Molecular Characterization, Differential Movement and Construction of Infectious Cdna Clones of an Ohio Isolate of Hosta Virus X

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Characterization, Differential Movement and Construction of Infectious Cdna Clones of an Ohio Isolate of Hosta Virus X Molecular characterization, differential movement and construction of infectious cDNA clones of an Ohio isolate of Hosta virus X Thesis Presented in Partial Fulfillment of the Requirements for The Degree Master of Science in the Graduate School of The Ohio State University By Carola De La Torre Cuba, BSc. The Ohio State University 2009 Thesis Committee: Dr. Dennis Lewandowski, Advisor Dr. Pierluigi Bonello Dr. Margaret G. Redinbaugh Copyright by Carola De La Torre 2009 Abstract Hostas (Hosta Tratt.) are the second most popular herbaceous perennial plant in the USA with sales exceeding $32 million in 2008 (USDA Floriculture crops 2008 Summary, 2009). Despite its relatively recent discovery in 1996, Hosta virus X (HVX) has already had a significant economic impact on hosta growers and producers. HVX is easily mechanically transmitted and can survive in the infected plants for years without showing symptoms. HVX has been reported in many states including Ohio. Very little is known about HVX biology with respect to diversity, symptom determinants and mechanisms of host resistance. The objectives of this research were to 1) Screen for resistance against HVX in a number of hosta cultivars, 2) Examine coat protein (CP) variability among Ohio isolates, 3) Molecular characterize an Ohio HVX isolate and 4) Construct an infectious cDNA clone of HVX. An Ohio HVX isolate, HVX-37, was selected for resistance screening, construction of an infectious cDNA clone and phylogenetic comparisons. Local and long-distance movement and accumulation of HVX-37 were determined for twenty-four hosta cultivars over three growing seasons resulting in five types of responses. Four cultivars (H. sieboldiana ‘Elegans’, H. sieboldiana ‘Northern Exposure’, H. ‘Nightlife’ and H. ‘Olive Bailey Langdon’) exhibited only infection of inoculated leaves. These cultivars are possible sources of resistance for future breeding programs for resistance to HVX. The CP gene of ten Ohio ii HVX isolates were found to be highly similar to all HVX isolates available in GenBank. Molecular characterization of HVX-37 showed a typical potexvirus genome organization but with some intriguing differences between the replicase proteins of an isolate collected in Korea (Accession No. AJ620114). Full-length cDNA clones of HVX-37 (pHVX) were constructed downstream of the T7 promoter sequence. In vitro RNA transcripts derived from pHVX were infectious to hostas and Nicotiana benthamiana Domin. plants, representing the first infectious clone for HVX. iii Dedicated to Rosa Postigo, my grandmother, and to all hosta lovers iv Acknowledgements I especially would like to thank my advisor, Dr. Dennis Lewandowski, whose guidance, excellent intellectual support and enthusiastic encouragement over the past two years made this thesis possible. I am also grateful for all his efforts in reviewing this text. I am very grateful to my SAC Committee members, Dr. Peg Redinbaugh and Dr. Enrico Bonello for their useful inputs and accurate revision of this thesis. I would like to thank Dr. Tea Meulia for all her help with the TEM and her helpful advice with the experiments. Thank you to Dr. J. Rob Fisher, Ohio Department of Agriculture, for kindly providing me with magnetic bead-conjugated anti-HVX antiserum. I am very grateful to all my teachers in the Plant Pathology Department for giving me an excellent education and the firm basis that I will need to succeed in my career. A special thank you to my lab partners: Mike Kelly (thank you for all the grinding and watering!), Chris Woltjen, Matt Wallhead, Jessica Schaffer, Amanda Hayes. I am indebted to all my friends who have made Kottman Hall a very special place over these years: Nun, Gautam, Fiorella, Oscar, Chan Ho, Songbiao, Miguel, Anne Marie, Madge, Dr. Graham, Dr. Rhodes, Barry, Clara, Monica Lewandowski, Niqui, Ramona, Duan, Xenxi, Jinnan, Michelle. Without any doubt, I would like to enormously thank my partner and best friend, Antonio Cabrera, for his invaluable help and for being there when I most needed. Lastly, but very importantly, I wish to thank my parents Carlos and Amalia, my sister, Amanda, and my brother, Juan Pablo, who are a constant inspiration to me. Thank you for always being there for me every step of the way. The research was supported in part by grants from the Ohio Plant Biotechnology Consortium and the OARDC SEEDS grant program. v Vita June 17th, 1982 …………………………………………….………Born – Lima, Peru 2005 …………………………………………………………....Bsc. Biology, Universidad Nacional Agraria La Molina 2005 – 2007 …………………………………………………………...Research Assistant, International Potato Center, Lima, Peru 2007 – present ………………………………………...Graduate Research Associate, Department of Plant Pathology, OSU Publications De La Torre C, Lewandowski D. In vitro transcripts of a full-length cDNA clone of Hosta virus X are infectious to Hosta and Nicotiana benthamiana plants. 2009. Phytopathology 99:S27. De La Torre C, Lewandowski D. Sequence comparisons between Hosta virus X (HVX) isolates and differential infection of hosta cultivars. 2008. Phytopathology 98:S45 Fields of Study Major Field: Plant Pathology vi Table of Contents Abstract ………………………………………………………………………………...ii Dedication ………………………………………………………………………………..iv Acknowledgements ………………………………………………………………………...v Vita ………………………………………………………………………………………..vi List of Tables ………………………………………………………………………………..ix List of Figures ………………………………………………………………………………..xi Chapter 1: Literature Review ………………………………………………………...1 Hosta ………………………………………………………………………...1 Hosta diversity ………………………………………………………...2 Pest and diseases of hosta ………………………………………………...3 Viral diseases of hostas ………………………………………………...5 Hosta virus X ………………………………………………………………...6 Chapter 2: Differential responses of hosta cultivars to Hosta virus X infection .............10 Introduction ……………………………………………………….............10 Materials and methods ……………………………………….............11 Preparation of inoculum ……………………………….............12 Hosta cultivars ……………………………………….............12 Inoculation of hosta cultivars ………………………….....................12 DAS-ELISA ……………………………………………….............13 IC-RT-PCR ……………………………………………….............14 Results ……………………………………………………….............15 Discussion ……………………………………………………….............17 Chapter 3: Sequence analysis of Hosta virus X isolates ……………………….............32 Introduction ……………………………………………………….............32 Materials and methods ……………………………………….............35 Ohio HVX isolates ……………………………………….............35 CP cDNA synthesis and RT-PCR amplification ……….............35 Sequencing and assembly of CP consensus ……………….............36 Multiple alignments of CP sequences ……….........................36 RT-PCR amplification of overlapping 5’ and 3’ terminal fragments of HVX-37 ……...………………………………………..37 Sequencing, assembly and annotation of the HVX-37 genome .........38 vii Results………..…………………………………………………….……….39 CP sequence comparisons of Ohio HVX isolates ..……………..39 CP sequence comparisons of all available HVX isolates……...........40 HVX- 37 genome sequence analysis ………………………………40 Sequence comparison between HVX-37 and HVX-Kr……………..41 HVX replicase protein sequence comparison of HVX isolates with other potexviruses ……………………………………................42 Discussion ………………………………………………………………43 Chapter 4: In-vitro transcripts of full-length cDNA clones of Hosta virus X are infectious to hosta and Nicotiana benthamiana plants ………………………61 Introduction ………………………………………………………………61 Materials and methods ………………………………………………63 RNA extraction ………………………………………………63 cDNA synthesis ………………………………………………63 Long fusion PCR ………………………………………………65 Construction of pHVX ………………………………………65 In vitro transcription and plant inoculation ………………………67 DAS-ELISA ………………………………………………………68 IC-RT-PCR ………………………………………………………68 Plant-to-plant passage of in vitro RNA transcript-derived progeny 69 Sequencing of pHVX ………………………………………………69 Sequencing of progeny derived from pHVX ………………………70 Transmission electron microscopy ………………………………70 Results ………………………………………………………………………71 Construction of a full-length cDNA clone of HVX ………………71 Infectivity of transcripts derived from pHVX in hosta and N. benthamiana ……………………………………………....71 Sequence comparisons between pHVX and HVX-37 ………72 Sequence comparisons between progeny derived from pHVX and HVX-37 ………………………………………………………73 Discussion ………………………………………………………………73 References ………………………………………………………………………………85 viii List of Tables Table 1.1. Potexvirus species isolated from ornamental hosts …………………….….9 Table 2.1. Infectivity and accumulation of HVX in inoculated and upper non-inoculated leaves of 24 different hosta cultivars and species. Type 1: Systemic infection both years; Type 2: Systemic infection second year only; Type 3:Localized infection year one and no systemic infection either year; Type 4:Systemic infection year one; no detectable infection year two; Type 5: No detectable infection year one; systemic infection year two ….…..…….......….21 Table 2.2 Detection of HVX by DAS-ELISA of inoculated and upper non-inoculated leaves of individual hosta plants from cultivars classified as Type 1……....23 Table 2.3 Detection of HVX by DAS-ELISA of inoculated and upper non-inoculated leaves of individual hosta plants from cultivars classified as Type 2....……25 Table 2.4 Detection of HVX by DAS-ELISA of inoculated and upper non-inoculated leaves of individual hosta plants from cultivars classified as Type 3………27 Table 2.5 Detection of HVX by DAS-ELISA of inoculated and upper non-inoculated leaves of individual hosta plants from cultivars classified as Type 4…...….28 Table 2.6
Recommended publications
  • Abacca Mosaic Virus
    Annex Decree of Ministry of Agriculture Number : 51/Permentan/KR.010/9/2015 date : 23 September 2015 Plant Quarantine Pest List A. Plant Quarantine Pest List (KATEGORY A1) I. SERANGGA (INSECTS) NAMA ILMIAH/ SINONIM/ KLASIFIKASI/ NAMA MEDIA DAERAH SEBAR/ UMUM/ GOLONGA INANG/ No PEMBAWA/ GEOGRAPHICAL SCIENTIFIC NAME/ N/ GROUP HOST PATHWAY DISTRIBUTION SYNONIM/ TAXON/ COMMON NAME 1. Acraea acerata Hew.; II Convolvulus arvensis, Ipomoea leaf, stem Africa: Angola, Benin, Lepidoptera: Nymphalidae; aquatica, Ipomoea triloba, Botswana, Burundi, sweet potato butterfly Merremiae bracteata, Cameroon, Congo, DR Congo, Merremia pacifica,Merremia Ethiopia, Ghana, Guinea, peltata, Merremia umbellata, Kenya, Ivory Coast, Liberia, Ipomoea batatas (ubi jalar, Mozambique, Namibia, Nigeria, sweet potato) Rwanda, Sierra Leone, Sudan, Tanzania, Togo. Uganda, Zambia 2. Ac rocinus longimanus II Artocarpus, Artocarpus stem, America: Barbados, Honduras, Linnaeus; Coleoptera: integra, Moraceae, branches, Guyana, Trinidad,Costa Rica, Cerambycidae; Herlequin Broussonetia kazinoki, Ficus litter Mexico, Brazil beetle, jack-tree borer elastica 3. Aetherastis circulata II Hevea brasiliensis (karet, stem, leaf, Asia: India Meyrick; Lepidoptera: rubber tree) seedling Yponomeutidae; bark feeding caterpillar 1 4. Agrilus mali Matsumura; II Malus domestica (apel, apple) buds, stem, Asia: China, Korea DPR (North Coleoptera: Buprestidae; seedling, Korea), Republic of Korea apple borer, apple rhizome (South Korea) buprestid Europe: Russia 5. Agrilus planipennis II Fraxinus americana,
    [Show full text]
  • Placer Vineyards Specific Plan Placer County, California
    Placer Vineyards Specific Plan Placer County, California Appendix B: Recommended Plant List Amended January 2015 Approved July 2007 R mECOm ENDED PlANt liSt APPENDIX B: RECOMMENDED PLANT LIST The list of plants below are recommended for use in Placer Vineyards within the design of its open space areas, landscape buffer corridors, streetscapes, gateways and parks. Plants similar to those listed in the table may also be substituted at the discretion of the County. OPEN SPACE Botanical Name Common Name Distribution Percentage Upland-Savanna TREES Aesculus californica California Buckeye 15% Quercus douglasii Blue Oak 15% Quercus lobata Valley Oak 40% Quercus wislizenii Interior Live Oak 15% Umbellularia california California Laurel 15% 100% SHRUBS Arctostaphylos sp Manzanita 15% Artemisia californica California Sagebrush 10% Ceanothus gloriosus Point Reyes Creeper 30% Ceanothus sp. California Lilac 10% Heteromeles arbutifolia Toyon 20% Rhamnus ilicifolia Hollyleaf Redberry 15% 100% GROUNDCOVER Bromus carinatus California Brome 15% Hordeum brachyantherum Meadow Barley 15% Muhlenbergia rigens Deergrass 40% Nassella pulchra Purple Needlegrass 15% Lupinus polyphyllus Blue Lupine 15% 100% January 2015 Placer Vineyards Specific Plan B-1 R mECOm ENDED PlANt liSt OPEN SPACE Botanical Name Common Name Distribution Percentage Riparian Woodland (2- to 5-year event creek flow) TREES Acer negundo Boxelder 5% Alnus rhombifolia White Alder 5% Fraxinus latifolia Oregon Ash 10% Populus fremontii Fremont Cottonwood 25% Quercus lobata Valley Oak 5% Salix gooddingii
    [Show full text]
  • Antirrhinum Majus
    The EMBO Journal Vol.18 No.19 pp.5370–5379, 1999 Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus Marcos Egea-Cortines1,2, Heinz Saedler and by the shoot apical meristem, which instead of maintaining Hans Sommer a vegetative fate, produces floral organs. This process is controlled by meristem identity genes that comprise in Max-Planck-Institut fu¨rZu¨chtungsforschung, Carl-von-Linne Weg 10, Antirrhinum FLORICAULA (FLO) (Coen et al., 1990), 50829 Ko¨ln, Germany SQUAMOSA (SQUA) (Huijser et al., 1992) and CENTRO- 1Present address: Department of Genetics, Escuela Tecnica Superior de RADIALIS (CEN) (Bradley et al., 1996). Squa plants, for Ingenieros Agro´nomos, Universidad Polite´cnica de Cartagena, instance, flower rarely because most meristems that should Paseo Alfonso XIII 22, 30203 Cartagena, Spain adopt a floral fate remain as inflorescences (Huijser et al., 2Corresponding author 1992). Once the flower meristem is established, several e-mail: [email protected] parallel events occur: first, organ initiation changes from a spiral to a whorled fashion; secondly, the developing In Antirrhinum, floral meristems are established by organs in the whorls adopt a specific identity; and thirdly, meristem identity genes. Floral meristems give rise to the floral meristem terminates. floral organs in whorls, with their identity established Floral organ identity in angiosperms seems to be con- by combinatorial activities of organ identity genes. trolled by three conserved genetic functions that act in a Double mutants of the floral meristem identity gene combinatorial manner (Coen and Meyerowitz, 1991).
    [Show full text]
  • Downloaded in July 2020
    viruses Article The Phylogeography of Potato Virus X Shows the Fingerprints of Its Human Vector Segundo Fuentes 1, Adrian J. Gibbs 2 , Mohammad Hajizadeh 3, Ana Perez 1 , Ian P. Adams 4, Cesar E. Fribourg 5, Jan Kreuze 1 , Adrian Fox 4 , Neil Boonham 6 and Roger A. C. Jones 7,* 1 Crop and System Sciences Division, International Potato Center, La Molina Lima 15023, Peru; [email protected] (S.F.); [email protected] (A.P.); [email protected] (J.K.) 2 Emeritus Faculty, Australian National University, Canberra, ACT 2600, Australia; [email protected] 3 Plant Protection Department, Faculty of Agriculture, University of Kurdistan, Sanandaj 6617715175, Iran; [email protected] 4 Fera Science Ltd., Sand Hutton York YO41 1LZ, UK; [email protected] (I.P.A.); [email protected] (A.F.) 5 Departamento de Fitopatologia, Universidad Nacional Agraria, La Molina Lima 12056, Peru; [email protected] 6 Institute for Agrifood Research Innovations, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; [email protected] 7 UWA Institute of Agriculture, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia * Correspondence: [email protected] Abstract: Potato virus X (PVX) occurs worldwide and causes an important potato disease. Complete PVX genomes were obtained from 326 new isolates from Peru, which is within the potato crop0s main Citation: Fuentes, S.; Gibbs, A.J.; domestication center, 10 from historical PVX isolates from the Andes (Bolivia, Peru) or Europe (UK), Hajizadeh, M.; Perez, A.; Adams, I.P.; and three from Africa (Burundi). Concatenated open reading frames (ORFs) from these genomes Fribourg, C.E.; Kreuze, J.; Fox, A.; plus 49 published genomic sequences were analyzed.
    [Show full text]
  • Polyploid Breeding in Portulaca Grandiflora L
    Cytologia 44: 167-174, 1979 Polyploid Breeding in Portulaca grandiflora L. A. K. Singh Plant Cytogenetics and Breeding Laboratory, B.S.N.V. Degree College, Lucknow (U.P.), India Received June 13, 1977 Portulaca grandiflora a popular annual ornamental of family Portulacaceae produces beautiful blooms during summer in a wide range of attractive colours. It is commonly known as "9 'O' clock" plant. This species was included in the ornamental breeding programme. This paper deals with the coichicine induced autoploids in pink coloured variety. Materials and methods Seeds of Portulaca grandiflora were obtained from local sources and sown in pots. As heterozygosity at diploid level could be useful in polyploid breeding no effort was made to purify the variety through selfing. Shoot tips of young seedlings were treated with 0.2% aqueous coichicine for 15 hours. Polyploids thus raised were planted in pots with suitable controls and when flowering began, buds of proper size were fixed in 1:3 acetic alcohol fortified with iron. The anthers were squashed in acetocarmine for cytological investigations. Observations Colchicine treatment checked the growth of young seedlings for 2 days. first formed leaves after treatment were thicker, longer and broader than controls. Growth of polyploids was slow and flowering was delayed by 10 days. In tetraploids there was increase in size of leaf, flower, thickness of stem, number of branches, height and spread of plant; size of stomata, anther, gynoecium and pollen grains. Fl owers of polyploids lasted longer and remained open for longer duration. The tetraploids and diploids had 25.6 and 5.2% pollen sterility.
    [Show full text]
  • Differential Regulation of Symmetry Genes and the Evolution of Floral Morphologies
    Differential regulation of symmetry genes and the evolution of floral morphologies Lena C. Hileman†, Elena M. Kramer, and David A. Baum‡ Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138 Communicated by John F. Doebley, University of Wisconsin, Madison, WI, September 5, 2003 (received for review July 16, 2003) Shifts in flower symmetry have occurred frequently during the patterns of growth occurring on either side of the midline (Fig. diversification of angiosperms, and it is thought that such shifts 1h). The two species of Mohavea have a floral morphology that play important roles in plant–pollinator interactions. In the model is highly divergent from Antirrhinum (3), resulting in its tradi- developmental system Antirrhinum majus (snapdragon), the tional segregation as a distinct genus. Mohavea corollas, espe- closely related genes CYCLOIDEA (CYC) and DICHOTOMA (DICH) cially those of M. confertiflora, are superficially radially symmet- are needed for the development of zygomorphic flowers and the rical (actinomorphic), mainly due to distal expansion of the determination of adaxial (dorsal) identity of floral organs, includ- corolla lobes (Fig. 1a) and a higher degree of internal petal ing adaxial stamen abortion and asymmetry of adaxial petals. symmetry relative to Antirrhinum (Fig. 1 a and g). During However, it is not known whether these genes played a role in the Mohavea flower development, the lateral stamens, in addition to divergence of species differing in flower morphology and pollina- the adaxial stamen, are aborted, resulting in just two stamens at tion mode. We compared A. majus with a close relative, Mohavea flower maturity (Fig.
    [Show full text]
  • Comparative Pharmacognostic Studies on Three Species of Portulaca
    Available online on www.ijppr.com International Journal of Pharmacognosy and Phytochemical Research 2014-15; 6(4), 806-816 ISSN: 0975-4873 Research Article Comparative Pharmacognostic Studies on Three Species of Portulaca *Silvia Netala1, Asha Priya M2, Pravallika R3, Naga Tejasri S3, Sumaiya Shabreen Md3, Nandini Kumari S3 1Department of Pharmacognosy, Shri Vishnu College of Pharmacy, Bhimavaram, India. 2 Department of Biotechnology, Shri Vishnu College of Pharmacy, Bhimavaram, India. 3Shri Vishnu College of Pharmacy, Bhimavaram, India. Available Online: 21st November, 2014 ABSTRACT To compare the structural features and physicochemical properties of three species of Portulaca. Methods: Different parts of Portulaca were examined for macroscopical, microscopical characters. Physicochemical, phytochemical and fluorescence analysis of the plant material was performed according to the methods of standardization recommended by World Health Organization. Results: The plants are succulent, prostrate herbs. Usually roots at the nodes of the stem. Leaves are opposite with paracytic stomata and characteristic Kranz tissue found in C-4 plants. Abundant calcium oxalate crystals are present in all vegetative parts of the plant. Quantitative determinations like stomatal number, stomatal index and vein islet number were performed on leaf tissue. Qualitative phytochemical screening revealed the presence of alkaloids, carbohydrates, saponins, steroids and triterpenoids. Conclusions: The results of the study could be useful in setting quality parameters for the identification and preparation of a monograph. Key words: Portulaca, physicochemical, standardization, Kranz tissue, quantitative. INTRODUCTION Preparation of extract: The powdered plant material was Genus Portulaca (Purslane) is an extremely tough plant extracted with methanol on a Soxhlet apparatus (Borosil that thrives in adverse conditions and belongs to the Glass Works Ltd, Worli, Mumbai) for 48 h.
    [Show full text]
  • Ordine Tymovirales
    Ordine Tymovirales Classificazione Dominium/Dominio: Acytota o Aphanobionta Gruppo: IV (Virus a ssRNA+) Ordo/Ordine: Tymovirales Il nome deriva dal genere Tymovirus (e dalla famiglia Tymoviridae). Questo è stato scelto perché le altre famiglie costituenti hanno nomi che riflettono i loro virioni flessi (non una caratteristica di tutti i membri del’'ordine). Tymovirales è un ordine di virus proposto nel 2007 e ufficialmente approvato dall’International Committee on Taxonomy of Viruses nel 2009. Quest’ordine possiede un genoma ad RNA a singolo filamento a senso positivo, di conseguenza fanno parte del gruppo IV secondo la classificazione di Baltimore. I virus appartenenti a quest’ordine hanno, come ospite, le piante. I Tymovirales hanno capside senza pericapside, filamentoso e flessibile o isometrico a simmetria icosaedrica e possiedono tutti una poliproteina di replicazione alpha-like. I Tymovirales, hanno una singola molecola di ssRNA senso positivo e sono uniti dalle somiglianze nelle loro poliproteine associate alla replicazione. I virioni all’interno delle famiglie Alphaflexiviridae, Betaflexiviridae e Gammaflexiviridae sono filamenti flessuosi ed hanno solitamente un diametro di 12-13 nm e una lunghezza compresa tra circa 470 e 1000 nm, a seconda del genere. Hanno una simmetria elicoidale e in alcuni generi c’è un crossbanding ben visibile. Quasi tutti i membri hanno una singola proteina di rivestimento (CP) di 18-44 kDa e nel caso dei generi Lolavirus e alcuni Marafivirus, ci sono due proteine strutturali, che sono di forme diverse dallo stesso genere. La più grande proteina codificata è una poliproteina associata alla replicazione di circa 150-250 kDa vicino all'estremità 5' del genoma e che è tradotta direttamente dall’RNA genomico.
    [Show full text]
  • Examination of Potato Virus X Subgenomic Rnas: Their Umbn Er, Their Oc Ding Properties, and Their Possible Encapsidation
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1991 Examination of Potato Virus X Subgenomic RNAs: Their umbN er, Their oC ding Properties, and Their Possible Encapsidation. Mary A. Price Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Price, Mary A., "Examination of Potato Virus X Subgenomic RNAs: Their umbeN r, Their odC ing Properties, and Their osP sible Encapsidation." (1991). LSU Historical Dissertations and Theses. 5270. https://digitalcommons.lsu.edu/gradschool_disstheses/5270 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.
    [Show full text]
  • An Everlasting Pioneer: the Story of Antirrhinum Research
    PERSPECTIVES 34. Lexer, C., Welch, M. E., Durphy, J. L. & Rieseberg, L. H. 62. Cooper, T. F., Rozen, D. E. & Lenski, R. E. Parallel und Forschung, the United States National Science Foundation Natural selection for salt tolerance quantitative trait loci changes in gene expression after 20,000 generations of and the Max-Planck Gesellschaft. M.E.F. was supported by (QTLs) in wild sunflower hybrids: implications for the origin evolution in Escherichia coli. Proc. Natl Acad. Sci. USA National Science Foundation grants, which also supported the of Helianthus paradoxus, a diploid hybrid species. Mol. 100, 1072–1077 (2003). establishment of the evolutionary and ecological functional Ecol. 12, 1225–1235 (2003). 63. Elena, S. F. & Lenski, R. E. Microbial genetics: evolution genomics (EEFG) community. In lieu of a trans-Atlantic coin flip, 35. Peichel, C. et al. The genetic architecture of divergence experiments with microorganisms: the dynamics and the order of authorship was determined by random fluctuation in between threespine stickleback species. Nature 414, genetic bases of adaptation. Nature Rev. Genet. 4, the Euro/Dollar exchange rate. 901–905 (2001). 457–469 (2003). 36. Aparicio, S. et al. Whole-genome shotgun assembly and 64. Ideker, T., Galitski, T. & Hood, L. A new approach to analysis of the genome of Fugu rubripes. Science 297, decoding life. Annu. Rev. Genom. Human. Genet. 2, Online Links 1301–1310 (2002). 343–372 (2001). 37. Beldade, P., Brakefield, P. M. & Long, A. D. Contribution of 65. Wittbrodt, J., Shima, A. & Schartl, M. Medaka — a model Distal-less to quantitative variation in butterfly eyespots. organism from the far East.
    [Show full text]
  • Alternanthera Mosaic Potexvirus in Scutellaria1 Carlye A
    Plant Pathology Circular No. 409 (396 revised) Florida Department of Agriculture and Consumer Services January 2013 Division of Plant Industry FDACS-P-01861 Alternanthera Mosaic Potexvirus in Scutellaria1 Carlye A. Baker2, and Lisa Williams2 INTRODUCTION: Skullcap, Scutellaria species. L. is a member of the mint family, Labiatae. It is represented by more than 300 species of perennial herbs distributed worldwide (Bailey and Bailey 1978). Skullcap grows wild or is naturalized as ornamentals and medicinal herbs. Fuschia skullcap is a Costa Rican variety with long, trailing stems, glossy foliage and clusters of fuschia-colored flowers. SYMPTOMS: Vegetative propagations of fuschia skullcap grown in a Central Florida nursery located in Manatee County showed symptoms of viral infec- tion in the fall of 1998, including foliar mottle and chlorotic to necrotic ring- spots and wavy-line patterns (Fig. 1). SURVEY AND DETECTION: Symptomatic leaves were collected and ex- amined by electron microscopy. Flexuous virus-like particles, approximately 500 nm long, like those associated with potexvirus infections, were observed. Subsequent enzyme-linked immunosorbent assay (ELISA) for a potexvirus known to occur in Florida, resulted in a positive reaction to papaya mosaic virus (PapMV) antiserum. However, further tests indicated that while this virus was related to PapMV, it was not PapMV. Sequencing data showed that the virus was actually Alternanthera mosaic virus (Baker et al. 2006). VIRUS DISTRIBUTION: In 1999, a Potexvirus closely related to PapMY was found in Queensland, Australia. It was isolated from Altrernanthera pugens (Amaranthaceae), a weed found in both the Southern U.S. and Australia. Despite its apparent relationship with PapMV using serology, sequencing Fig.
    [Show full text]
  • Using Collections to Support Pest Risk Assessment of Novel and Unusual Pests Discovered Through HTS Adrian Fox1,2
    Using collections to support pest risk assessment of novel and unusual pests discovered through HTS Adrian Fox1,2 1 Fera Science Ltd 2 Life Sciences, University of Warwick Overview • Diagnostics as a driver of new species discovery • Developing HTS for frontline sample diagnosis • Using herbaria samples to investigate pathogen origin and pathways of introduction • What do we mean by ‘historic samples’ • My interest in historic samples… • Sharing results – the final hurdle? Long road of diagnostic development Source http://wellcomeimages.org Source:https://commons.wikimedia.org/wiki/File :Ouchterlony_Double_Diffusion.JPG Factors driving virus discovery (UK 1980-2014) Arboreal Arable Field Vegetables and Potato Ornamentals Protected Edibles Salad Crops Fruit Weeds 12 10 8 6 No. of Reports 4 2 0 1980-1984 1985-1989 1990-1994 1995-1999 2000-2004 2005-2009 2010-2014 5 yr Period Fox and Mumford, (2017) Virus Research, 241 HTS in plant pathology • Range of platforms and approaches… • Key applications investigated: • HTS informed diagnostics • Unknown aetiology • ‘Megaplex’ screening • Improving targeted diagnostics • Disease monitoring (population genetics) • Few studies on: • Equivalence • Standardisation • Validation • Controls International plant health authorities have concerns about reporting of findings from ‘stand alone’ use of technology Known viruses - the tip of the iceberg? 1937 51 ‘viruses and virus like diseases’ K. Smith 1957 300 viruses 2011 1325 viruses ICTV Masterlist 2018 1688 viruses and satellites Known viruses - the tip of
    [Show full text]