A Phylogenetic Analysis of Molecular and Morphological Characters

Total Page:16

File Type:pdf, Size:1020Kb

A Phylogenetic Analysis of Molecular and Morphological Characters Cladistics Cladistics 32 (2016) 198–210 10.1111/cla.12125 A phylogenetic analysis of molecular and morphological characters of Herminium (Orchidaceae, Orchideae): evolutionary relationships, taxonomy, and patterns of character evolution Bhakta Bahadur Raskotia,b,†, Wei-Tao Jina,†, Xiao-Guo Xianga,†, Andre Schuitemanc,†, De-Zhu Lid, Jian-Wu Lie, Wei-Chang Huangf, Xiao-Hua Jina,* and Lu-Qi Huangg,* aState Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; bUniversity of Chinese Academy of Sciences, Beijing, 100049, China; cScience Directorate, Royal Botanical Gardens, Richmond, Surrey, TW9 3AB, UK; dKey Laboratory of Plant Biodiversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China; eXishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla County, Yunnan, 666303, China; fShanghai Chenshan Botanical Garden, Songjiang, Shanghai, 201602, China; gNational Resource Centre for Chinese Material Medica, China Academy of Chinese Medical Science, Beijing, 100700, China Accepted 12 May 2015 Abstract The first comprehensive phylogenetic study of the orchid genus Herminium and its allies is presented, based on seven molecu- lar markers (nuclear internal transcribed spacer, Xdh, chloroplast matK, psaB, psbA-trnH, rbcL and trnL-F) and 37 morphologi- cal characters. Phylogenetic analyses indicate that Herminium as currently delimited is paraphyletic and that several genera are deeply nested within it. Based on parsimony analysis of total evidence, the generic circumscription of Herminium is expanded to include Androcorys, Bhutanthera, Frigidorchis and Porolabium. Apomorphic and plesiomorphic character states are identified for various clades recovered in this study. A few species currently wrongly assigned to Peristylus and Platanthera are here included in Herminium. All necessary new combinations are made. © The Willi Hennig Society 2015. Introduction Pridgeon et al., 2001; Pearce and Cribb, 2002). Its gen- eric delimitation has been re-evaluated several times Herminium L. [Orchidaceae, Orchidoideae; type, (King and Pantling, 1898; Lang, 1988; Pridgeon et al., Herminium monorchis (L.) R.Br., Fig. 1a] is a genus 2001; Pearce and Cribb, 2002; Chen et al., 2009), but predominantly occurring in alpine grassland at eleva- no consensus has been reached. Govaerts et al. (2011) tions up to 5200 m. About 55 species are known, of listed 90 names under the genus Herminium, of which which 50 inhabit the Himalayan region, with a few about half were assigned to other genera. species extending into Europe and tropical Asia. Her- Some authors, such as Hooker (1890), King and minium is characterized by: globose tubers; more or Pantling (1898), Duthie (1906), and Tang and Wang less nutant, small, greenish flowers; spreading lateral (1937, 1940), recognized Herminium in a broad sense, sepals; curved ovary with a beaked apex; short col- while Hunt (1970), Seidenfaden (1977), Hara et al. umn; and two stigmas nearly protruding from beneath (1978), Lang (1988), and Pridgeon et al. (2001) took a the rostellum (Hooker, 1890; King and Pantling, 1898; more narrow view of Herminium and also transferred some species to Peristylus Blume and Platanthera Rich. Traditionally, Herminium, Peristylus and Platan- *Corresponding authors. E-mail addresses: [email protected]; [email protected] thera are distinguished by morphological characters of †These authors contributed equally to this work. the tuber, lip, stigma, and connective. Herminium © The Willi Hennig Society 2015 B. B. Raskoti et al. / Cladistics 32 (2016) 198–210 199 (a) (b) (c) (d) (e) (f) Fig. 1. Flowers of some representative species of Herminium and its alliance. (a) Herminium monorchis; (b) Peristylus fallax; (c) Platanthera lati- labris; (d) Androcorys pugioniformis; (e) Frigidorchis humidicola; (f) Hsenhsua chrysea. All photos taken by Xiaohua Jin. usually has globose tubers, a possibly saccate but not Renz is similar to Herminium but has pulvinate and slender-spurred lip, a narrow connective, and a stigma confluent stigma lobes. Frigidorchis Z.J. Liu & S.C. with two separate lobes that are free from the base of Chen is similar to Bhutanthera in having a pulvinate the lip; Peristylus has globose tubers, a variously stigma but differs in the subcorymbose inflorescence spurred lip (the spur ranging in shape from subglobose and flowers without bracts (Fig. 1e). to slender-tubular), stigma lobes that are separate and Several phylogenetic studies of the Orchideae that fused to the base of the lip and to the staminodes, and include Herminium have been conducted using molecu- a narrow connective; Platanthera has thick, fleshy lar data, but no species-level phylogenetic study of the roots (sometimes partly swollen into a fusiform tuber), group as a whole has been undertaken, and previous a slender-spurred lip, confluent or rarely separate and efforts to reconstruct the phylogeny of Herminium free stigma lobes, and a wide connective. However, have been only marginally successful. The first investi- morphological differentiation between these genera can gation of the monophyly of Herminium presented very be difficult in certain species in which characters of the preliminary conclusions on generic delimitation and column structure are more or less intermediate. interspecific relationships, as only four species and one This problem is compounded by the recognition of marker (internal transcribed spacer, ITS) were used several small satellite genera. Androcorys Schltr. is sim- (Bateman et al., 2003). A second study had an even ilar to Herminium but is characterized by the pulvinate more restricted taxon sampling, with only one species stigma lobes and a wide and hooded connective of Herminium being included in the analysis (Inda (Fig. 1d). Porolabium Tang et Wang is similar to And- et al., 2012). A more recent and more comprehensive rocorys in having pulvinate stigma lobes but is charac- investigation analysed chloroplast (rbcL, matK) and terized by the lip base with two pores. Bhutanthera nuclear (ITS) markers in 18 species of Herminium 200 B. B. Raskoti et al. / Cladistics 32 (2016) 198–210 sensu lato (s.l.) (Jin et al., 2014). It found that Andro- region, 2 min denaturation at 94 °C followed by 34 corys, Porolabium, the Platanthera latilabris group, cycles of denaturation of 94 °C for 45 s, 45 s anneal- and some species of Peristylus are nested within ing for 58 °C, and extension at 72 °C for 90 s, fol- Herminium, whereas some species of Herminium lowed by elongation for 5 min at 72 °C; for matK, belong to Platanthera. Generic delimitation, interspe- psaB and rbcL regions: 3 min denaturation at 95 °C cific interrelationships, and morphological character followed by 35 cycles of denaturation at 95 °C for evolution of Herminium remained unresolved. 30 s, 1 min annealing at 50 °C, and extension at 72 °C The aims of the present study can be summarized as for 90 s, followed by elongation for 10 min at 72 °C; follows: (i) to reconstruct the phylogeny of Herminium for psbA-trnH region, 3 min denaturation at 94 °C fol- based on extensive sampling, using multiple nuclear lowed by 34 cycles of denaturation of 94 °C for 45 s, and chloroplast sequence regions and morphological 1 min annealing from 52 to 55 °C, and extension at characters; (ii) to test the monophyly of Herminium; 72 °C for 2 min, followed by elongation for 5 min at and (iii) to understand the evolutionary pattern of 72 °C; for trnL-F region, 3 min denaturation at 94 °C morphological characters previously used in taxon followed by 35 cycles of denaturation of 94 °C for delimitation and to detect morphological synapomor- 30 s, 30 s annealing at 50 °C, and extension at 72 °C phies that support monophyletic groups. for 90 s, followed by elongation for 10 min at 72 °C. Sequencing was conducted in both directions using the same primers as in the PCR. Additional internal prim- Material and methods ers matK and trnL-F were also required for sequencing (Table S2). Sequencing reactions was carried out in Plant materials 10-lL volumes containing 1 lL template (approx. 10 ng), 4 lL ddH2O, 1 lL of sequencing primer (3.2 In total, 56 accessions were investigated (supporting pmol/lL) and 4 lL BigDye, with a cycler program of information Table S1). Forty-nine species across nine 25 cycles of 96 °C for 10 s, 50 °C for 5 s, and 60 °C genera (Androcorys, Bhutanthera, Frigidorchis, Habena- for 4 min after an initial denaturation of 96 °C for ria, Herminium, Hsenhsua, Peristylus, species currently 1 min. Sequencing was carried out on ABI Prism 154 misplaced in Platanthera,andPorolabium) were con- Bigdye Terminator Cycle Sequencing Kit (Applied sidered as the ingroup. This sampling includes about Biosystems, Foster City, CA, USA). 90% of the species of Herminium, and represents both the morphological and the geographical range of this Morphological character coding genus. The outgroup consists of three species of Orch- idinae, i.e. Galearis spathulata, Platanthera chlorantha A total of 37 morphological characters were scored and P. japonica, in accordance with previous phyloge- for 56 taxa based on traits traditionally used to cir- netic studies of the subtribes Orchidinae and Habe- cumscribe genera, including 21 binary and 16 multi- nariinae (Bateman et al., 2003; Jin et al., 2014). state morphological characters. The list of characters and their states is provided in the Appendix 1. Mor- DNA sequence data phological
Recommended publications
  • DPR Journal 2016 Corrected Final.Pmd
    Bul. Dept. Pl. Res. No. 38 (A Scientific Publication) Government of Nepal Ministry of Forests and Soil Conservation Department of Plant Resources Thapathali, Kathmandu, Nepal 2016 ISSN 1995 - 8579 Bulletin of Department of Plant Resources No. 38 PLANT RESOURCES Government of Nepal Ministry of Forests and Soil Conservation Department of Plant Resources Thapathali, Kathmandu, Nepal 2016 Advisory Board Mr. Rajdev Prasad Yadav Ms. Sushma Upadhyaya Mr. Sanjeev Kumar Rai Managing Editor Sudhita Basukala Editorial Board Prof. Dr. Dharma Raj Dangol Dr. Nirmala Joshi Ms. Keshari Maiya Rajkarnikar Ms. Jyoti Joshi Bhatta Ms. Usha Tandukar Ms. Shiwani Khadgi Mr. Laxman Jha Ms. Ribita Tamrakar No. of Copies: 500 Cover Photo: Hypericum cordifolium and Bistorta milletioides (Dr. Keshab Raj Rajbhandari) Silene helleboriflora (Ganga Datt Bhatt), Potentilla makaluensis (Dr. Hiroshi Ikeda) Date of Publication: April 2016 © All rights reserved Department of Plant Resources (DPR) Thapathali, Kathmandu, Nepal Tel: 977-1-4251160, 4251161, 4268246 E-mail: [email protected] Citation: Name of the author, year of publication. Title of the paper, Bul. Dept. Pl. Res. N. 38, N. of pages, Department of Plant Resources, Kathmandu, Nepal. ISSN: 1995-8579 Published By: Mr. B.K. Khakurel Publicity and Documentation Section Dr. K.R. Bhattarai Department of Plant Resources (DPR), Kathmandu,Ms. N. Nepal. Joshi Dr. M.N. Subedi Reviewers: Dr. Anjana Singh Ms. Jyoti Joshi Bhatt Prof. Dr. Ram Prashad Chaudhary Mr. Baidhya Nath Mahato Dr. Keshab Raj Rajbhandari Ms. Rose Shrestha Dr. Bijaya Pant Dr. Krishna Kumar Shrestha Ms. Shushma Upadhyaya Dr. Bharat Babu Shrestha Dr. Mahesh Kumar Adhikari Dr. Sundar Man Shrestha Dr.
    [Show full text]
  • Фиторазнообразие Восточной Европы 2020, Xiv : 2 116 П.Г
    116 Фиторазнообразие Восточной Европы 2020, XIV : 2 ОРИГИНАЛЬНАЯ СТАТЬЯ УДК 582.594.2 Фиторазнообразие Восточной Европы, 2020, Т. XIV, № 2, с. 116–124 doi: 10.24411/2072-8816-2020-10069 Phytodiversity of Eastern Europe, 2020, XIV (2): 116–124 К ВОПРОСУ О ВОЗМОЖНОМ ПРОИЗРАСТАНИИ PLATANTHERA CHORISIANA CHAM. (ORCHIDACEAE) В ЕВРОПЕЙСКОЙ ЧАСТИ РОССИИ П.Г. Ефимов, М.В. Легченко Резюме. Предметом обсуждения в статье является вид Platanthera chorisiana (любка Хориса) – обитающее в се- верной пацифике растение из семейства орхидных, неожиданно обнаруженное в изолированном местонахожде- нии в Московской области, хотя имеется также вероятность того, что образец был ошибочно этикетирован. На- ходка обсуждается в контексте других недавних случаев обнаружения этого вида, оказавшихся за пределами его основного ареала, хотя и не на столь далеком расстоянии. Проводится аналогия с другими заносными орхидными, в том числе с недавней нашумевшей находкой восточноазиатского представителя рода Liparis в Западной Европе. Кратко обсуждаются другие особенности Platanthera chorisiana, ставящие этот вид особняком среди других пред- ставителей своего рода. Ключевые слова: Platanthera chorisiana, Московская область, заносы орхидных Благодарности. Работа в 2020 г. поддержана грантом РФФИ № 20-04-00561, исследования до 2020 г. выполня- лись в рамках государственного задания, тема «Сосудистые растения Евразии: систематика, флора, растительные ресурсы», регистрационный № АААА-А19-119031290052-1. Авторы признательны Г.Ю. Конечной, В.В. Куро- паткину, разделившим с авторами тяготы полевых будней в Московской области, А.П. Серегину за информацию о новых данных, опубликованных в интернете, а также анонимному рецензенту за внимательный анализ рукописи. Для цитирования: Ефимов П.Г., Легченко М.В. К вопросу о возможном произрастании Platanthera chorisiana Cham. (Orchidaceae) в Европейской части России. Фиторазнообразие Восточной Европы.
    [Show full text]
  • Orchidaceous Additions to the Floras of China and Vietnam
    Taiwania, 48(3): 139-146, 2003 Orchidaceous Additions to the Floras of China and Vietnam Paul Ormerod(1) (Manuscript received 17 April, 2003; accepted 6 May, 2003) ABSTRACT: Literature and herbarium studies of Chinese and Vietnamese orchids have revealed a variety of new and noteworthy data pertinent to the floras of China and Vietnam. Three new combinations are proposed, viz, Bhutanthera humidicola, Odontochilus saprophyticus and Peristylus garrettii. Three new species are proposed, viz. Epigeneium mimicum, Podochilus banaensis and P. oxystophylloides. KEY WORDS: Orchidaceae, Additions, China, Vietnam. The present paper is mainly the result of herbarium and literature studies made at the Harvard University Herbaria (A, AMES, GH). Most of the Chinese materials examined were collected in the 1930’s, an era that was one of the high points of Sino-American botanical cooperation in the twentieth century. Vietnamese specimens on the other hand are poorly represented at Harvard and these mostly consist of duplicates made by French collectors, a small collection made by Chinese collectors in North Vietnam and an important set formed by Joseph and Mary Strong Clemens during their visit to South Vietnam in 1927. Bhutanthera humidicola (K. Y. Lang & Deng) Ormerod, comb. nov. Basionym: Peristylus humidicola K. Y. Lang & Deng, Novon 6: 190, fig. 2, 1996. Type: China – Quinghai, Magen Xian, Dawu Xiang, Muchang, SE of Magen, 3980m, 5 August 1993, Ho et al. 807 (holotype: HNWP, isotypes: AMES!, BM, CAS, MO). Distribution: China - Quinghai. Notes: This species represents the sixth member of the genus Bhutanthera Renz. All taxa so far assigned to this concept recently described by Renz (in Pearce et al.
    [Show full text]
  • The Real Ponerorchis Nana (King & Pantling) Soó Resurrected
    Pleione 10(2): 279 - 282. 2016. ISSN: 0973-9467 © East Himalayan Society for Spermatophyte Taxonomy The real Ponerorchis nana (King & Pantling) Soó resurrected Magnus Lidén1 and Alister Adhikari2 1Uppsala university, EBC: Systematic Biology. Norbyvägen 18D, 75236 Uppsala, Sweden. E-mail: [email protected]. 2 Dr. Graham’s Homes, Kalimpong 734301, West Bengal. E-mail: [email protected]. [Received 01.11.2016; Revised & accepted 04.11.2016; Published 31.12.2016] Abstract We report a find of the rare orchid Ponerorchis nana (King & Pantling) Soó (Orchidaceae) from Lachung, Sikkim, and compare it with the very different species P. chusua with which it has previously been associated. Ponerorchis nana is currently known from East Sikkim Eastwards to Central Arunachal Pradesh, and grows on moss-covered cliffs and tree trunks. It seems closely related to Amitostigma pathakianum. Key words: Ponerorchis nana, Identity, Reestablished species Ponerorchis nana (King & Pantling) Soó (Orchidaceae) is a much misunderstood taxon. In Flora of Bhutan (Pearce & Cribb 2002) and on most websites (see references: web-resources) P. nana is said to be either very similar to or synonymous with P. chusua, and the epithet has been used for both narrow-leaved and broad-leaved small individuals of P. Chusua (e.g. Adhikari 2008). The root of the confusion started long lack when King & Pantling (1898) originally described P. nana as a variety of P. chusua and even hinted at intermediates. However, Ponerorchis nana (Figures 1, 2) is very different from P. chusua (Figure 3), in morphology as well as in ecology, and no intermediates are known. Pantling’s original drawing (King & Pantling 1898) shows most of its distinctive features: small and delicate growth; a single linear arcuate channeled leaf with shortly clasping base; 1- to 2-flowered (very rarely 3-flowered) inflorescence; flowers less than half the size of those of P.
    [Show full text]
  • Circumscribing Genera in the European Orchid Flora: a Subjective
    Ber. Arbeitskrs. Heim. Orchid. Beiheft 8; 2012: 94 - 126 Circumscribing genera in the European orchid lora: a subjective critique of recent contributions Richard M. BATEMAN Keywords: Anacamptis, Androrchis, classiication, evolutionary tree, genus circumscription, monophyly, orchid, Orchidinae, Orchis, phylogeny, taxonomy. Zusammenfassung/Summary: BATEMAN , R. M. (2012): Circumscribing genera in the European orchid lora: a subjective critique of recent contributions. – Ber. Arbeitskrs. Heim. Orch. Beiheft 8; 2012: 94 - 126. Die Abgrenzung von Gattungen oder anderen höheren Taxa erfolgt nach modernen Ansätzen weitestgehend auf der Rekonstruktion der Stammesgeschichte (Stamm- baum-Theorie), mit Hilfe von großen Daten-Matrizen. Wenngleich aufgrund des Fortschritts in der DNS-Sequenzierungstechnik immer mehr Merkmale in der DNS identiiziert werden, ist es mindestens genauso wichtig, die Anzahl der analysierten Planzen zu erhöhen, um genaue Zuordnungen zu erschließen. Die größere Vielfalt mathematischer Methoden zur Erstellung von Stammbäumen führt nicht gleichzeitig zu verbesserten Methoden zur Beurteilung der Stabilität der Zweige innerhalb der Stammbäume. Ein weiterer kontraproduktiver Trend ist die wachsende Tendenz, diverse Datengruppen mit einzelnen Matrizen zu verquicken, die besser einzeln analysiert würden, um festzustellen, ob sie ähnliche Schlussfolgerungen bezüglich der Verwandtschaftsverhältnisse liefern. Ein Stammbaum zur Abgrenzung höherer Taxa muss nicht so robust sein, wie ein Stammbaum, aus dem man Details des Evo- lutionsmusters
    [Show full text]
  • Evolutionary Consequences of Dioecy in Angiosperms: the Effects of Breeding System on Speciation and Extinction Rates
    EVOLUTIONARY CONSEQUENCES OF DIOECY IN ANGIOSPERMS: THE EFFECTS OF BREEDING SYSTEM ON SPECIATION AND EXTINCTION RATES by JANA C. HEILBUTH B.Sc, Simon Fraser University, 1996 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES (Department of Zoology) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA July 2001 © Jana Heilbuth, 2001 Wednesday, April 25, 2001 UBC Special Collections - Thesis Authorisation Form Page: 1 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. The University of British Columbia Vancouver, Canada http://www.library.ubc.ca/spcoll/thesauth.html ABSTRACT Dioecy, the breeding system with male and female function on separate individuals, may affect the ability of a lineage to avoid extinction or speciate. Dioecy is a rare breeding system among the angiosperms (approximately 6% of all flowering plants) while hermaphroditism (having male and female function present within each flower) is predominant. Dioecious angiosperms may be rare because the transitions to dioecy have been recent or because dioecious angiosperms experience decreased diversification rates (speciation minus extinction) compared to plants with other breeding systems.
    [Show full text]
  • The Genus Habenaria (Orchidaceae) in Thailand INTRODUCTION
    THAI FOR. BULL. (BOT.), SPECIAL ISSUE: 7–105. 2009. The genus Habenaria (Orchidaceae) in Thailand HUBERT KURZWEIL1 ABSTRACT. The taxonomy of the Thai species of the largely terrestrial orchid genus Habenaria Willd. is reviewed. Forty-six species are recognised. H. humidicola Rolfe, H. poilanei Gagnep. and H. ciliolaris Kraenzl. are newly recorded for Thailand based on a single collection each, although the identifi cation of the latter two is uncertain. An aberrant specimen of H. viridifl ora (Rottler ex Sw.) Lindl. is pointed out. H. erichmichaelii Christenson is reduced to synonymy under H. rhodocheila Hance. Several diffi cult and geographically widespread species complexes are identifi ed and the need for future studies of all of the available material over the entire distribution range is emphasized. Based on the herbarium and spirit material examined here the following distribution pattern emerged: about 53 % of all collections of Thai Habenaria species were made in northern Thailand (although this may partly be due to collector’s bias) and about 15 % in north-eastern Thailand, while only between 4.5 and 7.5 % come from each of the other fl oristic regions of the country. In addition, an assessment of the conservation status has been made in all species. The present study will form the basis for a later contribution to the Flora of Thailand. KEY WORDS: Habenaria, Orchidaceae, Thailand, conservation, identifi cation, morphology, systematics. INTRODUCTION Habenaria Willd. is a largely terrestrial orchid genus placed in subfamily Orchidoideae (Pridgeon et al., 2001). The genus currently accounts for about 600 species making it by far the largest in the subfamily.
    [Show full text]
  • Irregular Flowering Patterns in Terrestrial Orchids: Theories Vs Empirical Data
    Web Ecolog y 2: 75–82. Irregular flowering patterns in terrestrial orchids: theories vs empirical data Pavel Kindlmann and Zuzana Balounová Kindlmann, P. and Balounová, Z. 2001. Irregular flowering patterns in terrestrial or- chids: theories vs empirical data. – Web Ecol. 2: 75–82. Empirical data on many species of terrestrial orchids suggest that their between-year flowering pattern is extremely irregular and unpredictable. A long search for the reason has hitherto proved inconclusive. Here we summarise and critically review the hypoth- eses that were put forward as explanations of this phenomenon: irregular flowering was attributed to costs associated with sexual reproduction, to herbivory, or to the chaotic behaviour of the system represented by difference equations describing growth of the vegetative and reproductive organs. None of these seems to explain fully the events of a transition from flowering one year to sterility or absence the next year. Data on the seasonal growth of leaves and inflorescence of two terrestrial orchid species, Epipactis albensis and Dactylorhiza fuchsii and our previous results are then used here to fill gaps in what has been published until now and to test alternative explanations of the irregular flowering patterns of orchids. P. Kindlmann ([email protected]), Faculty of Biological Sciences, Univ. of South Bohemia, Brani šovská 31, CZ-370 05 České Bud ějovice, Czech Republic (present address: Ecologie des populations et communautés, Institut National Agronomique Paris-Grignon, 16 Rue Claude Bernard, F-75231 Paris Cedex 05, France). – Z. Balounová, Faculty of Biological Sciences and Faculty of Agriculture, Univ. of South Bohemia, Brani šovská 31, CZ-370 05 České Budějovice, Czech Republic.
    [Show full text]
  • Nigritella Widderi (Orchidaceae-Orchideae) in the Apennines
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Phyton, Annales Rei Botanicae, Horn Jahr/Year: 1987 Band/Volume: 27_1 Autor(en)/Author(s): Rossi Walter, Capineri Romano, Teppner Herwig, Klein Erich Artikel/Article: Nigritella widderi (Orchidaceae-Orchideae) in the Apennines. 129-138 ©Verlag Ferdinand Berger & Söhne Ges.m.b.H., Horn, Austria, download unter www.biologiezentrum.at Phyton (Austria) Vol. 27 Fasc. 1 129-138 17. 7. 1987 Nigritella widderi (Orchidaceae - Orchideae) in the Apennines By 1 Walter Rossi ), Romano CAPINERI2), Herwig TEPPNER3) and Erich KLEIN4) With 10 Figures Received July, 13, 1986 Key words: Nigritella widderi, Orchidaceae. - Apomixis, chromosome number, embryology. - Flora of Italy. Summary Rossi W., CAPINERI R., TEPPNER H. & KLEIN E. 1987. Nigritella widderi (Or- chidaceae - Orchideae) in the Apennines. - Phyton (Austria) 27 (1): 129-138, 10 figu- res. - English with German summary. The Nigritella of Central Italy was identified as conspecific with N. widderi TEPPNER & KLEIN from the Northeastern Alps. It occurs in mountains of the region Abruzzo and in adjacent parts of neighbouring regions. Distribution in Italy, karyolo- gy (chromosome number 2n = 80) and embryology (apomixis, nucellar embryos) are discussed. [ Zusammenfassung Rossi W., CAPINERI R., TEPPNER H. & KLEIN E. 1987. Nigritella widderi (Orchida- ceae - Orchideae) im Apennin. - Phyton (Austria) 27 (1): 129-138, 10 Abbildungen. - Englisch mit deutscher Zusammenfassung. Die Nigritella Zentral-Italiens wird zu der aus den nordöstlichen Alpen be- schriebenen JV. widderi TEPPNER & KLEIN gestellt. Sie kommt im Apennin in der Region Abruzzo und in angrenzenden Teilen benachbarter Regionen vor. Die Verbrei- tung in Italien, Karyologie (Chromosomenzahl 2n = 80) und Embryologie (Apomixis, Nuzellarembryonen) werden diskutiert.
    [Show full text]
  • Chromosome Numbers and Polyploidy Events in Korean Non-Commelinids Monocots: a Contribution to Plant Systematics
    pISSN 1225-8318 − Korean J. Pl. Taxon. 48(4): 260 277 (2018) eISSN 2466-1546 https://doi.org/10.11110/kjpt.2018.48.4.260 Korean Journal of REVIEW Plant Taxonomy Chromosome numbers and polyploidy events in Korean non-commelinids monocots: A contribution to plant systematics Tae-Soo JANG* and Hanna WEISS-SCHNEEWEISS1 Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea 1Department of Botany and Biodiversity Research, University of Vienna, A-1030 Vienna, Austria (Received 4 June 2018; Revised 9 September 2018; Accepted 16 December 2018) ABSTRACT: The evolution of chromosome numbers and the karyotype structure is a prominent feature of plant genomes contributing to or at least accompanying plant diversification and eventually leading to speciation. Polyploidy, the multiplication of whole chromosome sets, is widespread and ploidy-level variation is frequent at all taxonomic levels, including species and populations, in angiosperms. Analyses of chromosome numbers and ploidy levels of 252 taxa of Korean non-commelinid monocots indicated that diploids (ca. 44%) and tet- raploids (ca. 14%) prevail, with fewer triploids (ca. 6%), pentaploids (ca. 2%), and hexaploids (ca. 4%) being found. The range of genome sizes of the analyzed taxa (0.3–44.5 pg/1C) falls well within that reported in the Plant DNA C-values database (0.061–152.33 pg/1C). Analyses of karyotype features in angiosperm often involve, in addition to chromosome numbers and genome sizes, mapping of selected repetitive DNAs in chro- mosomes. All of these data when interpreted in a phylogenetic context allow for the addressing of evolution- ary questions concerning the large-scale evolution of the genomes as well as the evolution of individual repeat types, especially ribosomal DNAs (5S and 35S rDNAs), and other tandem and dispersed repeats that can be identified in any plant genome at a relatively low cost using next-generation sequencing technologies.
    [Show full text]
  • Distribution and Conservation Status of Some Rare and Threatened Orchid
    Wulfenia 24 (2017): 143 –162 Mitteilungen des Kärntner Botanikzentrums Klagenfurt Distribution and conservation status of some rare and threatened orchid taxa in the central Balkans and the southern part of the Pannonian Plain Vladan Djordjević, Dmitar Lakušić, Slobodan Jovanović & Vladimir Stevanović Summary: Along with being a centre of plant species diversity and endemism, the Balkan Peninsula is one of the parts of Europe with the highest number of orchid taxa. However, the orchid flora in the central Balkans has not been sufficiently studied. The paper presents the distribution of ten rare and threatened taxa of Orchidaceae in the central Balkans and the southern part of the Pannonian Plain: Anacamptis papilionacea, Epipactis palustris, E. purpurata, Epipogium aphyllum, Goodyera repens, Gymnadenia frivaldii, Ophrys apifera, O. insectifera, Orchis militaris and O. spitzelii subsp. spitzelii. In addition to field investigation, checking and revision of herbarium material, literature sources were also used for supplementing distribution data. The distribution maps of these taxa in the central Balkans (Serbia and Kosovo region) and the southern part of the Pannonian Plain (Vojvodina) are created on a 10 km × 10 km UTM grid system. Data concerning their habitat preferences, population size and the estimated IUCN conservation status in the study area are provided. Keywords: Orchidaceae, phytogeography, IUCN conservation status, Balkan Peninsula The orchid family is one of the largest and most diverse families in the plant kingdom with estimates of about 28 000 species distributed in about 763 genera (Chase et al. 2015; Christenhusz & Byng 2016). According to Hágsater & Dumont (1996), over 300 orchid species occur in Europe, North Africa and Near East.
    [Show full text]
  • Orchidoideae: Orchidaceae) Author(S): H
    The Phylogeny and Classification of the Diseae (Orchidoideae: Orchidaceae) Author(s): H. P. Linder and H. Kurzweil Source: Annals of the Missouri Botanical Garden, Vol. 81, No. 4 (1994), pp. 687-713 Published by: Missouri Botanical Garden Press Stable URL: http://www.jstor.org/stable/2399916 Accessed: 27-07-2016 11:10 UTC Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://about.jstor.org/terms JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Missouri Botanical Garden Press is collaborating with JSTOR to digitize, preserve and extend access to Annals of the Missouri Botanical Garden This content downloaded from 137.158.114.36 on Wed, 27 Jul 2016 11:10:19 UTC All use subject to http://about.jstor.org/terms THE PHYLOGENY AND H. P. Linder2 and H. Kurzweil2'3 CLASSIFICATION OF THE DISEAE (ORCHIDOIDEAE: ORCHIDACEAE)l ABSTRACT The subtribal classification of the Diseae (Orchidoideae) is reviewed in light of the available morphological, leaf anatomical, and palynological data. These data are critically assessed, and the more prominent features are illustrated. The data are analyzed cladistically, and the robustness of the various components of the most parsimonious tree is assessed by a bootstrap analysis. Based on the cladistic analysis and the bootstrap analysis, a new classification is proposed for the Diseae.
    [Show full text]