Analysis of Pax6 Contiguous Gene Deletions in the Mouse, Mus

Total Page:16

File Type:pdf, Size:1020Kb

Analysis of Pax6 Contiguous Gene Deletions in the Mouse, Mus Genetics: Published Articles Ahead of Print, published on May 27, 2009 as 10.1534/genetics.109.104562 Analysis of Pax6 contiguous gene deletions in the mouse, Mus musculus, identifies regions distinct from Pax6 responsible for extreme small eye and belly spotting phenotypes Jack Favor*, Alan Bradley†, Nathalie Conte†, Dirk Janik‡, Walter Pretsch*, Peter Reitmeir§, Michael Rosemann**, Wolfgang Schmahl‡, Johannes Wienberg†† and Irmgard Zaus* Institute of Human Genetics*, Institute of Health Management§, Institute of Radiation Biology**, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg D- 85764, Germany † Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK ‡ Lehrstuhl für Allgemeine Pathologie und Neuropathologie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität, München D-80539, Germany †† Chrombios GmbH, Raubling D-83064, Germany The mutant allele symbols Del(2)Pax611Neu/1Neu, Del(2)Pax612Neu/2Neu and Del(2)Pax613Neu/3Neu were submitted to and approved by the Mouse Genetic Nomenclature Committee, and assigned the MGI accession ID numbers 3698295, 3698296 and 3710946, respectively. 1 Running head: Mouse Pax6 contiguous gene deletions Key words: Mouse, Pax6, contiguous gene deletions, microphthalmia, belly spotting Corresponding author: Jack Favor Institute of Human Genetics Helmholtz Zentrum München German Research Center for Environmental Health Ingolstädter Lanstr. 1 D-85764 Neuherberg Germany Telephone No. +49-89-3187-2395 FAX No. +49-89-3187-3297 e-mail [email protected] 2 ABSTRACT In the mouse Pax6 function is critical in a dose-dependent manner for proper eye development. Pax6 contiguous gene deletions were previously shown to be homozygous lethal at an early embryonic stage. Heterozygotes express belly spotting and extreme microphthalmia. The eye phenotype is more severe than in heterozygous Pax6 intragenic null mutants, raising the possibility that deletions are functionally different than intragenic null mutations or that a region distinct from Pax6 included in the deletions affects eye phenotype. We recovered and identified the exact regions deleted in three new Pax6 deletions. All are homozygous lethal at an early embryonic stage. None express belly spotting. One expresses extreme microphthalmia and two express the milder eye phenotype similar to Pax6 intragenic null mutants. Analysis of Pax6 expression levels and the major isoforms excluded the hypothesis that the deletions expressing extreme microphthalmia are directly due to the action of Pax6 and functionally different from intragenic null mutations. A region distinct from Pax6 containing eight genes was identified for belly spotting. A second region containing one gene (Rcn1) was identified for the extreme microphthalmia phenotype. Rcn1 is a Ca+2-binding protein, resident in the endoplasmic reticulum, participates in the secretory pathway and expressed in the eye. Our results suggest that deletion of 3 Rcn1 directly or indirectly contributes to the eye phenotype in Pax6 contiguous gene deletions. 4 INTRODUCTION Contiguous gene deletions account for a significant portion of human genetic syndromes. The application of fluorescence in situ hybridization (FISH) cytogenetics and array comparative genome hybridization (array-CGH) technologies has enabled more accurate localization of deletion breakpoints. This deletion information combined with the annotation of the human genome structure provides critical information to identify genes responsible for particular phenotypes within an array of phenotypes which define a particular syndrome. For example, the 11p11p12 and 11p13 regions on the short arm of human chromosome (Chr) 11 have been associated with the Potocki- Shaffer syndrome (SHAFFER et al. 1993; BARTSCH et al. 1996; POTOCKI and SHAFFER 1996) and the Wilm’s tumor- aniridia- genitourinary abnormalities- mental retardation (WAGR) syndrome (RICCARDI et al. 1978; FRANCKE et al. 1979; HITTNER et al. 1979; FRYNS et al. 1981), respectively. Deletion analyses were important in identifying genes associated with clinical features of the syndromes: EXT2 for multiple exostoses and ALX4 for parietal foramina in Potocki-Shaffer syndrome (LIGON et al. 1998; WU et al. 2000; WAKUI et al. 2005); WT1 for Wilm’s tumor and PAX6 for aniridia in WAGR syndrome (VAN HEYNINGEN et al. 1985; GLASER et al. 1986, 1992; FANTES et al. 1992). Deletion analyses have also defined the extent of the deleted region in 5 patients with combined Potocki-Shaffer and WAGR syndromes (MCGAUGHRAN et al. 1995; BRÉMOND-GIGNAC et al. 2005) as well as microdeletions 3’ to PAX6 which prevent expression of PAX6 and cause aniridia (LAUDERDALE et al. 2000; D'ELIA et al. 2007; DAVIS et al. 2008). The mouse Chr 2 region homologous to the human WAGR region contains the genes Wt1, Rcn1, Pax6 and Elp4, and has been intensively studied. An extensive allelic series at Pax6 has been identified (BULT et al. 2008). Heterozygote Pax6 intragenic null mutants express microphthalmia, iris anomalies, corneal opacities, lens opacities and lens-corneal adhesions. Homozygote mutants are anophthalmic and die shortly after birth (ROBERTS 1967; HOGAN et al. 1986). Five deletions in the region have been identified; Pax6Sey-Dey, Pax6Sey-H, Pax6Sey-2H, Pax6Sey-3H, Pax6Sey-4H of which two, Pax6Sey-H (HOGAN et al. 1986; KENT et al. 1997; KLEINJAN et al. 2002; WEBB et al. 2008) and Pax6Sey-Dey (THEILER et al. 1978; HOGAN et al. 1987; GLASER et al. 1990), have been well characterized. Heterozygotes for both deletions express belly spotting and a more extreme eye phenotype than that observed for heterozygotes of intragenic Pax6 null mutations. Homozygotes for both deletions are lethal at an early embryonic stage. We were particularly interested in the extreme eye phenotype associated with the Pax6 deletions and considered two alternative hypotheses. Either Pax6 deletions are functionally different from Pax6 intragenic null mutations or, deletion of 6 a region linked to but distinct from the Pax6 structural gene affects the eye phenotype. In the present study we identify three new deletions encompassing the Pax6 region of the mouse. They have been assigned the mutant allele symbols Del(2)Pax611Neu/1Neu, Del(2)Pax612Neu/2Neu and Del(2)Pax613Neu/3Neu and will be referred to throughout this publication as Pax611Neu, Pax612Neu , and Pax613Neu, respectively. All three deletions are homozygous lethal at an early embryonic stage. The deletions differentiate for the extent of the eye abnormality expressed by heterozygotes: Pax611Neu heterozygotes express extreme microphthalmia similar to that observed in the Pax6Sey-Dey and Pax6Sey-H deletions. Pax612Neu and Pax613Neu heterozygotes express the milder eye abnormality seen in heterozygous intragenic null mutants. For all three deletions, heterozygotes do not express belly spotting. Genetic, phenotypic and molecular characterization of the deletions allowed us to identify regions associated with the array of phenotypes in these contiguous gene deletions. 7 MATERIALS AND METHODS Mutations, animals and mapping: The original Pax611Neu and Pax613Neu mutants were found in our breeding colonies. The original Pax612Neu mutant was recovered in a mutagenesis experiment. Ophthalmological examinations were done as previously described (FAVOR 1983). Congenic C3H/HeJ mutant lines were constructed prior to initiating the studies. The mapping of the mutations followed our standard laboratory protocol (FAVOR et al. 1997). For timed pregnancies, females were mated and checked daily for the presence of a vaginal plug. The day at which a vaginal plug was observed was defined as day 0 p.c. (E0). In matings which were set up to generate offspring, females were checked daily for new born litters and the day of birth was defined as post-natal day 0 (P0). Animals were bred and maintained in our animal facilities according to the German law for the protection of animals. All inbred strain C3H/HeJ and C57BL/6El animals used in the present study were obtained from breeding colonies maintained by the Department of Animal Resources at Neuherberg. Histology, gross embryo morphology, and slit lamp photography: Pregnant females were sacrificed by cervical dislocation. Embryos were carefully freed from placentae and embryonic membranes in room temperature PBS, phenotyped under a dissecting microscope (MZ APO; Leica, Bensheim, Germany), and 8 photographed. Post-natal day 1 (P1) mice were sacrificed by decapitation and phenotyped after carefully dissecting away the skin overlying the eyes. P21 mice were phenotyped by slit lamp examination and sacrificed by CO2 asphixiation. Embryos and heads of P1 or P21 mice were fixed in 10% buffered formalin. The heads from P21 mice were demineralised in EDTA. All fixed materials were embedded in paraffin, and serially sectioned (coronal) at 5 µm. Sections were stained with hematoxylin and eosin, and evaluated by light microscopy (Axioplan; Carl Zeiss, Hallbergmoos, Germany). Digital photos were acquired (Axiocam and Axiovision; Carl Zeiss, Hallbergmoos, Germany) and imported into Adobe Photoshop CS (Adobe Systems, Unterschleissheim, Germany). P35 mice were anesthetized with 137 mg ketamine and 6.6 mg xylazine per kg body weight and quickly photographed with a slit lamp microscope (Zeiss SL 120) equipped with a compact video camera. Images were captured in Axiovision (Zeiss) and imported into Adobe Photoshop CS. After photography ophthalmic salve (Regepithel, Alcon) was applied to the eyes of the anesthetized mice to prevent eye
Recommended publications
  • 1 Supporting Information for a Microrna Network Regulates
    Supporting Information for A microRNA Network Regulates Expression and Biosynthesis of CFTR and CFTR-ΔF508 Shyam Ramachandrana,b, Philip H. Karpc, Peng Jiangc, Lynda S. Ostedgaardc, Amy E. Walza, John T. Fishere, Shaf Keshavjeeh, Kim A. Lennoxi, Ashley M. Jacobii, Scott D. Rosei, Mark A. Behlkei, Michael J. Welshb,c,d,g, Yi Xingb,c,f, Paul B. McCray Jr.a,b,c Author Affiliations: Department of Pediatricsa, Interdisciplinary Program in Geneticsb, Departments of Internal Medicinec, Molecular Physiology and Biophysicsd, Anatomy and Cell Biologye, Biomedical Engineeringf, Howard Hughes Medical Instituteg, Carver College of Medicine, University of Iowa, Iowa City, IA-52242 Division of Thoracic Surgeryh, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada-M5G 2C4 Integrated DNA Technologiesi, Coralville, IA-52241 To whom correspondence should be addressed: Email: [email protected] (M.J.W.); yi- [email protected] (Y.X.); Email: [email protected] (P.B.M.) This PDF file includes: Materials and Methods References Fig. S1. miR-138 regulates SIN3A in a dose-dependent and site-specific manner. Fig. S2. miR-138 regulates endogenous SIN3A protein expression. Fig. S3. miR-138 regulates endogenous CFTR protein expression in Calu-3 cells. Fig. S4. miR-138 regulates endogenous CFTR protein expression in primary human airway epithelia. Fig. S5. miR-138 regulates CFTR expression in HeLa cells. Fig. S6. miR-138 regulates CFTR expression in HEK293T cells. Fig. S7. HeLa cells exhibit CFTR channel activity. Fig. S8. miR-138 improves CFTR processing. Fig. S9. miR-138 improves CFTR-ΔF508 processing. Fig. S10. SIN3A inhibition yields partial rescue of Cl- transport in CF epithelia.
    [Show full text]
  • Ten Commandments for a Good Scientist
    Unravelling the mechanism of differential biological responses induced by food-borne xeno- and phyto-estrogenic compounds Ana María Sotoca Covaleda Wageningen 2010 Thesis committee Thesis supervisors Prof. dr. ir. Ivonne M.C.M. Rietjens Professor of Toxicology Wageningen University Prof. dr. Albertinka J. Murk Personal chair at the sub-department of Toxicology Wageningen University Thesis co-supervisor Dr. ir. Jacques J.M. Vervoort Associate professor at the Laboratory of Biochemistry Wageningen University Other members Prof. dr. Michael R. Muller, Wageningen University Prof. dr. ir. Huub F.J. Savelkoul, Wageningen University Prof. dr. Everardus J. van Zoelen, Radboud University Nijmegen Dr. ir. Toine F.H. Bovee, RIKILT, Wageningen This research was conducted under the auspices of the Graduate School VLAG Unravelling the mechanism of differential biological responses induced by food-borne xeno- and phyto-estrogenic compounds Ana María Sotoca Covaleda Thesis submitted in fulfillment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Tuesday 14 September 2010 at 4 p.m. in the Aula Unravelling the mechanism of differential biological responses induced by food-borne xeno- and phyto-estrogenic compounds. Ana María Sotoca Covaleda Thesis Wageningen University, Wageningen, The Netherlands, 2010, With references, and with summary in Dutch. ISBN: 978-90-8585-707-5 “Caminante no hay camino, se hace camino al andar. Al andar se hace camino, y al volver la vista atrás se ve la senda que nunca se ha de volver a pisar” - Antonio Machado – A mi madre.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0088532 A1 Alitalo Et Al
    US 20060O88532A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0088532 A1 Alitalo et al. (43) Pub. Date: Apr. 27, 2006 (54) LYMPHATIC AND BLOOD ENDOTHELIAL Related U.S. Application Data CELL GENES (60) Provisional application No. 60/363,019, filed on Mar. (76) Inventors: Kari Alitalo, Helsinki (FI); Taija 7, 2002. Makinen, Helsinki (FI); Tatiana Petrova, Helsinki (FI); Pipsa Publication Classification Saharinen, Helsinki (FI); Juha Saharinen, Helsinki (FI) (51) Int. Cl. A6IR 48/00 (2006.01) Correspondence Address: A 6LX 39/395 (2006.01) MARSHALL, GERSTEIN & BORUN LLP A6II 38/18 (2006.01) 233 S. WACKER DRIVE, SUITE 6300 (52) U.S. Cl. .............................. 424/145.1: 514/2: 514/44 SEARS TOWER (57) ABSTRACT CHICAGO, IL 60606 (US) The invention provides polynucleotides and genes that are (21) Appl. No.: 10/505,928 differentially expressed in lymphatic versus blood vascular endothelial cells. These genes are useful for treating diseases (22) PCT Filed: Mar. 7, 2003 involving lymphatic vessels, such as lymphedema, various inflammatory diseases, and cancer metastasis via the lym (86). PCT No.: PCT/USO3FO6900 phatic system. Patent Application Publication Apr. 27, 2006 Sheet 1 of 2 US 2006/0088532 A1 integrin O9 integrin O1 KIAAO711 KAAO644 ApoD Fig. 1 Patent Application Publication Apr. 27, 2006 Sheet 2 of 2 US 2006/0088532 A1 CN g uueleo-gº US 2006/0O88532 A1 Apr. 27, 2006 LYMPHATIC AND BLOOD ENDOTHELLAL CELL lymphatic vessels, such as lymphangiomas or lymphang GENES iectasis. Witte, et al., Regulation of Angiogenesis (eds. Goldber, I. D. & Rosen, E. M.) 65-112 (Birkauser, Basel, BACKGROUND OF THE INVENTION Switzerland, 1997).
    [Show full text]
  • Gene Expression Signatures and Biomarkers of Noninvasive And
    Oncogene (2006) 25, 2328–2338 & 2006 Nature Publishing Group All rights reserved 0950-9232/06 $30.00 www.nature.com/onc ORIGINAL ARTICLE Gene expression signatures and biomarkers of noninvasive and invasive breast cancer cells: comprehensive profiles by representational difference analysis, microarrays and proteomics GM Nagaraja1, M Othman2, BP Fox1, R Alsaber1, CM Pellegrino3, Y Zeng2, R Khanna2, P Tamburini3, A Swaroop2 and RP Kandpal1 1Department of Biological Sciences, Fordham University, Bronx, NY, USA; 2Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA and 3Bayer Corporation, West Haven, CT, USA We have characterized comprehensive transcript and Keywords: representational difference analysis; micro- proteomic profiles of cell lines corresponding to normal arrays; proteomics; breast carcinoma; biomarkers; breast (MCF10A), noninvasive breast cancer (MCF7) and copper homeostasis invasive breast cancer (MDA-MB-231). The transcript profiles were first analysed by a modified protocol for representational difference analysis (RDA) of cDNAs between MCF7 and MDA-MB-231 cells. The majority of genes identified by RDA showed nearly complete con- Introduction cordance withmicroarray results, and also led to the identification of some differentially expressed genes such The transformation of a normal cell into a cancer cell as lysyl oxidase, copper transporter ATP7A, EphB6, has been correlated to altered expression of a variety of RUNX2 and a variant of RUNX2. The altered transcripts genes (Perou et al., 2000; Becker et al., 2005). The identified by microarray analysis were involved in cell–cell expression of some of these genes is a direct result of or cell–matrix interaction, Rho signaling, calcium home- sequence mutation, whereas other changes occur due to ostasis and copper-binding/sensitive activities.
    [Show full text]
  • Supplementary Data
    Progressive Disease Signature Upregulated probes with progressive disease U133Plus2 ID Gene Symbol Gene Name 239673_at NR3C2 nuclear receptor subfamily 3, group C, member 2 228994_at CCDC24 coiled-coil domain containing 24 1562245_a_at ZNF578 zinc finger protein 578 234224_at PTPRG protein tyrosine phosphatase, receptor type, G 219173_at NA NA 218613_at PSD3 pleckstrin and Sec7 domain containing 3 236167_at TNS3 tensin 3 1562244_at ZNF578 zinc finger protein 578 221909_at RNFT2 ring finger protein, transmembrane 2 1552732_at ABRA actin-binding Rho activating protein 59375_at MYO15B myosin XVB pseudogene 203633_at CPT1A carnitine palmitoyltransferase 1A (liver) 1563120_at NA NA 1560098_at AKR1C2 aldo-keto reductase family 1, member C2 (dihydrodiol dehydrogenase 2; bile acid binding pro 238576_at NA NA 202283_at SERPINF1 serpin peptidase inhibitor, clade F (alpha-2 antiplasmin, pigment epithelium derived factor), m 214248_s_at TRIM2 tripartite motif-containing 2 204766_s_at NUDT1 nudix (nucleoside diphosphate linked moiety X)-type motif 1 242308_at MCOLN3 mucolipin 3 1569154_a_at NA NA 228171_s_at PLEKHG4 pleckstrin homology domain containing, family G (with RhoGef domain) member 4 1552587_at CNBD1 cyclic nucleotide binding domain containing 1 220705_s_at ADAMTS7 ADAM metallopeptidase with thrombospondin type 1 motif, 7 232332_at RP13-347D8.3 KIAA1210 protein 1553618_at TRIM43 tripartite motif-containing 43 209369_at ANXA3 annexin A3 243143_at FAM24A family with sequence similarity 24, member A 234742_at SIRPG signal-regulatory protein gamma
    [Show full text]
  • Leveraging the Role of the Metastatic Associated Protein Anterior Gradient Homologue 2 in Unfolded Protein Degradation: a Novel Therapeutic Biomarker for Cancer
    cancers Review Leveraging the Role of the Metastatic Associated Protein Anterior Gradient Homologue 2 in Unfolded Protein Degradation: A Novel Therapeutic Biomarker for Cancer Reem Alsereihi 1,2, Hans-Juergen Schulten 3,4 , Sherin Bakhashab 3,5 , Kulvinder Saini 6, Ahmed M. Al-Hejin 2,7 and Deema Hussein 1,4,* 1 Neurooncology Translational Group, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia 2 Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia 3 Center of Excellence in Genomic Medicine Research, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia 4 Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia 5 Biochemistry Department, King Abdulaziz University, P.O. Box 80218, Jeddah 21589, Saudi Arabia 6 School of Biotechnology, Eternal University, Baru Sahib-173101, Himachal Pradesh, India 7 Microbiology Unit, King Fahad Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia * Correspondence: [email protected] or [email protected]; Tel.: +966-533-381-010 Received: 19 May 2019; Accepted: 21 June 2019; Published: 26 June 2019 Abstract: Effective diagnostic, prognostic and therapeutic biomarkers can help in tracking disease progress, predict patients’ survival, and considerably affect the drive for successful clinical management. The present review aims to determine how the metastatic-linked protein anterior gradient homologue 2 (AGR2) operates to affect cancer progression, and to identify associated potential diagnostic, prognostic and therapeutic biomarkers, particularly in central nervous system (CNS) tumors.
    [Show full text]
  • New Approach for Untangling the Role of Uncommon Calcium-Binding Proteins in the Central Nervous System
    brain sciences Review New Approach for Untangling the Role of Uncommon Calcium-Binding Proteins in the Central Nervous System Krisztina Kelemen * and Tibor Szilágyi Department of Physiology, Doctoral School, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Târgu Mures, , Romania; [email protected] * Correspondence: [email protected]; Tel.: +40-746-248064 Abstract: Although Ca2+ ion plays an essential role in cellular physiology, calcium-binding proteins (CaBPs) were long used for mainly as immunohistochemical markers of specific cell types in different regions of the central nervous system. They are a heterogeneous and wide-ranging group of proteins. Their function was studied intensively in the last two decades and a tremendous amount of informa- tion was gathered about them. Girard et al. compiled a comprehensive list of the gene-expression profiles of the entire EF-hand gene superfamily in the murine brain. We selected from this database those CaBPs which are related to information processing and/or neuronal signalling, have a Ca2+- buffer activity, Ca2+-sensor activity, modulator of Ca2+-channel activity, or a yet unknown function. In this way we created a gene function-based selection of the CaBPs. We cross-referenced these findings with publicly available, high-quality RNA-sequencing and in situ hybridization databases (Human Protein Atlas (HPA), Brain RNA-seq database and Allen Brain Atlas integrated into the HPA) and created gene expression heat maps of the regional and cell type-specific expression levels of the selected CaBPs. This represents a useful tool to predict and investigate different expression patterns and functions of the less-known CaBPs of the central nervous system.
    [Show full text]
  • Egfrviii Promotes Cell Survival During Endoplasmic Reticulum Stress Through a Reticulocalbin 1-Dependent Mechanism
    cancers Article EGFRvIII Promotes Cell Survival during Endoplasmic Reticulum Stress through a Reticulocalbin 1-Dependent Mechanism Juliana Gomez 1, Zammam Areeb 1, Sarah F. Stuart 1, Hong P. T. Nguyen 1, Lucia Paradiso 1, Ahmad Zulkifli 1 , Sonakshi Madan 1, Vijay Rajagopal 2 , Magdalene K. Montgomery 3, Hui K. Gan 4 , Andrew M. Scott 4, Jordan Jones 1,5, Andrew H. Kaye 1,6, Andrew P. Morokoff 1,5 and Rodney B. Luwor 1,* 1 Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, VIC 3050, Australia; [email protected] (J.G.); [email protected] (Z.A.); [email protected] (S.F.S.); [email protected] (H.P.T.N.); [email protected] (L.P.); [email protected] (A.Z.); [email protected] (S.M.); [email protected] (J.J.); [email protected] (A.H.K.); [email protected] (A.P.M.) 2 Cell Structure and Mechanobiology Group, Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne, Parkville, VIC 3010, Australia; [email protected] 3 Department of Physiology, The University of Melbourne, Parkville, VIC 3010, Australia; [email protected] 4 Olivia Newton-John Cancer Research Institute, La Trobe University, Heidelberg, VIC 3084, Australia; [email protected] (H.K.G.); [email protected] (A.M.S.) 5 Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, VIC 3050, Australia 6 Department of Neurosurgery, Hadassah Hebrew University Medical Centre, Jerusalem 91120, Israel * Correspondence: [email protected]; Tel.: +61-3-8344-3027; Fax: +61-393-476-488 Citation: Gomez, J.; Areeb, Z.; Stuart, S.F.; Nguyen, H.P.T.; Paradiso, L.; Simple Summary: A key molecule, EGFRvIII has been shown to provide several growth advantages Zulkifli, A.; Madan, S.; Rajagopal, V.; for brain tumors.
    [Show full text]
  • The Role of Sin1 in Cell Survival
    The role of Sin1 in cell survival A thesis submitted the University of Manchester for the degree of Doctor of Philosophy In the Faculty of Life Sciences 2014 Blanca Paramo Table of Contents The role of Sin1 in cell survival ............................................................................ 1 Table of Contents ................................................................................................... 2 List of Figures ........................................................................................................ 4 List of Tables .......................................................................................................... 5 Abstract .................................................................................................................. 6 Author’s Declaration .............................................................................................. 7 Copyright statement .............................................................................................. 7 Autobiographical statement ................................................................................. 8 Acknowledgements ............................................................................................... 9 Abbreviations ....................................................................................................... 10 1. Introduction ................................................................................................... 13 1.1 The mammalian target of rapamycin (mTOR) .................................................
    [Show full text]
  • Apoptosis Signal-Regulating Kinase 1 Promotes Ochratoxin A-Induced
    OPEN Apoptosis Signal-regulating Kinase 1 SUBJECT AREAS: promotes Ochratoxin A-induced renal CELL BIOLOGY RISK FACTORS cytotoxicity Rui Liang1, Xiao Li Shen1,2, Boyang Zhang1, Yuzhe Li1, Wentao Xu1, Changhui Zhao3, YunBo Luo1 Received & Kunlun Huang1 10 November 2014 Accepted 1Laboratory of food safety and molecular biology, College of Food Science and Nutritional Engineering, China Agricultural 5 January 2015 University, Beijing 100083, P.R. China, 2School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China, 3Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA. Published 28 January 2015 Oxidative stress and apoptosis are involved in Ochratoxin A (OTA)-induced renal cytotoxicity. Apoptosis signal-regulating kinase 1 (ASK1) is a Mitogen-Activated Protein Kinase Kinase Kinase (MAPKKK, Correspondence and MAP3K) family member that plays an important role in oxidative stress-induced cell apoptosis. In this study, we performed RNA interference of ASK1 in HEK293 cells and employed an iTRAQ-based requests for materials quantitative proteomics approach to globally investigate the regulatory mechanism of ASK1 in should be addressed to OTA-induced renal cytotoxicity. Our results showed that ASK1 knockdown alleviated OTA-induced ROS W.X. (xuwentao@cau. generation and Dym loss and thus desensitized the cells to OTA-induced apoptosis. We identified 33 and 24 edu.cn) differentially expressed proteins upon OTA treatment in scrambled and ASK1 knockdown cells, respectively. Pathway classification and analysis revealed that ASK1 participated in OTA-induced inhibition of mRNA splicing, nucleotide metabolism, the cell cycle, DNA repair, and the activation of lipid metabolism. We concluded that ASK1 plays an essential role in promoting OTA-induced renal cytotoxicity.
    [Show full text]
  • RCN1 Suppresses ER Stress-Induced Apoptosis Via Calcium Homeostasis and PERK–CHOP Signaling
    OPEN Citation: Oncogenesis (2017) 6, e304; doi:10.1038/oncsis.2017.6 www.nature.com/oncsis ORIGINAL ARTICLE RCN1 suppresses ER stress-induced apoptosis via calcium homeostasis and PERK–CHOP signaling SXu1,3,YXu1,3, L Chen1, Q Fang1, S Song1, J Chen1,2,4 and J Teng1,4 Endoplasmic reticulum (ER) stress is caused by the disturbance of ER homeostasis and leads to the activation of the unfolded protein response (UPR), which alleviates stress at an early stage and triggers apoptosis if homeostasis fails over a prolonged timeframe. Here, we report that reticulocalbin 1 (RCN1), a member of the CREC family, is transactivated by nuclear factor kappa B (NF-κB) during ER stress and inhibits ER stress-induced apoptosis. The depletion of RCN1 increases the UPR during drug-induced ER stress by activating PRKR-like ER kinase–CCAAT/enhancer-binding protein-homologous protein (PERK–CHOP) signaling, thus inducing apoptosis. Furthermore, we found that the first two EF-hand calcium-binding motifs of RCN1 specifically interact with inositol 1,4,5-trisphosphate (IP3) receptor type 1 (IP3R1) on loop 3 of its ER luminal domain and inhibit ER calcium release and apoptosis. Together, these data indicate that RCN1, a target of NF-κB, suppresses ER calcium release by binding to IP3R1 and decreases the UPR, thereby inhibiting ER stress-induced apoptosis. Oncogenesis (2017) 6, e304; doi:10.1038/oncsis.2017.6; published online 20 March 2017 INTRODUCTION (iii) Ca2+ channels, which release Ca2+ to the cytosol.15 Dysfunction The endoplasmic reticulum (ER), a dynamic sheet and tubular of these proteins leads to alterations in ER calcium homeostasis, organelle, has multiple functions including initial protein matura- including ER calcium depletion, and ultimately results in ER 16 stress.
    [Show full text]
  • Supplemental Data
    Supplementary Table 1. Gene sets from Figure 6. Lists of genes from each individual gene set defined in Figure 6, including the fold-change in expression of each gene in treatment group pair-wise comparisons. ENSEMBL: Ensembl gene identifier; Symbol: official gene symbol; logFC: log fold change; p value: significance of fold-change in a pair-wise comparison, P<0.05 cut-off; FDR: false discovery rate, expected proportion of false positives among the differentially expressed genes in a pair-wise comparison (FDR<0.25 cut-off). Sup. Table 1 SET I CP versus Sal CP versus CP+DCA DCA versus Sal ENSEMBL Symbol logFC PValue FDR logFC PValue FDR logFC PValue FDR Desc ENSMUSG00000020326 Ccng1 2.64 0.00 0.00 -0.06 0.13 0.96 0.40 0.00 0.23 cyclin G1 [Source:MGI Symbol;Acc:MGI:102890] ENSMUSG00000031886 Ces2e 3.97 0.00 0.00 -0.24 0.02 0.28 0.01 1.00 1.00 carboxylesterase 2E [Source:MGI Symbol;Acc:MGI:2443170] ENSMUSG00000041959 S100a10 2.31 0.00 0.00 -0.21 0.02 0.23 -0.11 0.53 1.00 S100 calcium binding protein A10 (calpactin) [Source:MGI Symbol;Acc:MGI:1339468] ENSMUSG00000092341 Malat1 1.09 0.00 0.00 -0.11 0.20 1.00 0.66 0.00 0.00 metastasis associated lung adenocarcinoma transcript 1 (non-coding RNA) [Source:MGI Symbol;Acc:MGI:1919539] ENSMUSG00000072949 Acot1 1.73 0.00 0.00 -0.22 0.01 0.12 -0.44 0.01 1.00 acyl-CoA thioesterase 1 [Source:MGI Symbol;Acc:MGI:1349396] ENSMUSG00000064339 mt-Rnr2 1.09 0.00 0.00 -0.08 0.17 1.00 0.67 0.00 0.07 mitochondrially encoded 16S rRNA [Source:MGI Symbol;Acc:MGI:102492] ENSMUSG00000025934 Gsta3 1.86 0.00 0.00 -0.28
    [Show full text]