Notes on the Biology of the Tibetan Fox (Vulpes Ferrilata)

Total Page:16

File Type:pdf, Size:1020Kb

Notes on the Biology of the Tibetan Fox (Vulpes Ferrilata) Harris et al. Biology of Tibetan fox Canid News Copyright © 2008 by the IUCN/SSC Canid Specialist Group. ISSN 1478-2677 The following is the established format for referencing this article: Harris et al. 2008. Notes on the biology of the Tibetan fox. Canid News 11.1 [online] URL: http://www.canids.org/canidnews/11/ Biology_of_Tibetan_fox.pdf. Research Report Notes on the biology of the Tibetan fox Richard B. Harris1*, Wang Zhenghuan2, Zhou Jiake1, and Liu Qunxiu2 1 Department of Ecosystem and Conservation Sciences, College of Forestry and Conservation, Univer- sity of Montana, Missoula, Montana, USA. 2 School of Life Science, East China Normal University, Shanghai, People’s Republic of China. * Correspondence author. Email: [email protected] Keywords: body size; brown bear; China; mating; Ursus arctos; Vulpes ferrilata; whelping Abstract Introduction We report on three aspects of the biology of Until recently, biological data on the Tibetan Tibetan foxes Vulpes ferrilata for which existing fox was gained mostly from anecdotal reports, literature is either absent or misleading. Our observations of their sign, or hunting records two field studies in western China each in- (e.g. Gong and Hu 2003; Schaller and Gisnberg volved capture (and subsequent radio- 2004; Wang et al. 2003, 2004, 2007). Because marking) of foxes, allowing us to refine exist- Tibetan foxes live in remote, mountainous en- ing information on body size and mass. Ti- vironments and are rarely observed in the betan foxes we captured were somewhat lar- wild, some aspects of their biology have been ger and heavier than the current literature difficult to document. Although classified by suggests is characteristic of the species. Our IUCN as Least Concern, the species remains observations of marked foxes during winter poorly studied. Within China some zoological and spring suggested that in our study areas museums contain skins and skulls of Tibetan whelping occurs in late January. We also re- foxes, but poor management and record keep- port that brown bears Ursus arctos, which also ing has limited the usefulness of these speci- appear to subsist largely on plateau pikas mens. To our knowledge there are no Tibetan Ochotona curzoniae, are frequently accompa- foxes held in captivity. nied by Tibetan foxes and the foxes seem to benefit from preying on pikas excavated by We recently initiated two independent studies the bears. of Tibetan fox ecology using radio-marked individuals; handling animals and being able to observe them more frequently have allowed 1 Harris et al. Biology of Tibetan fox us to update and improve existing information Stipa spp.) and shrubs (mainly Sibiraea angus- on this little known canid of the Tibetan tata, Potentilla fruticosa, Spiraea spp. and Salix steppe (Figure 1). Here we provide informa- spp.). Extensive pastoralism by Tibetan herd- tion on body size and mass, whelping dates, ers was the predominant land use in both and associations with other species. In some study areas. In addition to Tibetan foxes, red cases, our more intensive studies allow us to foxes V. vulpes were present at both sites (and correct information currently in the literature, occasionally captured). much of which is poorly documented. Methods Capture and handling At the Shiqu site foxes were caught with snares set at den entrances. Snares were de- signed with a fixed smallest neck size (15cm) and checked every 12 hours to avoid potential damage to captured foxes. Foxes were immo- bilized without anaesthetic (Arjo et al. 2002). At the Dulan site, foxes were captured with leghold traps (Victor Soft-Catch®, Wood- stream Corporation, Lititz, Pennsylvania, USA), or Belisle® (Edouard Belisle, Sainte- Veronique, Quebec, Canada) and immobilized with ketamine hydrochloride (approximately 6mg/kg) and medetomidine (approximately Figure 1. Tibetan fox, Shiqu, Sichuan, China. Photo 0.05 mg/kg). At the Dulan site all capture and by Zhang Kejia. handling procedures complied with Univer- sity of Montana Animal Use Committee Proto- cols. Fox capture work at the Shiqu study site took place during the last week of September Study areas 2003, the last two weeks of May 2006, and 10 May-12 June 2007. At the Dulan site, trapping occurred during 10-20 April and 22-25 Sep- We studied Tibetan foxes in two separate tember 2006, and 15-26 September 2007. study areas in Qinghai and Sichuan provinces, People’s Republic of China. Our Qinghai We captured a total of 18 individual foxes at study was initiated primarily to document the Shiqu study site (nine males, five females, relationships between fine-scale habitat selec- four juveniles) and six individual foxes at the tion (i.e. within home-range, second order se- Dulan study site (four males, one female, one lection, sensu Johnson 1980) and the density of juvenile; one male was captured in both 2006 their primary prey, plateau pikas. Our Si- and 2007). Body mass was estimated using a chuan study area was selected because of on- spring scale (Figure 2), and standard body going research on the parasite Echinococcus measurements were obtained using flexible, multilocularis, for which the Tibetan fox is an cloth tapes. We judged animals captured dur- important definitive host (Qiu et al. 1995). In ing April-June trapping periods to be juveniles Qinghai, our study site was centred on ap- (animals less than six months old) if they ap- proximately 35.5º N, 98.7º E, in Gouli Town- peared to have large head and paws relative to ship, Dulan County; we refer to this as the their body size, very sharp and unworn teeth, “Dulan site” hereafter. In Sichuan, our study and slender tails; we lacked a way to estimate site was centred on approximately 34º N, 98º E ages of animals older than six months old and in Shiqu County; we refer to this as the “Shiqu considered them all adults. site” hereafter. Both study areas consisted of rolling hills and mountains at elevations of 4,000-4,500m, with vegetation typified by grassland (dominated by Kobresia spp. and 2 Harris et al. Biology of Tibetan fox Observations data had not been given. Our field studies did not provide opportunity for us to observe mat- We made observations incidental to radio- ing; thus we cannot be sure when this occurs. tracking in Dulan on most days between 15 April 2006 and 26 September 2007. Radio- collars were attached to most captured indi- viduals, and foxes were tracked on the ground Table 1. Body measurements of live, adult Tibetan daily in Dulan and during occasional, inten- foxes obtained in Shiqu, Sichuan, and Dulan, Qing- hai, 2003-2007. Mass in kg. HB = head-body length, sive tracking periods in Shiqu. T = tail length, E = ear length (all in cm). Males Females Mass x 4.9 3.9 sd 0.6 0.3 n 6.0 6.0 HB x 67.3 62.8 sd 4.4 3.4 n 13.0 6.0 T x 27.4 27.5 Figure 2. Weighing an immobilized Tibetan fox, sd 4.1 3.7 Dulan, Qinghai, China. Photo by Marie-Claire Be- dard. n 13.0 6.0 E x 6.5 6.7 sd 0.8 0.4 Results n 10.0 5.0 Body size of Tibetan foxes Mean (± SD) body mass of captured Tibetan However, we were able to observe three of our foxes was 4.9 (±0.6) kg for males (range 4.4- radio-marked foxes (two males, one female) at 5.7kg) and 3.9 (±0.3) kg for females (range 3.6- the Dulan site on an almost daily basis during 4.1kg) (Table 1). Head-body length averaged the period January – June 2007. We observed 67.3 (±4.4) cm for males and 62.8 (±3.4) cm for pups (identified visually by much smaller size females. Four animals captured in Shiqu dur- than adults) with one of the males at a den site ing late June and early July, 2007 and judged as early as 10 February, and observed this to be juveniles, had a mean body mass of 2.2 male in the company of three pups and an (±0.1) kg, and a mean head-body length of 52.5 unidentified adult on 11 February. During (±3.1) cm. A female captured in late Septem- this time period, this male killed pikas for the ber 2007 in Dulan weighed 3.4kg, and her pups, often spending time in the company of head-body length was 57.5cm; we judged her the pups while the female was absent, sug- to be less than one year old. gesting that male Tibetan foxes participate in pup rearing. By 1 May, three pups we were Mating and whelping dates able to observe in the vicinity of this den ap- peared to be approximately ¾ the size of the According to Ginsberg and Macdonald (1990), adult male. We continued to observe pups in mating occurs in February with two to five the vicinity of this den until 3 June, after young born in May. This information was which we no longer observed pups that we repeated by Nowak (1999), Hayssen et al. could reliably associate with the male or den- (1994), and by Schaller and Ginsberg (2004), site. Our second radio-collared male was ob- who noted however, that the source for these 3 Harris et al. Biology of Tibetan fox served with a second fox that that appeared to successfully capturing a pika. In September be a pup of similar size to those we had ob- 2002, we first documented a Tibetan fox asso- served during the same time period with the ciating with a brown bear that was digging first radio-marked male on 6 May.
Recommended publications
  • Dental and Temporomandibular Joint Pathology of the Kit Fox (Vulpes Macrotis)
    Author's Personal Copy J. Comp. Path. 2019, Vol. 167, 60e72 Available online at www.sciencedirect.com ScienceDirect www.elsevier.com/locate/jcpa DISEASE IN WILDLIFE OR EXOTIC SPECIES Dental and Temporomandibular Joint Pathology of the Kit Fox (Vulpes macrotis) N. Yanagisawa*, R. E. Wilson*, P. H. Kass† and F. J. M. Verstraete* *Department of Surgical and Radiological Sciences and † Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, California, USA Summary Skull specimens from 836 kit foxes (Vulpes macrotis) were examined macroscopically according to predefined criteria; 559 specimens were included in this study. The study group consisted of 248 (44.4%) females, 267 (47.8%) males and 44 (7.9%) specimens of unknown sex; 128 (22.9%) skulls were from young adults and 431 (77.1%) were from adults. Of the 23,478 possible teeth, 21,883 teeth (93.2%) were present for examina- tion, 45 (1.9%) were absent congenitally, 405 (1.7%) were acquired losses and 1,145 (4.9%) were missing ar- tefactually. No persistent deciduous teeth were observed. Eight (0.04%) supernumerary teeth were found in seven (1.3%) specimens and 13 (0.06%) teeth from 12 (2.1%) specimens were malformed. Root number vari- ation was present in 20.3% (403/1,984) of the present maxillary and mandibular first premolar teeth. Eleven (2.0%) foxes had lesions consistent with enamel hypoplasia and 77 (13.8%) had fenestrations in the maxillary alveolar bone. Periodontitis and attrition/abrasion affected the majority of foxes (71.6% and 90.5%, respec- tively).
    [Show full text]
  • Wild Mammals of the Annapurna Conservation Area Cggk"0F{ ;+/If0f If]Qsf :Tgwf/L Jgohgt' Wild Mammals of the Annapurna Conservation Area - 2019
    Wild Mammals of the Annapurna Conservation Area cGgk"0f{ ;+/If0f If]qsf :tgwf/L jGohGt' Wild Mammals of the Annapurna Conservation Area - 2019 ISBN 978-9937-8522-8-9978-9937-8522-8-9 9 789937 852289 National Trust for Nature Conservation Annapurna Conservation Area Project Khumaltar, Lalitpur, Nepal Hariyo Kharka, Pokhara, Kaski, Nepal National Trust for Nature Conservation P.O. Box: 3712, Kathmandu, Nepal P.O. Box: 183, Kaski, Nepal Tel: +977-1-5526571, 5526573, Fax: +977-1-5526570 Tel: +977-61-431102, 430802, Fax: +977-61-431203 Annapurna Conservation Area Project Email: [email protected] Email: [email protected] Website: www.ntnc.org.np Website: www.ntnc.org.np 2019 Wild Mammals of the Annapurna Conservation Area cGgk"0f{ ;+/If0f If]qsf :tgwf/L jGohGt' National Trust for Nature Conservation Annapurna Conservation Area Project 2019 Wild Mammals of the Annapurna Conservation Area cGgk"0f{ ;+/If0f If]qsf :tgwf/L jGohGt' Published by © NTNC-ACAP, 2019 All rights reserved Any reproduction in full or in part must mention the title and credit NTNC-ACAP. Reviewers Prof. Karan Bahadur Shah (Himalayan Nature), Dr. Naresh Subedi (NTNC, Khumaltar), Dr. Will Duckworth (IUCN) and Yadav Ghimirey (Friends of Nature, Nepal). Compilers Rishi Baral, Ashok Subedi and Shailendra Kumar Yadav Suggested Citation Baral R., Subedi A. & Yadav S.K. (Compilers), 2019. Wild Mammals of the Annapurna Conservation Area. National Trust for Nature Conservation, Annapurna Conservation Area Project, Pokhara, Nepal. First Edition : 700 Copies ISBN : 978-9937-8522-8-9 Front Cover : Yellow-bellied Weasel (Mustela kathiah), back cover: Orange- bellied Himalayan Squirrel (Dremomys lokriah).
    [Show full text]
  • The Red and Gray Fox
    The Red and Gray Fox There are five species of foxes found in North America but only two, the red (Vulpes vulpes), And the gray (Urocyon cinereoargentus) live in towns or cities. Fox are canids and close relatives of coyotes, wolves and domestic dogs. Foxes are not large animals, The red fox is the larger of the two typically weighing 7 to 5 pounds, and reaching as much as 3 feet in length (not including the tail, which can be as long as 1 to 1 and a half feet in length). Gray foxes rarely exceed 11 or 12 pounds and are often much smaller. Coloration among fox greatly varies, and it is not always a sure bet that a red colored fox is indeed a “red fox” and a gray colored fox is indeed a “gray fox. The one sure way to tell them apart is the white tip of a red fox’s tail. Gray Fox (Urocyon cinereoargentus) Red Fox (Vulpes vulpes) Regardless of which fox both prefer diverse habitats, including fields, woods, shrubby cover, farmland or other. Both species readily adapt to urban and suburban areas. Foxes are primarily nocturnal in urban areas but this is more an accommodation in avoiding other wildlife and humans. Just because you may see it during the day doesn’t necessarily mean it’s sick. Sometimes red fox will exhibit a brazenness that is so overt as to be disarming. A homeowner hanging laundry may watch a fox walk through the yard, going about its business, seemingly oblivious to the human nearby.
    [Show full text]
  • Small Carnivores in Tinjure-Milke-Jaljale, Eastern Nepal
    SMALL CARNIVORES IN TINJURE-MILKE-JALJALE, EASTERN NEPAL The content of this booklet can be used freely with permission for any conservation and education purpose. However we would be extremely happy to get a hard copy or soft copy of the document you have used it for. For further information: Friends of Nature Kathmandu, Nepal P.O. Box: 23491 Email: [email protected], Website: www.fonnepal.org Facebook: www.facebook.com/fonnepal2005 First Published: April, 2018 Photographs: Friends of Nature (FON), Jeevan Rai, Zaharil Dzulkafly, www.pixabay/ werner22brigitte Design: Roshan Bhandari Financial support: Rufford Small Grants, UK Authors: Jeevan Rai, Kaushal Yadav, Yadav Ghimirey, Som GC, Raju Acharya, Kamal Thapa, Laxman Prasad Poudyal and Nitesh Singh ISBN: 978-9937-0-4059-4 Acknowledgements: We are grateful to Zaharil Dzulkafly for his photographs of Marbled Cat, and Andrew Hamilton and Wildscreen for helping us get them. We are grateful to www.pixabay/werner22brigitte for giving us Binturong’s photograph. We thank Bidhan Adhikary, Thomas Robertson, and Humayra Mahmud for reviewing and providing their valuable suggestions. Preferred Citation: Rai, J., Yadav, K., Ghimirey, Y., GC, S., Acharya, R., Thapa, K., Poudyal, L.P., and Singh, N. 2018. Small Carnivores in Tinjure-Milke-Jaljale, Eastern Nepal. Friends of Nature, Nepal and Rufford Small Grants, UK. Small Carnivores in Tinjure-Milke-Jaljale, Eastern Nepal Why Protect Small Carnivores! Small carnivores are an integral part of our ecosystem. Except for a few charismatic species such as Red Panda, a general lack of research and conservation has created an information gap about them. I am optimistic that this booklet will, in a small way, be the starting journey of filling these gaps in our knowledge bank of small carnivore in Nepal.
    [Show full text]
  • Brown Bear (Ursus Arctos) John Schoen and Scott Gende Images by John Schoen
    Brown Bear (Ursus arctos) John Schoen and Scott Gende images by John Schoen Two hundred years ago, brown (also known as grizzly) bears were abundant and widely distributed across western North America from the Mississippi River to the Pacific and from northern Mexico to the Arctic (Trevino and Jonkel 1986). Following settlement of the west, brown bear populations south of Canada declined significantly and now occupy only a fraction of their original range, where the brown bear has been listed as threatened since 1975 (Servheen 1989, 1990). Today, Alaska remains the last stronghold in North America for this adaptable, large omnivore (Miller and Schoen 1999) (Fig 1). Brown bears are indigenous to Southeastern Alaska (Southeast), and on the northern islands they occur in some of the highest-density FIG 1. Brown bears occur throughout much of southern populations on earth (Schoen and Beier 1990, Miller et coastal Alaska where they are closely associated with salmon spawning streams. Although brown bears and grizzly bears al. 1997). are the same species, northern and interior populations are The brown bear in Southeast is highly valued by commonly called grizzlies while southern coastal populations big game hunters, bear viewers, and general wildlife are referred to as brown bears. Because of the availability of abundant, high-quality food (e.g. salmon), brown bears enthusiasts. Hiking up a fish stream on the northern are generally much larger, occur at high densities, and have islands of Admiralty, Baranof, or Chichagof during late smaller home ranges than grizzly bears. summer reveals a network of deeply rutted bear trails winding through tunnels of devil’s club (Oplopanx (Klein 1965, MacDonald and Cook 1999) (Fig 2).
    [Show full text]
  • Vulpes Vulpes) Evolved Throughout History?
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Environmental Studies Undergraduate Student Theses Environmental Studies Program 2020 TO WHAT EXTENT HAS THE RELATIONSHIP BETWEEN HUMANS AND RED FOXES (VULPES VULPES) EVOLVED THROUGHOUT HISTORY? Abigail Misfeldt University of Nebraska-Lincoln Follow this and additional works at: https://digitalcommons.unl.edu/envstudtheses Part of the Environmental Education Commons, Natural Resources and Conservation Commons, and the Sustainability Commons Disclaimer: The following thesis was produced in the Environmental Studies Program as a student senior capstone project. Misfeldt, Abigail, "TO WHAT EXTENT HAS THE RELATIONSHIP BETWEEN HUMANS AND RED FOXES (VULPES VULPES) EVOLVED THROUGHOUT HISTORY?" (2020). Environmental Studies Undergraduate Student Theses. 283. https://digitalcommons.unl.edu/envstudtheses/283 This Article is brought to you for free and open access by the Environmental Studies Program at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Environmental Studies Undergraduate Student Theses by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. TO WHAT EXTENT HAS THE RELATIONSHIP BETWEEN HUMANS AND RED FOXES (VULPES VULPES) EVOLVED THROUGHOUT HISTORY? By Abigail Misfeldt A THESIS Presented to the Faculty of The University of Nebraska-Lincoln In Partial Fulfillment of Requirements For the Degree of Bachelor of Science Major: Environmental Studies Under the Supervision of Dr. David Gosselin Lincoln, Nebraska November 2020 Abstract Red foxes are one of the few creatures able to adapt to living alongside humans as we have evolved. All humans and wildlife have some id of relationship, be it a friendly one or one of mutual hatred, or simply a neutral one. Through a systematic research review of legends, books, and journal articles, I mapped how humans and foxes have evolved together.
    [Show full text]
  • Ecology of Cougars (Puma Concolor) in North-Central Montana
    Ecology of Cougars (Puma concolor) in north-central Montana: Distribution, resource selection, dynamics, harvest, and conservation design Chippewa Cree Tribal Wildlife Program In cooperation with World Wildlife Fund Northern Great Plains Program Bozeman, Montana Final Report April 2012 Kyran Kunkel1, Tim Vosburgh2, and Hugh Robinson3 1World Wildlife Fund; presently University of Montana, Gallatin Gateway, MT; 2Chippewa Cree Tribal Wildlife Program; presently Bureau of Land Management, Lander, WY; 3University of Montana; presently Panthera, New York, NY Space for Cougar photo Photo credit: Kyran Kunkel 1 Ecology of Cougars (Puma concolor) in north-central Montana: Distribution, resource selection, dynamics, harvest, and conservation design Kyran Kunkel, Tim Vosburgh, and Hugh Robinson Chippewa Cree Tribal Wildlife Program in cooperation with World Wildlife Fund, Final Report April 2012 Citation: Kunkel, K, T. Vosburgh, and H. Robinson. 2012. Ecology of cougars (Puma concolor) in north-central Montana. Final Report to the US Fish and Wildlife Service. World Wildlife Fund Northern Great Plains Program 202 S. Black, Ste 3 Bozeman, MT 59715 P.O. Box 7276 Bozeman, Montana 59771 (406) 582-0236 To learn more, visit www.worldwildlife.org/ngp/ ©2010 WWF. All rights reserved by the World Wildlife Fund, Inc. 2 1. Introduction opportunity. Information about cougar recolonization and ecol- Increasing attention is being directed to ecological ogy of established populations will greatly enhance restoration in North American grasslands (Forrest et understanding and management of cougars in the al. 2004), particularly with respect to species that grasslands and prairie breaks of north-central Mon- have been lost or eliminated from these systems. tana. This is especially important because cougars Some species, notably wolf (Canis lupus), bear (Ursus have been little studied in this type of landscape (Wil- spp.), and cougar are expanding in Montana through liams 1992) and very little work has been conducted reintroductions and natural recolonization.
    [Show full text]
  • History and Status of the American Black Bear in Mississippi
    History and status of the American black bear in Mississippi Stephanie L. Simek1,5, Jerrold L. Belant1, Brad W. Young2, Catherine Shropshire3, and Bruce D. Leopold4 1Carnivore Ecology Laboratory, Forest and Wildlife Research Center, Mississippi State University, Box 9690, Mississippi State, MS 39762, USA 2Mississippi Department of Wildlife, Fisheries, and Parks, 1505 Eastover Drive, Jackson, MS 39211, USA 3Mississippi Wildlife Federation, 517 Cobblestone Court, Suite 2, Madison, MS 39110, USA 4Department of Wildlife, Fisheries, and Aquaculture, Mississippi State University, Box 9690, Mississippi State, MS 39762, USA Abstract: Historically abundant throughout Mississippi, American black bears (Ursus americanus) have declined due to habitat loss and overharvest. By the early 1900s, the bear population was estimated at ,12 individuals, and Mississippi closed black bear hunting in 1932. However, habitat loss continued and by 1980 suitable habitat was estimated at 20% (20,234 km2) of historic levels (101,171 km2) with the decline continuing. Although black bear abundance is currently unknown, a recent increase in occurrence reports and documented reproduction suggests the population may be increasing. There have been 21 reported nuisance complaints since 2006, of which 7 were apiary damage. Additionally, 31 bear mortalities were reported since 1972; 80% were human caused. Government and private organizations have emphasized education on bear ecology and human–bear coexistence, while habitat restoration through land retirement programs (e.g.,
    [Show full text]
  • Ecology of the European Badger (Meles Meles) in the Western Carpathian Mountains: a Review
    Wildl. Biol. Pract., 2016 Aug 12(3): 36-50 doi:10.2461/wbp.2016.eb.4 REVIEW Ecology of the European Badger (Meles meles) in the Western Carpathian Mountains: A Review R.W. Mysłajek1,*, S. Nowak2, A. Rożen3, K. Kurek2, M. Figura2 & B. Jędrzejewska4 1 Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawińskiego 5a, 02-106 Warszawa, Poland. 2 Association for Nature “Wolf”, Twardorzeczka 229, 34-324 Lipowa, Poland. 3 Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland. 4 Mammal Research Institute, Polish Academy of Sciences, Waszkiewicza 1c, 17-230 Białowieża, Poland. * Corresponding author email: [email protected]. Keywords Abstract Altitudinal Gradient; This article summarizes the results of studies on the ecology of the European Diet Composition; badger (Meles meles) conducted in the Western Carpathians (S Poland) Meles meles; from 2002 to 2010. Badgers inhabiting the Carpathians use excavated setts Mustelidae; (53%), caves and rock crevices (43%), and burrows under human-made Sett Utilization; constructions (4%) as permanent shelters. Excavated setts are located up Spatial Organization. to 640 m a.s.l., but shelters in caves and crevices can be found as high as 1,050 m a.s.l. Badger setts are mostly located on slopes with southern, eastern or western exposure. Within their territories, ranging from 3.35 to 8.45 km2 (MCP100%), badgers may possess 1-12 setts. Family groups are small (mean = 2.3 badgers), population density is low (2.2 badgers/10 km2), as is reproduction (0.57 young/year/10 km2). Hunting by humans is the main mortality factor (0.37 badger/year/10 km2).
    [Show full text]
  • VIRGINIA BLACK BEAR What Kind of Bears Are in Virginia? 101
    VIRGINIA BLACK BEAR What Kind of Bears Are In Virginia? 101 Jaime Sajecki Bear Project Leader ………Black Bears! What Kind of Bears Are In What Kind of Bears Are In Virginia? Virginia? Brown and Blond Phase Black Bear Cubs Brown Bear What Kind of Bears Are In What Kind of Bears Are In Virginia? Virginia? Only 58% of Virginians correctly named black bears as the only species of bear living in Virginia. Brown Bear Brown Bear 1 Weight Males (boars) Females (sows) adult weight adult weight LIFE HISTORY 200-500 100-250 OF BLACK pounds pounds BEARS Large, Non-retractable Claws Senses Nearsighted Keen sense of smell/hearing Bears can see in color: This helps them find insects and small Climbing trees colorful berries while foraging. Digging up insects Bears stand on their hind legs to get a better view and to smell and “taste” the air Defense Behaviors Movements SPRING/SUMMER Solitary most of the time. • Bears leave dens in search of food - Food is limited Active at dawn and dusk • Female bears : Travel with cubs • Male bears: Mostly solitary Omnivorous and opportunistic • Yearlings may be with siblings • Yearlings left to fend for themselves when female ready to mate again 2 Movements What Bears Eat FALL • ~75% of the bear’s diet consists of vegetative FOOD! FOOD! FOOD! matter; berries, nuts, grasses, and fruits Bears can forage up to 20 hours a day in preparation for denning • ~25% consists of insects, larvae, carrion, small animals, and fish. Although they are not particularly good hunters, they have been known to prey on small to medium- sized mammals such as rodents and deer fawns.
    [Show full text]
  • Pnnvobm 4Jho 1Ptu Pg 4Opx -Fpqbset 3Dqwkhud Xqfld Boe 0Uifs 4Qfdjft Po Uif 5Jcfubo 1Mbufbv $Ijob
    )JOEBXJ 1VCMJTIJOH $PSQPSBUJPO *OUFSOBUJPOBM +PVSOBM PG #JPEJWFSTJUZ 7PMVNF "SUJDMF *% QBHFT IUUQEYEPJPSH 3FTFBSDI "SUJDMF " $PNNVOBM 4JHO 1PTU PG 4OPX -FPQBSET 3DQWKHUD XQFLD BOE 0UIFS 4QFDJFT PO UIF 5JCFUBO 1MBUFBV $IJOB +VBO -J (FPSHF # 4DIBMMFS 5IPNBT . .D$BSUIZ %BKVO 8BOH ;IBMB +JBHPOH 1JOH $BJ -BNBP #BTBOH BOE ;IJ -V $FOUFS GPS /BUVSF BOE 4PDJFUZ $PMMFHF PG -JGF 4DJFODFT 1FLJOH 6OJWFSTJUZ #FJKJOH $IJOB 1BOUIFSBBOE8JMEMJGF$POTFSWBUJPO4PDJFUZ 8FTUUI4USFFU UI'MPPS /FX :PSL /: 64" 4OPX -FPQBSE 1SPHSBN 1BOUIFSB 8FTU UI 4USFFU UI 'MPPS /FX :PSL /: 64" 4IBO 4IVJ $POTFSWBUJPO $FOUFS #FJKJOH $IJOB 8JMEMJGF $POTFSWBUJPO BOE .BOBHFNFOU #VSFBV 2JOHIBJ 'PSFTUSZ %FQBSUNFOU 9JOJOH 2JOHIBJ $IJOB 4BOKJBOHZVBO /BUJPOBM /BUVSF 3FTFSWF 2JOHIBJ 'PSFTUSZ %FQBSUNFOU 9JOJOH 2JOHIBJ $IJOB $PSSFTQPOEFODF TIPVME CF BEESFTTFE UP +VBO -J MJKVBO!HNBJMDPN 3FDFJWFE 4FQUFNCFS "DDFQUFE /PWFNCFS "DBEFNJD &EJUPS 3BGBFM 3JPTNFOB3PESÓHVF[ $PQZSJHIU ª +VBO -J FU BM ćJT JT BO PQFO BDDFTT BSUJDMF EJTUSJCVUFE VOEFS UIF $SFBUJWF $PNNPOT "UUSJCVUJPO -JDFOTF XIJDI QFSNJUT VOSFTUSJDUFE VTF EJTUSJCVUJPO BOE SFQSPEVDUJPO JO BOZ NFEJVN QSPWJEFE UIF PSJHJOBM XPSL JT QSPQFSMZ DJUFE ćF TOPX MFPQBSE JT B LFZTUPOF TQFDJFT JO NPVOUBJO FDPTZTUFNT PG $FOUSBM "TJB BOE UIF 5JCFUBO 1MBUFBV )PXFWFS MJUUMF JT LOPXO BCPVU UIF JOUFSBDUJPOT CFUXFFO TOPX MFPQBSET BOE TZNQBUSJD DBSOJWPSFT 6TJOH JOGSBSFE DBNFSBT XF GPVOE B SPDLZ KVODUJPO PG UXP WBMMFZT JO 4BOKJBOHZVBO BSFB PO UIF 5JCFUBO 1MBUFBV XIFSF NBOZ NBNNBMT JO UIJT BSFB QBTTFE BOE GSFRVFOUMZ NBSLFE BOE TOJČFE UIFTJUFBUUIFKVODUJPO8FTVHHFTUUIBUUIJTTJUFTFSWFTBTBTJHOQPTUUPNBOZ
    [Show full text]
  • Periodic Status Review for the Steller Sea Lion
    STATE OF WASHINGTON January 2015 Periodic Status Review for the Steller Sea Lion Gary J. Wiles The Washington Department of Fish and Wildlife maintains a list of endangered, threatened, and sensitive species (Washington Administrative Codes 232-12-014 and 232-12-011, Appendix E). In 1990, the Washington Wildlife Commission adopted listing procedures developed by a group of citizens, interest groups, and state and federal agencies (Washington Administrative Code 232-12-297, Appendix A). The procedures include how species listings will be initiated, criteria for listing and delisting, a requirement for public review, the development of recovery or management plans, and the periodic review of listed species. The Washington Department of Fish and Wildlife is directed to conduct reviews of each endangered, threatened, or sensitive wildlife species at least every five years after the date of its listing. The reviews are designed to include an update of the species status report to determine whether the status of the species warrants its current listing status or deserves reclassification. The agency notifies the general public and specific parties who have expressed their interest to the Department of the periodic status review at least one year prior to the five-year period so that they may submit new scientific data to be included in the review. The agency notifies the public of its recommendation at least 30 days prior to presenting the findings to the Fish and Wildlife Commission. In addition, if the agency determines that new information suggests that the classification of a species should be changed from its present state, the agency prepares documents to determine the environmental consequences of adopting the recommendations pursuant to requirements of the State Environmental Policy Act.
    [Show full text]