Genomics, Proteomics and Secondary Metabolites Biosynthesis Research on Streptomyces Asterosporus DSM 41452

Total Page:16

File Type:pdf, Size:1020Kb

Genomics, Proteomics and Secondary Metabolites Biosynthesis Research on Streptomyces Asterosporus DSM 41452 - 1 - Genomics, Proteomics and Secondary Metabolites Biosynthesis Research on Streptomyces asterosporus DSM 41452 Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Albert-Ludwigs-Universität Freiburg im Breisgau Vorgelegt von Songya Zhang Aus Zhengzhou, China 2018 - 2 - Dekan: Prof. Dr. Manfred Jung Vorsitzender des Promotionsausschusses: Prof. Dr. Stefan Weber Referent: Prof. Dr. Andreas Bechthold Korreferent: Prof. Dr. Irmgard Merfort Drittprüfer: Prof. Dr. Oliver Einsle Datum der Promotion: 20.04.2018 - 3 - Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und nur unter Verwendung der angegebenen Literatur und Hilfsmittel angefertigt sowie Zitate kenntlich gemacht habe. - 4 - Acknowledgements I would like to take this opportunity to express my appreciation to my supervisor, Prof. Dr. Andreas Bechthold, for his support, encouragement and guidance throughout my study in this outstanding research environment at the Fakultät für Chemie und Pharmazie in Freiburg University. His enthusiasm and attitude towards science and research will definitely affect my life. I am particularly thankful to my co-advisor Prof. Dr. Irmgard Merfort for kindly reviewing this thesis, her generous help during my study, for being the supervisor of my doctoral committee. I desire to convey my earnest appreciation to Prof. Dr. Oliver Einsle for being the member of my doctoral committee. In addition, I feel grateful to Dr. Lin Zhang for his help to determine protein structure and professional advice on my research project. I would also wish to thank Prof. Dr. Stefan Günther for reviewing the manuscript. I also want to express my greatest thanks to Dennis Klementz for his reliable help in terms of bioinformatics analysis and for helping revise my manuscript. My deep gratitude as well goes to Prof. Dr. David Zechel for his discussion about my research project, review my paper in earnest. His attitude toward academic research really motivates me a lot. I desire to thank Dr. Claudia Jessen-Trefzer for her kind help about my project and her helpful discussions, and for her amendment to the manuscript. Also, I am grateful to Dr. Thomas Pauluat for the NMR data analysis and his professional suggestion on the manuscript. I am really grateful to Dr. Max Cryle from Monash University for his kindly providing substrate and earnest guidance on the P450 project. In addition, I want to thank Dr. Greule Anja for her suggestion and effort to solve this interesting scientific question. I also want to express my greatest gratitude to Dr. Verónica I. Dumit and Dr. Mingjian Wang from Center for Biological Systems Analysis in Freiburg University for their assistance, professional suggestion and guidance on proteomics analysis. I want to thank Prof. Dr. Jun Yin from Georgia State University, Dr. Stephen G. Bell from University of Adelaide, Mr. Gunter Stier from Heidelberg University for their kindness of providing plasmids. - 5 - I am appreciated Prof. Dr. Xin-zhuan Su and Dr. Richard Eastman from National Center for Advancing Translational Sciences/NIH for helping compound activity test and manuscript review. I would like to thank all my colleagues who helped me throughout my PhD study. I would like to thank Dr. Gabriele Weitnauer for her kind help and unselfish assistance in many ways. I would like to express my warmest gratitude to Marcus Essing, Sandra Groß, Elizabeth Welle and Frau Weber for their contribution to the lab. Especially, I like to thank Marcus Essing for strong technician support for maintaining equipment running in the lab. My gratitude also goes to Sandra Groß for tireless help in the lab, and for reviewing my thesis. I also want to thank Elizabeth Welle for strong technician assistance on the LCMS, HPLC system in the lab. I want to thank Sandra Cabrera, Dr. Susanne Elfert, Tanja Herbstritt and Judy Wang for their kind help. I would like to thank Dr. Roman Makitrynskyy for his kind help during my study. In the meanwhile, I would like to thank all my current and previous colleagues working in the lab of AG Bechthold for their selfless help and for sharing me various kinds of perspectives and outlook to the life, world. I wish all of them have a wealthier and more successful future. Last but not the least I would like to show my gratitude to my family for their backing, especially my loving wife: Jing Zhu, for her unconditional support and passion. I owe all the success of my PhD study to my family. - 6 - Wissenschaftliche Publikationen und Akademische Aktivitäten Wissenschaftliche Publikationen I. Songya Zhang, Andreas Bechthold. Iteratively Acting Glycosyltransferases, 2nd edition of Handbook of Carbohydrate-Modifying Biocatalysts, 2016, Pages 321-348, Pan Stanford Publishing. II. Songya Zhang, Jing Zhu, Tao Liu, Suzan Samra, Huaqi Pan, Jiao Bai, Huiming Hua, Andreas Bechthold, a Novel Glycosylated Polyketide from the Terrestrial Fungus Myrothecium sp. GS-17. Helvetica Chimica Acta, 2016, 99 (3), 215-219. III. Songya Zhang, Jing Zhu, David Zechel, Claudia Jessen-Trefzer, Richard T. Eastman, Thomas Paululat, Andreas Bechthold. Novel WS9326A derivatives and one novel Annimycin derivative with antimalarial activity are produced by S. asterosporus DSM 41452 and its mutant, ChemBioChem, 2017, 19(3), 272-279. IV. Arne Gessner, Tanja Heitzler, Songya Zhang (cofirst), Christine Klaus, Renato Murillo, Hanna Zhao, Stephanie Vanner, David L. Zechel, Andreas Bechthold. Changing Biosynthetic Profiles by Expressing bldA in Streptomyces Strains. ChemBioChem, 2015, 16(15):2244-2252. V. Greule Anja, Songya Zhang, Thomas Paululat, Andreas Bechthold. From a Natural Product to Its Biosynthetic Gene Cluster: A Demonstration Using Polyketomycin from Streptomyces diastatochromogenes Tü6028. Journal of visualized experiments: JoVE, 2017, (119): 54952. VI. Anja Greule, Marija Marolt, Denise Deubel, Iris Peintner, Songya Zhang, Claudia Jessen- Trefzer, Christian De Ford, Sabrina Burschel, Shu-Ming Li, Thorsten Friedrich, Irmgard Merfort, Steffen Lüdeke, Philippe Bisel, Michael Müller, Thomas Paululat, Andreas Bechthold. Wide distribution of foxicin biosynthetic gene clusters in Streptomyces strains-an unusual secondary metabolite with various properties. Frontiers in microbiology, 2017, 8:221. VII. Songya Zhang, Dennis Klementz, Jing Zhu, Stefan Günther, Andreas Bechthold. The complete genome sequence of S. asterosporus DSM 41452, a high producer of the - 7 - neurokinin A antagonist WS9326As. Journal of Biotechnology (under review). VIII. Arslan Sarwar, Zakia Latif, Songya Zhang, Andreas Bechthold, Biological control of potato common scab with rare Isatropolone C compound produced by Streptomyces sp. A1RT, Frontiers in microbiology (under review). IX. Songya Zhang, Mingjian Wang, Dennis Klementz, Jing Zhu, Verónica I. Dumit, Andreas Bechthold. Comparative Proteomic Analysis of S. asterosporus DSM 41452 reveals the AdpA regulon in a native non-sporulating Streptomyces species by SILAC. Applied microbiology and Biotechnology (in preparation). X. Songya Zhang, Lin Zhang, Anja Greule, Jing Zhu, Oliver Einsle, Max Cryle, Andreas Bechthold, Structural Characterization of Cytochrome P450WS9326A, mediates the formation of the olefinic bond to generate the dehydrotyrosine formation in WS9326A Biosynthesis, ACS chemical biology (in preparation). Poster Präsentation I. Songya Zhang, Lin Zhang, Anja Greule, Jing Zhu, Max Cryle, Oliver Einsle, Andreas Bechthold. Structural Characterization of Cytochrome P450 Sas16, mediates the formation of the olefinic bond to generate the dehydrotyrosine formation in WS9326As Biosynthesis. RTG 1976 Symposium 2017: Unique Cofactor-dependent Enzymes in Microbes, 10/2017, Freiburg, Germany II. Songya Zhang, Dennis Klementz, Mingjian Wang, Jing Zhu, Stefan Günther, Verónica I. Dumit, Andreas Bechthold. Complete genome sequencing and comparative Proteomic Analysis of S. asterosporus DSM 41452 reveals the AdpA regulon in a native non- sporulating Streptomyces species. International VAAM-Workshop 2017: Biology of Bacteria Producing Natural Products, 09/2017, Tübingen, Germany. III. Songya Zhang, Jing Zhu, Andreas Bechthold. WS9326A Derivatives from S. asterosporus DSM 41152: Chemical Structure and Biosynthesis. International VAAM-Workshop 2016: Biology of Bacteria Producing Natural Products, 09/2016, Freiburg, Germany IV. Songya Zhang, Jing Zhu, Roman Makitrynskyy, Olga Tsypik, Andreas Bechthold. Connecting Chemotype, Phenotype and Genotype, revealing the Gene Regulatory Mechanism of Morphological Development and Secondray Metabolism in S. asterosporus - 8 - DSM 41452.Tag der Forschung der Universität Freiburg 2016, 07/2016, Freiburg, Germany V. Songya Zhang, Jing Zhu, Tao Liu, Suzan Samra, Huiming Hua, Andreas Bechthold. Exploiting and Elucidation of a new Glycosylated Polyketide from Fungus Myrothecium sp., 2016 VAAM Annual Conference, 03/2016, Jena, Germany VI. Jing Zhu, Songya Zhang, Andreas Bechthold. Revealing the Hidden “domain skipping” Biosynthetic Mechanism in the Annimycin Polyketide Synthase from S. asterosporus DSMZ 41452. VAAM workshop, 09/2016, Freiburg, Germany VII. Jing Zhu, Xiaohui Yan, Anja Greule, Songya Zhang, Andreas Bechthold. Exploring the Biosynthetic Capability of Ganefromycin by Direct Cloning and Heterologous Expression, Annual Conference 2016 of the Association for General and Applied Microbiology (VAAM), 03/2016, Jena, Germany VIII. Anja Greule, Songya Zhang, Andreas Bechthold. Foxicins: Ortho-Quinone Derivates produced by Polyketomycin Producer Streptomyces diastatochromogenes
Recommended publications
  • Structure-Based Virtual Screening of Hypothetical Inhibitors of the Enzyme Longiborneol Synthase—A Potential Target to Reduce Fusarium Head Blight Disease
    J Mol Model (2016) 22: 163 DOI 10.1007/s00894-016-3021-1 ORIGINAL PAPER Structure-based virtual screening of hypothetical inhibitors of the enzyme longiborneol synthase—a potential target to reduce Fusarium head blight disease E. Bresso1 & V. L ero ux 2 & M. Urban3 & K. E. Hammond-Kosack3 & B. Maigret2 & N. F. Martins1 Received: 17 December 2015 /Accepted: 27 May 2016 /Published online: 21 June 2016 # Springer-Verlag Berlin Heidelberg 2016 Abstract Fusarium head blight (FHB) is one of the most compounds from a library of 15,000 drug-like compounds. destructive diseases of wheat and other cereals worldwide. These putative inhibitors of longiborneol synthase provide a During infection, the Fusarium fungi produce mycotoxins that sound starting point for further studies involving molecular represent a high risk to human and animal health. Developing modeling coupled to biochemical experiments. This process small-molecule inhibitors to specifically reduce mycotoxin could eventually lead to the development of novel approaches levels would be highly beneficial since current treatments to reduce mycotoxin contamination in harvested grain. unspecifically target the Fusarium pathogen. Culmorin pos- sesses a well-known important synergistically virulence role Keywords Fusarium mycotoxins . Culmorin . Inhibitors . among mycotoxins, and longiborneol synthase appears to be a Homology modeling . Molecular dynamics . Ensemble key enzyme for its synthesis, thus making longiborneol syn- docking thase a particularly interesting target. This study aims to dis- cover potent and less toxic agrochemicals against FHB. These compounds would hamper culmorin synthesis by inhibiting Introduction longiborneol synthase. In order to select starting molecules for further investigation, we have conducted a structure- Fusarium head blight (FHB), caused by Fusarium based virtual screening investigation.
    [Show full text]
  • Characterization of a Cytochrome P450 Monooxygenase Gene Involved in the Biosynthesis of Geosmin in Penicillium Expansum
    Open Archive TOULOUSE Archive Ouverte (OATAO) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ Eprints ID : 10812 To link to this article : DOI : 10.5897/AJMR11.1361 URL : http://academicjournals.org/journal/AJMR/article- abstract/841ECBA21771 To cite this version : Siddique, Muhammad Hussnain and Liboz, Thierry and Bacha, Nafees and Puel, Olivier and Mathieu, Florence and Lebrihi, Ahmed Characterization of a cytochrome P450 monooxygenase gene involved in the biosynthesis of geosmin in Penicillium expansum. (2012) African Journal of Microbiology Research, vol. 6 (n° 19). pp. 4122-4127. ISSN 1996-0808 Any correspondance concerning this service should be sent to the repository administrator: [email protected] Characterization of a cytochrome P450 monooxygenase gene involved in the biosynthesis of geosmin in Penicillium expansum Muhammad Hussnain Siddique1,2, Thierry Liboz1,2, Nafees Bacha3, Olivier Puel4, Florence Mathieu1,2 and Ahmed Lebrihi1,2,5* 1Université de Toulouse, INPT-UPS, Laboratoire de Génie Chimique, avenue de l’Agrobiopole, 31326 Castanet-Tolosan Cedex, France. 2Le Centre national de la recherche scientifique (CNRS), Laboratoire de Génie Chimique, 31030 Toulouse, France. 3Centre of Biotechnology and Microbiology, University of Peshawar, Pakistan. 4Institut National de la Recherche Agronomique (INRA), Laboratoire de Pharmacologie Toxicologie, 31931 Toulouse, France. 5Université Moulay Ismail, Marjane 2, BP 298, Meknes, Morocco. Geosmin is a terpenoid, an earthy-smelling substance associated with off-flavors in water and wine. The biosynthesis of geosmin is well characterized in bacteria, but little is known about its production in eukaryotes, especially in filamentous fungi.
    [Show full text]
  • Study of Actinobacteria and Their Secondary Metabolites from Various Habitats in Indonesia and Deep-Sea of the North Atlantic Ocean
    Study of Actinobacteria and their Secondary Metabolites from Various Habitats in Indonesia and Deep-Sea of the North Atlantic Ocean Von der Fakultät für Lebenswissenschaften der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte D i s s e r t a t i o n von Chandra Risdian aus Jakarta / Indonesien 1. Referent: Professor Dr. Michael Steinert 2. Referent: Privatdozent Dr. Joachim M. Wink eingereicht am: 18.12.2019 mündliche Prüfung (Disputation) am: 04.03.2020 Druckjahr 2020 ii Vorveröffentlichungen der Dissertation Teilergebnisse aus dieser Arbeit wurden mit Genehmigung der Fakultät für Lebenswissenschaften, vertreten durch den Mentor der Arbeit, in folgenden Beiträgen vorab veröffentlicht: Publikationen Risdian C, Primahana G, Mozef T, Dewi RT, Ratnakomala S, Lisdiyanti P, and Wink J. Screening of antimicrobial producing Actinobacteria from Enggano Island, Indonesia. AIP Conf Proc 2024(1):020039 (2018). Risdian C, Mozef T, and Wink J. Biosynthesis of polyketides in Streptomyces. Microorganisms 7(5):124 (2019) Posterbeiträge Risdian C, Mozef T, Dewi RT, Primahana G, Lisdiyanti P, Ratnakomala S, Sudarman E, Steinert M, and Wink J. Isolation, characterization, and screening of antibiotic producing Streptomyces spp. collected from soil of Enggano Island, Indonesia. The 7th HIPS Symposium, Saarbrücken, Germany (2017). Risdian C, Ratnakomala S, Lisdiyanti P, Mozef T, and Wink J. Multilocus sequence analysis of Streptomyces sp. SHP 1-2 and related species for phylogenetic and taxonomic studies. The HIPS Symposium, Saarbrücken, Germany (2019). iii Acknowledgements Acknowledgements First and foremost I would like to express my deep gratitude to my mentor PD Dr.
    [Show full text]
  • Generated by SRI International Pathway Tools Version 25.0, Authors S
    Authors: Pallavi Subhraveti Ron Caspi Quang Ong Peter D Karp An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Ingrid Keseler Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Gcf_000725805Cyc: Streptomyces xanthophaeus Cellular Overview Connections between pathways are omitted for legibility.
    [Show full text]
  • Production of Plant-Associated Volatiles by Select Model and Industrially Important Streptomyces Spp
    microorganisms Article Production of Plant-Associated Volatiles by Select Model and Industrially Important Streptomyces spp. 1, 2, 3 1 Zhenlong Cheng y, Sean McCann y, Nicoletta Faraone , Jody-Ann Clarke , E. Abbie Hudson 2, Kevin Cloonan 2, N. Kirk Hillier 2,* and Kapil Tahlan 1,* 1 Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada; [email protected] (Z.C.); [email protected] (J.-A.C.) 2 Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada; [email protected] (S.M.); [email protected] (E.A.H.); [email protected] (K.C.) 3 Department of Chemistry, Acadia University, Wolfville, NS B4P 2R6, Canada; [email protected] * Correspondence: [email protected] (N.K.H.); [email protected] (K.T.) These authors contributed equally. y Received: 13 October 2020; Accepted: 9 November 2020; Published: 11 November 2020 Abstract: The Streptomyces produce a great diversity of specialized metabolites, including highly volatile compounds with potential biological activities. Volatile organic compounds (VOCs) produced by nine Streptomyces spp., some of which are of industrial importance, were collected and identified using gas chromatography–mass spectrometry (GC-MS). Biosynthetic gene clusters (BGCs) present in the genomes of the respective Streptomyces spp. were also predicted to match them with the VOCs detected. Overall, 33 specific VOCs were identified, of which the production of 16 has not been previously reported in the Streptomyces. Among chemical classes, the most abundant VOCs were terpenes, which is consistent with predicted biosynthetic capabilities. In addition, 27 of the identified VOCs were plant-associated, demonstrating that some Streptomyces spp.
    [Show full text]
  • Discovery of Cryptic Compounds from Streptomyces Lavendulae FRI-5 Using an Engineered Microbial Host (異種発現系の活用による放線菌休眠化合物の覚醒と同定)
    Discovery of cryptic compounds from Streptomyces Title lavendulae FRI-5 using an engineered microbial host Author(s) Pait, Ivy Grace Citation Issue Date Text Version ETD URL https://doi.org/10.18910/69537 DOI 10.18910/69537 rights Note Osaka University Knowledge Archive : OUKA https://ir.library.osaka-u.ac.jp/ Osaka University Doctoral Dissertation Discovery of cryptic compounds from Streptomyces lavendulae FRI-5 using an engineered microbial host (異種発現系の活用による放線菌休眠化合物の覚醒と同定) Ivy Grace Umadhay Pait January 2018 Division of Advanced Science and Biotechnology Graduate School of Engineering, Osaka University Contents Chapter 1 General Introduction 1.1 The role of microbial natural products in drug discovery 1 1.2 Bioactivities and biosynthesis of polyketides and nonribosomal peptides 3 1.2.1 The assembly-line enzymology of polyketides 3 1.2.2 The biosynthetic logic of nonribosomal peptide compounds 7 1.3 Streptomyces, the proven resource for therapeutics 9 1.3.1 Life cycle of Streptomyces 10 1.3.2 Regulation of secondary metabolite production in Streptomyces 11 1.4 Genome mining and reviving interest in microbial secondary metabolites 14 1.4.1 Decline in natural product research 14 1.4.2 Bacterial genome mining for new natural products 16 1.4.3 Streptomyces genome as the richest bacterial resource for cryptic BGCs 17 1.4.4 Approaches for triggering the production of cryptic metabolites 19 1.4.4.1 Altering chemical and physical conditions 19 1.4.4.2 Genetic modification/Molecular approaches 21 1.5 Heterologous expression in a genome-minimized
    [Show full text]
  • Physarum Polycephalum) by SPME
    Analysis of the volatiles in the headspace above the plasmodium and sporangia of the slime mould (Physarum polycephalum) by SPME- GCMS Huda al Kateb1 and Ben de Lacy Costello1 1Institute for biosensing technology, University of the West of England, Bristol, BS161QY, UK E-mail: [email protected] Abstract Solid phase micro-extraction (SPME) coupled with Gas Chromatography Mass Spectrometry (GC-MS) was used to extract and analyse the volatiles in the headspace above the plasmodial and sporulating stages of the slime mould Physarum Polycephalum. In total 115 compounds were identified from across a broad range of chemical classes. Although more (87) volatile organic compounds (VOCs) were identified when using a higher incubation temperature of 75oC, a large number of compounds (79) were still identified at the lower extraction temperature of 30oC and where the plasmodial stage was living. Far fewer compounds were extracted after sporulation at the two extraction temperatures. There were some marked differences between the VOCs identified in the plasmodial stage and after sporulation. In particular the nitrogen containing compounds acetonitrile, pyrrole, 2, 5-dimethyl-pyrazine and trimethyl pyrazine seemed to be associated with the sporulating stage. There were many compounds associated predominantly with the plasmodial stage including a number of furans and alkanes. Interestingly, a number of known fungal metabolites were identified including 1-octen-3- ol, 3-octanone, 1-octen-3-one, 3-octanol. In addition known metabolites of cyanobacteria and actinobacteria in particular geosmin was identified in the headspace. Volatile metabolites that had previously been identified as having a positive chemotactic response to the plasmodial stage of P.
    [Show full text]
  • Genomic and Phylogenomic Insights Into the Family Streptomycetaceae Lead to Proposal of Charcoactinosporaceae Fam. Nov. and 8 No
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.08.193797; this version posted July 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Genomic and phylogenomic insights into the family Streptomycetaceae 2 lead to proposal of Charcoactinosporaceae fam. nov. and 8 novel genera 3 with emended descriptions of Streptomyces calvus 4 Munusamy Madhaiyan1, †, * Venkatakrishnan Sivaraj Saravanan2, † Wah-Seng See-Too3, † 5 1Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 6 Singapore 117604; 2Department of Microbiology, Indira Gandhi College of Arts and Science, 7 Kathirkamam 605009, Pondicherry, India; 3Division of Genetics and Molecular Biology, 8 Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, 9 Malaysia 10 *Corresponding author: Temasek Life Sciences Laboratory, 1 Research Link, National 11 University of Singapore, Singapore 117604; E-mail: [email protected] 12 †All these authors have contributed equally to this work 13 Abstract 14 Streptomycetaceae is one of the oldest families within phylum Actinobacteria and it is large and 15 diverse in terms of number of described taxa. The members of the family are known for their 16 ability to produce medically important secondary metabolites and antibiotics. In this study, 17 strains showing low 16S rRNA gene similarity (<97.3 %) with other members of 18 Streptomycetaceae were identified and subjected to phylogenomic analysis using 33 orthologous 19 gene clusters (OGC) for accurate taxonomic reassignment resulted in identification of eight 20 distinct and deeply branching clades, further average amino acid identity (AAI) analysis showed 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.08.193797; this version posted July 8, 2020.
    [Show full text]
  • Generate Metabolic Map Poster
    Authors: Pallavi Subhraveti Ron Caspi Quang Ong Peter D Karp An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Ingrid Keseler Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Gcf_900114035Cyc: Amycolatopsis sacchari DSM 44468 Cellular Overview Connections between pathways are omitted for legibility.
    [Show full text]
  • Generated by SRI International Pathway Tools Version 25.0, Authors S
    Authors: Pallavi Subhraveti Ron Caspi Quang Ong Peter D Karp An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Ingrid Keseler Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Gcf_000367365Cyc: Streptomyces prunicolor NBRC 13075 Cellular Overview Connections between pathways are omitted for legibility.
    [Show full text]
  • Computational Analysis and Manipulation of the Metabolic Network of Drug Producing Microorganisms
    Computational analysis and manipulation of the metabolic network of drug producing microorganisms INAUGURALDISSERTATION zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Albert-Ludwigs-Universität Freiburg im Breisgau Vorgelegt von Dennis Klementz aus Wiesbaden-Dotzheim Freiburg 2017 Dekan: Prof. Dr. Manfred Jung Vorsitzender des Promotionsausschusses: Prof. Dr. Stefan Weber Referent: Prof. Dr. Stefan Günther Korreferent: Prof. Dr. Andreas Bechthold Drittprüfer: Prof. Dr. Oliver Einsle Datum der Promotion: 26.02.2018 “What we observe is not nature itself, but nature exposed to our method of questioning.” Werner Heisenberg Index Index 1 Abstract ......................................................................................................................... 1 2 Introduction ................................................................................................................... 3 2.1 Streptomycetes, an important source of natural drugs .................................................... 3 2.2 Nucleocidin production in Streptomyces calvus ............................................................... 6 2.3 Griseorhodin A, a telomerase inhibitor from a marine Streptomyces strain .................... 9 2.4 Genome-scale metabolic modeling and Flux Balance Analysis ....................................... 11 2.5 ‘Omics’ data and genome-scale metabolic models ......................................................... 14 2.6 Enhanced secondary metabolite production and genome-scale metabolic models .....
    [Show full text]
  • Biokatalytische Diversität Der Terpenbildung in Pflanzen Und Bakterien”
    Biokatalytische Diversität der Terpenbildung in Pflanzen und Bakterien Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften der Fakultät für Chemie und Biochemie an der Graduate School for Chemistry and Biochemistry der Ruhr-Universität Bochum angefertigt in der Nachwuchsgruppe für Mikrobielle Biotechnologie vorgelegt von Octavia Natascha Kracht aus Unna Bochum Juli 2017 Erstgutachter: Prof. Dr. Robert Kourist Zweitgutachter: Jun.-Prof. Dr. Simon Ebbinghaus Diese Arbeit wurde in der Zeit von Mai 2014 bis Juli 2017 unter der Leitung von Jun.- Prof. Dr. Robert Kourist in der Nachwuchsgruppe für Mikrobielle Biotechnologie an der Ruhr-Universität Bochum durchgeführt. 2 Danksagung An dieser Stelle möchte ich mich bei den Personen bedanken, die mich während der Anfertigung dieser Arbeit immer unterstützt und damit einen Großteil zum Gelingen dieses Projektes beigetragen haben. Mein größter Dank gilt meinem Doktorvater Prof. Dr. Robert Kourist für die interessante Themenstellung und die Möglichkeit der Anfertigung dieser Dissertation in seiner Arbeitsgruppe. Vielen Dank für das Vertrauen, dass du mir entgegengebracht hast und deine sowohl fachliche als auch persönliche Unterstützung während meiner gesamten Promotion. Auch auf langen Durststrecken hast du immer an unser Projekt geglaubt und mich stets motiviert. Vielen Dank für deine ständige Gesprächsbereitschaft, die konstruktiven Beiträge und vor allem die Ermöglichung meines Auslandsaufenthaltes in Kanada. Ich werde meine Zeit in deiner Gruppe immer in guter Erinnerung behalten. Ich möchte mich außerdem ganz herzlich bei Jun.-Prof. Dr. Simon Ebbinghaus für die freundliche Übernahme des Koreferates bedanken. Einen ganz großen Dank möchte ich unseren Gärtnern Andreas Aufermann und Martin Pullack (LS Pflanzenphysiologie, RUB) ausprechen. Ohne euch wäre die Anfertigung dieser Arbeit gar nicht erst möglich gewesen! Egal ob Weiße Fliege, Läuse oder Behandlung mit Methanol, ihr habt nie aufgegeben und euch immer etwas Neues einfallen lassen, um unsere Pflanzen zu erhalten.
    [Show full text]