fokkens, E. Kluft, C.W.F. Kort, W. de Lange, W.P.M. Maas, T.A. Molenaar-Langeveld, A.J. Noest, R.P.H. Peerboom, H. Zappey en J.J. Zwinselman, bewaar ik plezierige herinneringen. I would like to thank V.M. Bierbaum, C.H. DePuy, J.J. Grabowski and S.A. Sul- livan for their contributions to part of the work described in this thesis, and M.L. Gross, 0. Hammerich, S. Hammerum, L. Jansen, P.v.R. Schleyer, H. Schwarz, R.R. Squires and G.H. Wegdam for stimulating discussions. Tenslotte wil ik E.H. Hoogeveen bedanken voor de wijze waarop zij dit proef- schrift heeft uitgetypt en J.W.H. Peeters voor het maken van tekeningen en foto's. LIST OF ABBREVIATIONS ADC Analog to Digital Converter ADO Average Dipole Orientation theory BDE Bond Dissociation Energy CID Collision Induced Dissociation CIMS Chemical Ionization Mass Spectrometry DMF N,N-Dimethylformamide DMNA N,N-Dimethyl-N-nitrosamine DMTF N,N-Dimethylthioformamide EA Electron Affinity FA Flowing Afterglow FT-ICR Fourier Transform Ion Cyclotron Resonance GC Gas Chromatography HPMS High Pressure Mass Spectrometry HSAB Hard and Soft Acids and Bases theory ICR Ion Cyclotron Resonance IE Ionization Energy MCA Methyl Cation Affinity MF Methyl Formate PA Proton Affinity PES " Photoelectron Spectroscopy RF Radio Frequency RRKM Rice-Ramsperger-Kassel-Marcus theory SIFT Selected Ion Flow Tube S/N Signal to Noise ratio NON-SI UNITS eV Electron Volt (96.485 kJ inch 0.0254 m D Debye (3.3356.10~30 Cm) erg 10~7 J CONTENTS INTRODUCTION CHAPTER 1. BASIC ASPECTS OF GAS PHASE ION/MOLECULE REACTIONS Introduction 4 Ion/molecule collision rate theory 5 Kinetic description and potential energy surface 8 Thermochemical quantities 11 References 14 CHAPTER 2. EXPERIMENTAL METHODS 18 Introduction 18 Basic principles and development of ICR spectroraetry 18 Fourier Transform Ion Cyclotron Resonance 20 Experimental procedure 26 Flowing Afterglow and Selected Ion Flow Tube 27 References 28 CHAPTER 3. NUCLEOPHILIC AROMATIC SUBSTITUTION IN THE GAS PHASE: THE IMPORTANCE OF F~ ION/MOLECULE COMPLEXES FORMED IN GAS PHASE REACTIONS BETWEEN NUCLEOPHILES AND SOME ALKÏL PENTAFLUOROPHENYL ETHERS 33 Introduction 33 Results 34 Primary negative ion formation from pentafluoroanisole 34 General reactivity of pentafluoroanisole 36 Oxygen nucleophiles 38 Sulfur nucleophiles 40 Nitrogen nucleophiles 40 Enolate anions 40 Allyl anions 42 Discussion 43 Charge-localized nucleophile 44 Enolate anions 50 Allyl anions 52 Conclusion 55 Materials 55 References 55 CHAPTER 4. GAS PHASE REACTIONS OF ANIONS WITH 2-, 3-, AND 4-FLUOROANISOLE 58 Introduction 58 Results 59 Acidities 62 Hydrogen-deuterium exchange reactions 62 Formation of C-.Ht.F" 62 S..2 substitution 62 IPSO substitution 64 Attack on the fluorine-bearing carbon atom 65 Discussion 66 Acidities 66 Formation of the C,H,,F~ ion 67 Hydrogen-deuterium exchange reactions 68 Nuclecphilic aromatic substitution 70 Competition between reaction channels 74 Conclusions 76 Materials 76 References 77 CHAPTER 5. GAS PHASE CHEMISTRY OF a-THIO CARBANIONS 80 Introduction 80 Results 81 CH SCH 81 86 Discussion 91 Ion structures 91 Acidities 93 Reactivity 96 Conclusion 97 Materials 97 References 97 CHAPTER 6. GAS PHASE REACTIONS OF ANIOHS WITH METHYL FORMATE AND N.N-DIMETHYLFORMAMIDE 100 Introduction 100 Results 101 General reactivity of methyl formate 101 General reactivity of N,N-dimethylformamide 108 Discussion 111 Methyl formate 111 a-Elimination 111 Carbonyl addition reactions 113 S..2 Reaction 115 N N,N-Dimethylformamide 115 a-Elimination 115 Carbonyl addition 116 References 117 CHAPTER 7. ON THE DIPOLE STABILIZED CARBANIONS DERIVED FROM METHYL FORMATE AND N,N-DIMETHYLFORMAMIDE 119 Introduction 119 Results 120 Methyl formate 120 N,N-Dimethylformamide 125 Discussion 129 Methyl formate 129 Acidities 129 Ion structures 130 N,N-Dimethylformamide 136 Acidities 136 Ion structures 137 Dipole stabilization 140 Conclusions 141 Materials 141 References 141 CHAPTER 8. GAS PHASE CHEMISTRY OF DIPOLE STABILIZED CARBANIONS DERIVED FROM N,N-DIMETHYLTHIOFORMAMIDE AND N,N- -DIMETHYL-N-NITROSAMINE 144 Introduction 144 Results 144 N,N-Dimethylthioformamide 144 N,N-Dimethyl-N-nitrosaraine 145 Discussion 148 Materials 151 References 152 CHAPTER 9. ISOMERIC C HgO~ IONS FORMED IN GAS PHASE REACTIONS OF ANIONS WITH 2,2-DIMETHYLPROPANAL AND 2,2-DIMETHYL- CYCLOPROPANOL 154 Introduction 154 Results 154 2,2-Dimethylpropanal 154 2,2-Dimethylcyclopropanol 157 Discussion 159 Acidities 159 Ion structures 160 Materials 163 References 163 SUMMARY 166 SAMENVATTING 169 INTRODUCTION The chemistry of ions in the gas phase i* 'an established but continuously expanding research field. This is refleered in several recently published monographs and reviews which cover fundamental and analytical aspects of the chemistry of positive as well as negative ions in the gas phase. Knowledge of the structure, stability and reactivity of gaseous ions is important partly because solvent molecules and counterions can exert a domi- nant influence on the chemistry of ions in solution.
Recommended publications
  • Chemistry Grade Level 10 Units 1-15
    COPPELL ISD SUBJECT YEAR AT A GLANCE ​ ​ ​ ​​ ​ ​​ ​ ​ ​ ​ ​ ​ GRADE HEMISTRY UNITS C LEVEL 1-15 10 Program Transfer Goals ​ ​ ​ ​ ● Ask questions, recognize and define problems, and propose solutions. ​ ​​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ● Safely and ethically collect, analyze, and evaluate appropriate data. ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ● Utilize, create, and analyze models to understand the world. ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ● Make valid claims and informed decisions based on scientific evidence. ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ● Effectively communicate scientific reasoning to a target audience. ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ PACING 1st 9 Weeks 2nd 9 Weeks 3rd 9 Weeks 4th 9 Weeks ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit Unit Unit Unit Unit Unit Unit Unit Unit ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 7 8 9 10 11 12 13 14 15 1.5 wks 2 wks 1.5 wks 2 wks 3 wks 5.5 wks ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 1.5 2 2.5 2 wks 2 2 2 wks 1.5 1.5 ​ ​ ​ ​ wks wks wks wks wks wks wks Assurances for a Guaranteed and Viable Curriculum ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Adherence to this scope and sequence affords every member of the learning community clarity on the knowledge and skills ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ on which each learner should demonstrate proficiency. In order to deliver a guaranteed and viable curriculum, our team ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ commits to and ensures the following understandings: ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Shared Accountability: Responding
    [Show full text]
  • Prebiological Evolution and the Metabolic Origins of Life
    Prebiological Evolution and the Andrew J. Pratt* Metabolic Origins of Life University of Canterbury Keywords Abiogenesis, origin of life, metabolism, hydrothermal, iron Abstract The chemoton model of cells posits three subsystems: metabolism, compartmentalization, and information. A specific model for the prebiological evolution of a reproducing system with rudimentary versions of these three interdependent subsystems is presented. This is based on the initial emergence and reproduction of autocatalytic networks in hydrothermal microcompartments containing iron sulfide. The driving force for life was catalysis of the dissipation of the intrinsic redox gradient of the planet. The codependence of life on iron and phosphate provides chemical constraints on the ordering of prebiological evolution. The initial protometabolism was based on positive feedback loops associated with in situ carbon fixation in which the initial protometabolites modified the catalytic capacity and mobility of metal-based catalysts, especially iron-sulfur centers. A number of selection mechanisms, including catalytic efficiency and specificity, hydrolytic stability, and selective solubilization, are proposed as key determinants for autocatalytic reproduction exploited in protometabolic evolution. This evolutionary process led from autocatalytic networks within preexisting compartments to discrete, reproducing, mobile vesicular protocells with the capacity to use soluble sugar phosphates and hence the opportunity to develop nucleic acids. Fidelity of information transfer in the reproduction of these increasingly complex autocatalytic networks is a key selection pressure in prebiological evolution that eventually leads to the selection of nucleic acids as a digital information subsystem and hence the emergence of fully functional chemotons capable of Darwinian evolution. 1 Introduction: Chemoton Subsystems and Evolutionary Pathways Living cells are autocatalytic entities that harness redox energy via the selective catalysis of biochemical transformations.
    [Show full text]
  • 4.2 Ionic Bonds Vocabulary: Ion – Polyatomic Ion – Ionic Bond – Ionic Compound – Chemical Formula – Subscript –
    4.2 Ionic Bonds Vocabulary: Ion – Polyatomic ion – Ionic bond – Ionic compound – Chemical formula – Subscript – Crystal - An ion is an atom or group of atoms that has an electric charge. When a neutral atom loses a valence electron, it loses a negative charge. It becomes a positive ion. When a neutral atom gains an electron, it gains a negative charge and becomes a negative ion. Common Ions: Name Charge Symbol/Formula Lithium 1+ Li+ Sodium 1+ Na+ Potassium 1+ K+ Ammonium 1+ NH₄+ Calcium 2+ Ca²+ Magnesium 2+ Mg²+ Aluminum 3+ Al³+ Fluoride 1- F- Chloride 1- Cl- Iodide 1- I- Bicarbonate 1- HCO₃- Nitrate 1- NO₃- Oxide 2- O²- Sulfide 2- S²- Carbonate 2- CO₃²- Sulfate 2- SO₄²- Notice that some ions are made of several atoms. Ammonium is made of 1 nitrogen atom and 4 hydrogen atoms. Ions that are made of more than 1 atom are called polyatomic ions. Ionic bonds: When atoms that easily lose electrons react with atoms that easily gain electrons, valence electrons are transferred from one type to another. The transfer gives each type of atom a more stable arrangement of electrons. 1. Sodium has 1 valence electron. Chlorine has 7 valence electrons. 2. The valence electron of sodium is transferred to the chlorine atom. Both atoms become ions. Sodium atom becomes a positive ion (Na+) and chlorine becomes a negative ion (Cl-). 3. Oppositely charged particles attract, so the ions attract. An ionic bond is the attraction between 2 oppositely charged ions. The resulting compound is called an ionic compound. In an ionic compound, the total overall charge is zero because the total positive charges are equal to the total negative charges.
    [Show full text]
  • SYNTHESIS and PROPERTIES of SOME ARALKYL Hymoperoxides
    SYNTHESIS AND PROPERTIES OF SOME ARALKYL HYmOPEROXIDES DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By ARLO d / bCGGS, B.S., M.S. The Ohio State University 1954 Approved by: Department of Chemistry ACKNOWLEDGEMENT The author wishes to express sincere appreciation to Professor Cecil E. Boord for his advice and counsel during this investigation* Thanks also are due Dr. Kenneth W*. Greenlee for his continual interest and guidance and his cooperation in ex­ tending the facilities of the American Petroleum Institute Research Project 4-5* The financial support of this work by the Firestone Tire and Rubber Company is gratefully acknowledged* ii TABLE OF CONTENTS Page I. INTRODUCTION................................ 1 II. LITERATURE S URVEY ............... 2 III. STATEMENT OF THE PROBLEM.................... 10 IV. DISCUS5IŒ ........................... 11 A. Methods of Preparing Hydroperoxides .... 12 1. Preparation of hydroperoxides from alcohols ............. 12 a. a-methylbenzyl hydroperoxide ...... 12 b. benzyl hydroperoxide .......... l6 c. cinnamyl and a-phenylallyl hydroperoxides 17 d. 1,2,3,4-tetrahydro-l-naphthyl hydro­ peroxide ............ 22 e. a-indanyl hydroperoxide ........ 23 f. 0-, m- and p-methylbenzyl hydroperoxides 24 g. m- and p-methoxybenzyl hydroperoxides. 28 h. 1,1-diphenylmethyl hydroperoxide .... 31 i. 1,2-diphenylethyl hydroperoxide .... 32 j. 1-a-naphthyl- and l-J3-naphthylethyl hydroperoxides ........ 33 k. 1-styrylethyl hydroperoxide 35 1. 4-a-dimethylbenzyl and 4-methoxy-a- methylbenzyl hydroperoxides ...... 36 m. a-ethylbenzyl and a-ethyl-p-methylbenzyl hydroperoxides ....... ........ 36 n. a-n-propylbenzyl and a-isopropylbenzyl hydroperoxides .................... 37 0. a-2,5“trimethylbenzyl hydroperoxide .
    [Show full text]
  • Analysis of Multipolar Linear Paul Traps for Ion–Atom Ultracold Collision Experiments
    atoms Article Analysis of Multipolar Linear Paul Traps for Ion–Atom Ultracold Collision Experiments M. Niranjan *, Anand Prakash and S. A. Rangwala * Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore 560080, India; [email protected] * Correspondence: [email protected] (M.N.); [email protected] (S.A.R.) Abstract: We evaluate the performance of multipole, linear Paul traps for the purpose of studying cold ion–atom collisions. A combination of numerical simulations and analysis based on the virial theorem is used to draw conclusions on the differences that result, by considering the trapping details of several multipole trap types. Starting with an analysis of how a low energy collision takes place between a fully compensated, ultracold trapped ion and an stationary atom, we show that a higher order multipole trap is, in principle, advantageous in terms of collisional heating. The virial analysis of multipole traps then follows, along with the computation of trapped ion trajectories in the quadrupole, hexapole, octopole and do-decapole radio frequency traps. A detailed analysis of the motion of trapped ions as a function of the amplitude, phase and stability of the ion’s motion is used to evaluate the experimental prospects for such traps. The present analysis has the virtue of providing definitive answers for the merits of the various configurations, using first principles. Keywords: ion trapping; ion–atom collisions; linear multipole traps; virial theorem Citation: Niranjan, M.; Prakash, A.; Rangwala, S.A. Analysis of Multipolar Linear Paul Traps for 1. Introduction Ion–Atom Ultracold Collision Linear multipole Paul trap configurations are emerging as a natural choice for a wide Experiments.
    [Show full text]
  • One-Pot Syntheses of Irida-Polycyclic Aromatic Hydrocarbons† Cite This: Chem
    Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue One-pot syntheses of irida-polycyclic aromatic hydrocarbons† Cite this: Chem. Sci.,2019,10, 10894 a a a b a All publication charges for this article Yu Xuan Hu,‡ Jing Zhang,‡ Xiaoyan Wang, Zhengyu Lu, Fangfang Zhang, have been paid for by the Royal Society Xiaofei Yang,a Zhihua Ma,a Jun Yin, *a Haiping Xia b and Sheng Hua Liu *a of Chemistry Metalla-analogues of polycyclic aromatic hydrocarbons (PAHs) have captivated chemists with their fascinating structures and unique electronic properties. To date, metallabenzene, metallanaphthalene and metallaanthracene have been reported. Metalla-analogues with more complicated fused rings have rarely been reported. Herein, we have successfully synthesized a series of new iridafluoranthenes and fused-ring iridafluoranthenes ranging from pentacyclic to heptacyclic metallaaromatic hydrocarbons in Received 6th August 2019 high yields under mild reaction conditions for the first time. Their photophysical and redox properties Accepted 12th October 2019 were also explored using UV-vis spectroscopy and electrochemistry combined with TD-DFT DOI: 10.1039/c9sc03914g calculations. The present work may offer an important guideline for the design and construction of new rsc.li/chemical-science polycyclic metallaaromatic hydrocarbons and metalla-nanographenes. Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Introduction carbeneiridium compound by using an intramolecular C–H activation reaction.6b In 2018, they further developed irida- Polycyclic aromatic hydrocarbons (PAHs), as important compo- phenanthrene, iridanaphthalene and iridaanthracene from nents in the eld of organic chemistry, have attracted a signi- their corresponding methoxy(alkenyl)carbeneiridium inter- * cant amount of attention due to their wide range of applications mediates via reactions of [IrCp Cl(NCMe) (PMe3)]PF6 with 8 in organic light-emitting diodes,1 eld-effect transistors2 and diarylpropargyl alcohols.
    [Show full text]
  • Introduction to Chemistry
    Introduction to Chemistry Author: Tracy Poulsen Digital Proofer Supported by CK-12 Foundation CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook Introduction to Chem... materials for the K-12 market both in the U.S. and worldwide. Using an open-content, web-based Authored by Tracy Poulsen collaborative model termed the “FlexBook,” CK-12 intends to pioneer the generation and 8.5" x 11.0" (21.59 x 27.94 cm) distribution of high-quality educational content that will serve both as core text as well as provide Black & White on White paper an adaptive environment for learning. 250 pages ISBN-13: 9781478298601 Copyright © 2010, CK-12 Foundation, www.ck12.org ISBN-10: 147829860X Except as otherwise noted, all CK-12 Content (including CK-12 Curriculum Material) is made Please carefully review your Digital Proof download for formatting, available to Users in accordance with the Creative Commons Attribution/Non-Commercial/Share grammar, and design issues that may need to be corrected. Alike 3.0 Unported (CC-by-NC-SA) License (http://creativecommons.org/licenses/by-nc- sa/3.0/), as amended and updated by Creative Commons from time to time (the “CC License”), We recommend that you review your book three times, with each time focusing on a different aspect. which is incorporated herein by this reference. Specific details can be found at http://about.ck12.org/terms. Check the format, including headers, footers, page 1 numbers, spacing, table of contents, and index. 2 Review any images or graphics and captions if applicable.
    [Show full text]
  • The Power of Crowding for the Origins of Life
    Orig Life Evol Biosph (2014) 44:307–311 DOI 10.1007/s11084-014-9382-5 ORIGIN OF LIFE The Power of Crowding for the Origins of Life Helen Greenwood Hansma Received: 2 October 2014 /Accepted: 2 October 2014 / Published online: 14 January 2015 # Springer Science+Business Media Dordrecht 2015 Abstract Molecular crowding increases the likelihood that life as we know it would emerge. In confined spaces, diffusion distances are shorter, and chemical reactions produce fewer and more regular products. Crowding will occur in the spaces between Muscovite mica sheets, which has many advantages as a site for life’s origins. Keywords Muscovite mica . Molecular crowding . Origin of life . Mechanochemistry. Abiogenesis . Chemical confinement effects . Chirality. Protocells Cells are crowded. Protein molecules in cells are typically so close to each other that there is room for only one protein molecule between them (Phillips, Kondev et al. 2008). This is nothing like a dilute ‘prebiotic soup.’ Therefore, by analogy with living cells, the origins of life were probably also crowded. Molecular Confinement Effects Many chemical reactions are limited by the time needed for reactants to diffuse to each other. Shorter distances speed up these reactions. Molecular complementarity is another principle of life in which pairs or groups of molecules form specific interactions (Root-Bernstein 2012). Current examples are: enzymes & substrates & cofactors; nucleic acid base pairs; antigens & antibodies; nucleic acid - protein interactions. Molecular complementarity is likely to have been involved at life’s origins and also benefits from crowding. Mineral surfaces are a likely place for life’s origins and for formation of polymeric molecules (Orgel 1998).
    [Show full text]
  • Detection of Phenethylamine, Amphetamine, and Tryptamine Imine By-Products from an Acetone Extraction
    Detection of Phenethylamine, Amphetamine, and Tryptamine Imine By-Products from an Acetone Extraction Mary A. Yohannan* and Arthur Berrier U.S. Department of Justice Drug Enforcement Administration Special Testing and Research Laboratory 22624 Dulles Summit Court Dulles, VA 20166 [email: mary.a.yohannan -at- usdoj.gov] ABSTRACT: The formation of imine by-products from phenethylamines, amphetamines, and tryptamines upon an acetone extraction is presented. These imine by-products were characterized using GC/MSD and exhibited preferential cleavage at the α-carbon of the alkyl chain. Further characterization of the imine by-products of phenethylamine and tryptamine was done using IR and NMR. KEYWORDS: phenethylamine, tryptamine, imine, acetone, schiff base, drug chemistry, forensic chemistry In most forensic laboratories, the solvents used to extract at the α-carbon on the alkyl chain. In addition to GC/MS, the drugs are chosen based upon their solubility properties and their imines formed from phenethylamine base and tryptamine base ability to not interact with the drug. In fact, there are very few were characterized by Fourier transform-infrared spectroscopy publications where a solvent used to extract a drug reacts with (FTIR) and nuclear magnetic resonance (NMR) spectroscopy. the drug and forms by-products [1-3]. This laboratory recently discovered that an additional Experimental component was formed when acetone was used to extract a Solvents, Chemicals, and Materials sample containing a known tryptamine. Analysis by gas Acetone was ACS/HPLC grade from Burdick and Jackson chromatography/mass spectroscopy (GC/MS) of the acetone Laboratories (Muskegon, MI). Phenethylamine base and extract yielded an extra peak in the total ion chromatogram that tryptamine base were obtained from Sigma-Aldrich Chemicals was approximately half the abundance of the known tryptamine (Milwaukee, WI).
    [Show full text]
  • Flex'ion Li-Ion Battery System
    Flex’ionTM Li-ion Battery System For Mission Critical Applications DATA CENTERS OIL & GAS UTILITY Flex’ion TM main advantages Main benefits versus VRLA lead-acid batteries LIFE TIME LOW MAINTENANCE INSTALLATION SPACE INSTALLATION WEIGHT 20 YEARS CALENDAR LIFE 3X MORE COMPACT 6X LIGHTER 10X MORE CYCLE LIFE LIION LEADACID LIION LEADACID LIION LEADACID REDUCED TCO & IMPROVED SYSTEM AVAILABILITY REDUCED BATTERY ROOM & INFRASTRUCTURE COST From cell to module and system FLEX’IONTM SYSTEM LIION CELL FLEX’IONTM BATTERY MODULE A WIDE RANGE OF COMBINATIONS: From 1 to 500 kWh From 10 kW to 2.3 MW From 110 to 750 Vdc (CE) and 600 Vdc (UL) Flex'ionTM system Battery Module Stores electrical energy ready for use during mains failure Cabinet IP20, non-seismic or seismic BMM Manages safety functions at string level Intelli-Connect™ Allows string to discharge if charging is interrupted MBMM+PLC Manages internal system-level & external communications HMI Touchscreen display providing system information LED Button Controlled system start / stop & battery status Battery-stop Button Opens the main breaker in each string to isolate the battery system DATA REMOTE MONITORING VISUALIZE HMI DATA ON A SMART DEVICE Door Handle Lever design & lockable Flex’ionTM key differentiators Dedicated structure to support your need Local support for engineering, services and after-sales SHORT LEADTIME Short lead-time thanks to US and European production US & EUROPEAN PRODUCTION Established recycling policy for a sustainable approach Modular & scalable battery configuration Optimized
    [Show full text]
  • Metal Ions in Ribozyme Folding and Catalysis Raven Hanna* and Jennifer a Doudna†
    Ch4206.qxd 03/15/2000 08:57 Page 166 166 Metal ions in ribozyme folding and catalysis Raven Hanna* and Jennifer A Doudna† Current research is reshaping basic theories regarding the state. This ‘two-metal-ion model’ became the standard to roles of metal ions in ribozyme function. No longer viewed as which subsequent experimental observations were com- strict metalloenzymes, some ribozymes can access alternative pared, and upon which most current theories are based. catalytic mechanisms depending on the identity and availability of metal ions. Similarly, reaction conditions can allow different Catalytic metal ions of the group I intron folding pathways to predominate, with divalent cations Of the large ribozymes, most is known about catalysis by the sometimes playing opposing roles. Tetrahymena thermophila group I intron, which performs a two- step transesterification reaction using a single active site. It is Addresses generally studied in multiple-turnover form, only executing Department of Molecular Biophysics and Biochemistry and †Howard the cleavage portion of the splicing reaction, where the Hughes Medical Institute, Yale University, 266 Whitney Ave, intron catalyzes nucleophilic attack of the 3′ hydroxyl of a New Haven, CT 06520, USA bound guanosine on a specific phosphodiester bond in a *e-mail: [email protected] †e-mail: [email protected] bound oligonucleotide substrate. Its tightly folded catalytic core positions divalent cations around the labile bond to sta- Current Opinion in Chemical Biology 2000, 4:166–170 bilize the transition state. Assembling details about the 1367-5931/00/$ — see front matter chemical environment of the active site is critical for under- © 2000 Elsevier Science Ltd.
    [Show full text]
  • The Synthesis and Characterisation of a New Tröger's Base Content
    Sys Rev Pharm 2020;11(7):319-323 A multifaceted review journal in the field of pharmacy The Synthesis and Characterisation of a New Tröger’s Base Content Methoxy Group Sadiq A. Karim1, Mohammed H. Said2, Jinan A. Abd3, Asim A. Balakit4, Ayad F. Alkaim5 1,2,5Chemistry department, College of Science for women, University of Babylon, Iraq. 3Department of Laser physics, College of Science for women, University of Babylon, Iraq. 4Pharmaceutical Chemistry department, College of Pharmacy, University of Babylon, Iraq. Corresponding author: [email protected] ABSTRACT Five Tröger’s base (TB) molecules were synthesized by reaction aniline’s Keywords: Tröger base, heterocyclic compounds, chirality derivatives which content a methoxy group with a supplement of methylene (dimethoxymethane (DMM)) in present trifluoroacetic acid (TFA) as a solvent Correspondence: and catalyst. This method afforded a good ratio product between 62% to 99%, Sadiq A. Karim1 all products were conforming by FTIR, HRMs, 1HNMR, 13CNMR, and XRD. 1,2,5Chemistry department, College of Science for women, University of Babylon, Iraq. Corresponding author: [email protected] INTRODUCTION collected by filtration and was dried in a vacuum oven at The first Tröger’s base was create in 1887 by Julius Tröger 50 °C for 2 h. during his Ph.D. studied, this compound was called Tröger base 1 (TB1) which from the condensation of methanal 1- Synthesis of 2,9-Dimethoxy-6H,12H-5,11- with 4-aminotoluene in HCl-catalysed media.1 The TB1 methanodibenzo[b,f](1,5)diazocine (TB-OCH3-1) (2,8-dimethyl-6H,12H-5,11- General procedure was followed using m-anisidine (9.1 methanodibenzo[b,f][1,5]diazocine) was conformed ml, 10.00 g, 81.20 mmol), DMM (10.8 ml, 9.269 g, 121.80 structure through chemical reaction by M.
    [Show full text]