(Portulaceae) Genus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Placer Vineyards Specific Plan Placer County, California
Placer Vineyards Specific Plan Placer County, California Appendix B: Recommended Plant List Amended January 2015 Approved July 2007 R mECOm ENDED PlANt liSt APPENDIX B: RECOMMENDED PLANT LIST The list of plants below are recommended for use in Placer Vineyards within the design of its open space areas, landscape buffer corridors, streetscapes, gateways and parks. Plants similar to those listed in the table may also be substituted at the discretion of the County. OPEN SPACE Botanical Name Common Name Distribution Percentage Upland-Savanna TREES Aesculus californica California Buckeye 15% Quercus douglasii Blue Oak 15% Quercus lobata Valley Oak 40% Quercus wislizenii Interior Live Oak 15% Umbellularia california California Laurel 15% 100% SHRUBS Arctostaphylos sp Manzanita 15% Artemisia californica California Sagebrush 10% Ceanothus gloriosus Point Reyes Creeper 30% Ceanothus sp. California Lilac 10% Heteromeles arbutifolia Toyon 20% Rhamnus ilicifolia Hollyleaf Redberry 15% 100% GROUNDCOVER Bromus carinatus California Brome 15% Hordeum brachyantherum Meadow Barley 15% Muhlenbergia rigens Deergrass 40% Nassella pulchra Purple Needlegrass 15% Lupinus polyphyllus Blue Lupine 15% 100% January 2015 Placer Vineyards Specific Plan B-1 R mECOm ENDED PlANt liSt OPEN SPACE Botanical Name Common Name Distribution Percentage Riparian Woodland (2- to 5-year event creek flow) TREES Acer negundo Boxelder 5% Alnus rhombifolia White Alder 5% Fraxinus latifolia Oregon Ash 10% Populus fremontii Fremont Cottonwood 25% Quercus lobata Valley Oak 5% Salix gooddingii -
Polyploid Breeding in Portulaca Grandiflora L
Cytologia 44: 167-174, 1979 Polyploid Breeding in Portulaca grandiflora L. A. K. Singh Plant Cytogenetics and Breeding Laboratory, B.S.N.V. Degree College, Lucknow (U.P.), India Received June 13, 1977 Portulaca grandiflora a popular annual ornamental of family Portulacaceae produces beautiful blooms during summer in a wide range of attractive colours. It is commonly known as "9 'O' clock" plant. This species was included in the ornamental breeding programme. This paper deals with the coichicine induced autoploids in pink coloured variety. Materials and methods Seeds of Portulaca grandiflora were obtained from local sources and sown in pots. As heterozygosity at diploid level could be useful in polyploid breeding no effort was made to purify the variety through selfing. Shoot tips of young seedlings were treated with 0.2% aqueous coichicine for 15 hours. Polyploids thus raised were planted in pots with suitable controls and when flowering began, buds of proper size were fixed in 1:3 acetic alcohol fortified with iron. The anthers were squashed in acetocarmine for cytological investigations. Observations Colchicine treatment checked the growth of young seedlings for 2 days. first formed leaves after treatment were thicker, longer and broader than controls. Growth of polyploids was slow and flowering was delayed by 10 days. In tetraploids there was increase in size of leaf, flower, thickness of stem, number of branches, height and spread of plant; size of stomata, anther, gynoecium and pollen grains. Fl owers of polyploids lasted longer and remained open for longer duration. The tetraploids and diploids had 25.6 and 5.2% pollen sterility. -
Comparative Pharmacognostic Studies on Three Species of Portulaca
Available online on www.ijppr.com International Journal of Pharmacognosy and Phytochemical Research 2014-15; 6(4), 806-816 ISSN: 0975-4873 Research Article Comparative Pharmacognostic Studies on Three Species of Portulaca *Silvia Netala1, Asha Priya M2, Pravallika R3, Naga Tejasri S3, Sumaiya Shabreen Md3, Nandini Kumari S3 1Department of Pharmacognosy, Shri Vishnu College of Pharmacy, Bhimavaram, India. 2 Department of Biotechnology, Shri Vishnu College of Pharmacy, Bhimavaram, India. 3Shri Vishnu College of Pharmacy, Bhimavaram, India. Available Online: 21st November, 2014 ABSTRACT To compare the structural features and physicochemical properties of three species of Portulaca. Methods: Different parts of Portulaca were examined for macroscopical, microscopical characters. Physicochemical, phytochemical and fluorescence analysis of the plant material was performed according to the methods of standardization recommended by World Health Organization. Results: The plants are succulent, prostrate herbs. Usually roots at the nodes of the stem. Leaves are opposite with paracytic stomata and characteristic Kranz tissue found in C-4 plants. Abundant calcium oxalate crystals are present in all vegetative parts of the plant. Quantitative determinations like stomatal number, stomatal index and vein islet number were performed on leaf tissue. Qualitative phytochemical screening revealed the presence of alkaloids, carbohydrates, saponins, steroids and triterpenoids. Conclusions: The results of the study could be useful in setting quality parameters for the identification and preparation of a monograph. Key words: Portulaca, physicochemical, standardization, Kranz tissue, quantitative. INTRODUCTION Preparation of extract: The powdered plant material was Genus Portulaca (Purslane) is an extremely tough plant extracted with methanol on a Soxhlet apparatus (Borosil that thrives in adverse conditions and belongs to the Glass Works Ltd, Worli, Mumbai) for 48 h. -
Wake Island Grasses Gra Sse S
Wake Island Grasses Gra sse s Common Name Scientific Name Family Status Sandbur Cenchrus echinatus Poaceae Naturalized Swollen Fingergrass Chloris inflata Poaceae Naturalized Bermuda Grass Cynodon dactylon Poaceae Naturalized Beach Wiregrass Dactyloctenium aegyptium Poaceae Naturalized Goosegrass Eleusine indica Poaceae Naturalized Eustachys petraea Poaceae Naturalized Fimbristylis cymosa Poaceae Indigenous Dactyloenium Aegyptium Lepturus repens Poaceae Indigenous Manila grass Zoysia matrella Poaceae Cultivated Cenchrus echinatus Chloris inlfata Fimbristylis cymosa Lepturus repens Zoysia matrella Eustachys petraea Wake Island Weeds Weeds Common Name Scientific Name Family Status Spanish Needle Bidens Alba Asteraceae Naturalized Hairy Spurge Chamaesyce hirta Euphorbiaceae Naturalized Wild Spider Flower Cleome gynandra Capparidaceae Naturalized Purslane Portulaca oleracea Portulaceaceae Naturalized Puncture Vine Tribulus cistoides Zygophyllaceae Indigenous Coat Buttons Tridax procumbens Asteraceae Naturalized Tridax procumbens Uhaloa Waltheria Indica Sterculiacae Indigenous Bidens alba Chamaesyce hirta Cleome gynandra Portulaca oleracea Tribulus cistoides Waltheria indica Wake Island Vines Vines Common Name Scientific Name Family Status Beach Morning Glory Ipomoea pes-caprae Convolvulaceae Indigenous Beach Moonflower Ipomoea violacea Convolvulaceae Indigenous Passion fruit Passiflora foetida Passifloraceae Naturalized Ipomoea violacea Ipomoea pes-caprae Passiflora foetida Wake Island Trees Trees Common Name Scientific Name Family Status -
Portulaca Oleracea- Derived Ingredients As Used in Cosmetics
Safety Assessment of Portulaca oleracea- Derived Ingredients as Used in Cosmetics Status: Scientific Literature Review for Public Comment Release Date: July 15, 2020 Panel Meeting Date: September 14-15, 2020 All interested persons are provided 60 days from the above release date (i.e., September13, 2020) to comment on this safety assessment and to identify additional published data that should be included or provide unpublished data which can be made public and included. Information may be submitted without identifying the source or the trade name of the cosmetic product containing the ingredient. All unpublished data submitted to CIR will be discussed in open meetings, will be available at the CIR office for review by any interested party and may be cited in a peer-reviewed scientific journal. Please submit data, comments, or requests to the CIR Executive Director, Dr. Bart Heldreth. The Expert Panel for Cosmetic Ingredient Safety members are: Chair, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; James G. Marks, Jr., M.D.; Lisa A. Peterson, Ph.D.; Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The Cosmetic Ingredient Review (CIR) Executive Director is Bart Heldreth, Ph.D. This safety assessment was prepared by Preethi S. Raj, M.S., Senior Scientific Analyst/Writer, CIR. © Cosmetic Ingredient Review 1620 L Street, NW, Suite 1200 ♢ Washington, DC 20036-4702 ♢ ph 202.331.0651 ♢ fax 202.331.0088 ♢ [email protected] INTRODUCTION This -
Control of Tomato Wilt Disease Caused by Fusarium Oxysporum F. Sp. Iycopersici Using Plant Biological Fungicides
International Journal of Scientific & Engineering Research Volume 1, Issue 1, October 2010 ISSN 2229-5518 63 Control of tomato wilt disease caused by Fusarium oxysporum f. sp. Iycopersici using plant biological fungicides Bright Chima Megbo Department of Plant Physiology, Faculty of Science, Charles University Prague, Czech Republic. ABSTRACT All plant extracts [i.e. extracts from Portulaca oleracea L., Costus specious (rhizome), Curcuma zedoaria (tuber), Zingiber zerumbet (tuber) and Codieum variegatum (leaf)] used in this study significantly inhibited the spread and further development of the inoculum applied to leaves of the tomato plant. In this study, leaf extracts of Codieum variegatum significantly inhibited the proliferation of Fusarium oxysporum in both in vitro and the greenhouse. All biofungicides tested showed significant reduction in terms of radial diameter of Fusarium oxysporum in vitro after the treatment in comparison to the negative control (i.e. without any biofungicide), with the least inhibition of 64% by Curcuma zedoaria (tuber) extract and the highest inhibition of 89% exhibited by Codieum variegatum leaf extract. The other biofungucides Portulaca oleracea L., Costus specious (rhizome) and Zingiber zerumbet (tuber) also provided significant inhibition at 68%, 75%, and 81% respectively in vitro. Generally, the results of this study indicate a high inhibitory effect of all the biofungicides used on Fusarium oxysporum under in vitro and greenhouse conditions. KEYWORDS: Biofungicide; Tomato wilt; Inoculum; Plant extract; Inhibition; etc. 1.0 INTRODUCTION The efficacy of selected five (5) biofungicides in controlling the fungus disease, tomato wilt, caused by Fusarium oxysporum f. sp. Iycopersici was evaluated in vitro and under greenhouse conditions. Plant extracts from Portulaca oleracea L., Costus specious (rhizome), Curcuma zedoaria (tuber), Zingiber zerumbet (tuber) and Codieum variegatum (leaf) were used as biofungicides. -
Effects of Purslane (Portulaca Oleracea L.) and Shewanella Putrefaciens Probiotic Enriched Diet on Gilthead Seabream (Sparus Aurata L.)
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Universidade do Algarve MARÍA CÁMARA RUIZ Effects of purslane (Portulaca oleracea L.) and Shewanella putrefaciens probiotic enriched diet on gilthead seabream (Sparus aurata L.) Mestrado em Aquacultura e Pescas (Especialidade em aquacultura) UNIVERSIDADE DO ALGARVE Faculdade de Ciências e Tecnologia 2017 Título – Effects of purslane (Portulaca oleracea L.) and Shewanella putrefaciens probiotic enriched diet on gilthead seabream (Sparus aurata L.) Declaração de autoria de trabalho Declaro ser o (a) autor (a) deste trabalho, que é original e inédito. Autores e trabalhos consultados estão devidamente citados no texto e constam da listagem de referências incluída. _________________________________________________ (Maria Camara Ruiz) Copyright Maria Camara Ruiz A Universidade do Algarve tem o direito, perpétuo e sem limites geográficos, de arquivar e publicitar este trabalho através de exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido ou que venha a ser inventado, de o divulgar através de repositórios científicos e de admitir a sua cópia e distribuição com objetivos educacionais ou de investigação, não comerciais, desde que seja dado crédito ao autor e editor. i Acknowledgments I would like to thank everyone who made any contribution during my academic life in Spain, United States and Portugal and helped me to become the person and scientist I am today. Firstly, I want to thank the Erasmus program for giving me the opportunity to do my Erasmus + abroad, without this program I could not have done it. Secondly, I would like to thank Maria Angeles Esteban, not only for being my supervisor but also for the opportunities she gave me throughout this year and for making me feel comfortable and trust me. -
Common Purslane (Portulaca Oleracea)1
Weed Technology. 1997. Volume 11:394-397 Intriguing World of Weeds iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii Common Purslane (Portulaca oleracea)1 LARRY W. MIT1CH2 Common purslane becomes quite permanently established where they are once introduced and will doubtless become weeds wherever they escape from cultivation.-William Darlington (1859) INTRODUCTION surprising, since it is a succulent plant with a water con tent of over 90% (Zimdahl 1989). Common purslane (Portulaca oleracea L.), hereafter Purslane is one of the 12 noncultivated species that referred to as purslane, is a member of the purslane fam have been most successful in colonizing new areas ily, Portulacaceae, which comprises 25 widespread gen (Holm et al. 1977). It has become naturalized as a weed era of often succulent herbs and shrubs (Hyam and Pank hurst 1995). The genus Portulaca contains about 40 tropical and warm climate species. Portulaca oleracea subsp. sativa (L.) Schuebler and Mar tens is cultivated as a potherb and a medic (Gledhill 1985). It is charac terized by its taller upright growth habit and larger leaves and seeds (Gorske et al. 1979). \ Col1lll\On purslane (Portulaca oleracea). The site of origin of P. oleracea is not known. It has been reported to be a native of western Asia, and it was in the warmer parts of the world (Britton and Brown introduced into the U.S. from southern Europe (U.S. De 1898), infesting 45 crops in 81 countries, ranging from partment of Agriculture 1972). Others cite Europe as its Argentina to Zambia. Its seeds are spread by wind, water, native home; however, its succulent habit suggests that and with the seeds of crops; it is known also that some it is a desert or desert border plant that may have orig birds feed on them (Holm et al. -
Plant Lists, a Common Sense Guide
Plant Lista common sense guide Careful plant selection is the key to creating a healthy and easy to maintain landscape. This guide will help you choose plants adapted to the Northwest. Plants on this list are either low-water use, resistant to insects and diseases or native to western Washington. Many Northwest gardens include non-native and native plants, which provide the gardens with beautiful foliage, patterns and textures. This guide also highlights plants selected by the Great Plant Picks program by using a leaf symbol. Great Plant Picks is a regional plant awards program designed to help the home gardener identify unbeatable plants for maritime Pacific Northwest gardens. It is sponsored by the Elizabeth C. Miller Botanical Garden. For more information visit www.greatplantpicks.org. Every time you plant, fertilize, water or control pests in your garden, choose methods that protect your pets and your family’s health. Ground Covers (E) Evergreen (D) Deciduous COMMON NAME *LOW EXPOSURE REMARKS SCIENTIFIC NAME WATER USE Ajuga No Part Shade (E) One of the best known and Ajuga reptans most useful ground covers; fast growing; blue flowers in spring Creeping Oregon Grape Yes Part Shade, (E) Native; yellow spring flowers and blue Receive a free Mahonia repens Sun berries; attracts birds e-newsletter with helpful tips on Cotoneaster Yes Sun (E/D) Good for erosion control, spring home and garden Cotoneaster (all varieties) bloom; small pink flowers care! False Lily-of-the-Valley Yes Shade, (D) Native; aggressive; good for wood- To subscribe: -
Pinal AMA Low Water Use/Drought Tolerant Plant List
Arizona Department of Water Resources Pinal Active Management Area Low-Water-Use/Drought-Tolerant Plant List Official Regulatory List for the Pinal Active Management Area Fourth Management Plan Arizona Department of Water Resources 1110 West Washington St. Ste. 310 Phoenix, AZ 85007 www.azwater.gov 602-771-8585 Pinal Active Management Area Low-Water-Use/Drought-Tolerant Plant List Acknowledgements The Pinal Active Management Area (AMA) Low-Water-Use/Drought-Tolerant Plants List is an adoption of the Phoenix AMA Low-Water-Use/Drought-Tolerant Plants List (Phoenix List). The Phoenix List was prepared in 2004 by the Arizona Department of Water Resources (ADWR) in cooperation with the Landscape Technical Advisory Committee of the Arizona Municipal Water Users Association, comprised of experts from the Desert Botanical Garden, the Arizona Department of Transporation and various municipal, nursery and landscape specialists. ADWR extends its gratitude to the following members of the Plant List Advisory Committee for their generous contribution of time and expertise: Rita Jo Anthony, Wild Seed Judy Mielke, Logan Simpson Design John Augustine, Desert Tree Farm Terry Mikel, U of A Cooperative Extension Robyn Baker, City of Scottsdale Jo Miller, City of Glendale Louisa Ballard, ASU Arboritum Ron Moody, Dixileta Gardens Mike Barry, City of Chandler Ed Mulrean, Arid Zone Trees Richard Bond, City of Tempe Kent Newland, City of Phoenix Donna Difrancesco, City of Mesa Steve Priebe, City of Phornix Joe Ewan, Arizona State University Janet Rademacher, Mountain States Nursery Judy Gausman, AZ Landscape Contractors Assn. Rick Templeton, City of Phoenix Glenn Fahringer, Earth Care Cathy Rymer, Town of Gilbert Cheryl Goar, Arizona Nurssery Assn. -
Edible Landscape
EDIBLE LANDSCAPE HERBS AND FOODS IN THE WILD [email protected] southerninstituteofhealingarts.com CHICKWEED (STELLARIA MEDIA) • The leaves are pretty hefty, and you’ll often find small white flowers on the plant. • They usually appear between May and July. [email protected] southerninstituteofhealingarts.com PINE BARK AND PINE NEEDLE • Not only can the food be used as a supply of nourishment but, also can be used for medicinal purposes. Simmer a bowl of water and add some pine needles to make tea. Native Americans used to ground up pine to cure scurvy, its rich in vitamin C. [email protected] southerninstituteofhealingarts.com PLANTAIN (PLANTAGO) • . • The oval, ribbed, short-stemmed leaves tend to hug the ground. The leaves may grow up to about 6″ long and 4″ wide. It’s best to eat the leaves when they’re young. Plantain is very high in vitamin A, calcium, and vitamin C. [email protected] southerninstituteofhealingarts.com CLEAVERS: GALIUM APARINE • The leaves and stems of the plant can be cooked as a leaf vegetable, if gathered before the fruits appear. However, the numerous small hooks which cover the plant and give it its clinging nature, can make it less palatable if eaten raw [email protected] southerninstituteofhealingarts.com PURSLANE (PORTULACA OLERACEA) • . • It’s a small plant with smooth fat leaves that have a refreshingly sour taste. You can eat purslane raw or boiled. If you’d like to remove the sour taste, boil the leaves before eating. • Greeks fry the leaves and the stems with feta cheese, tomato, onion, garlic, oregano, and olive oil, add it in salads [email protected] southerninstituteofhealingarts.com CURLED DOCK (RUMEX CRISPUS) “YELLOW DOCK • The young leaves should be boiled in several changes of water to remove as much of the oxalic acid in the leaves as possible or can be added directly to salads in moderate amounts. -
First Record of a Candidatus Phytoplasma Associated with Little Leaf Disease of Portulaca Grandiflora
CSIRO PUBLISHING www.publish.csiro.au/journals/apdn Australasian Plant Disease Notes, 2007, 2, 67–69 First record of a Candidatus phytoplasma associated with little leaf disease of Portulaca grandiflora P. V. AjayakumarA, A. SamadA,B, A. K. ShasanyA, M. K. GuptaA, M. AlamA and S. RastogiA ACentral Institute of Medicinal and Aromatic Plants (CIMAP), PO CIMAP, Lucknow 226015, India. BCorresponding author. Email: samad [email protected] Abstract. This paper reports Portulaca grandiflora as a new host of a Candidatus phytoplasma and demonstrates its association with the little leaf disease on P. grandiflora. Plants exhibited typical visual symptoms of a phytoplasma, with reduced leaf size. Pleomorphic bodies, observed by transmission electron microscopy, were restricted to the phloem of symptomatic tissue. However, no bacteria, fungi or viruses were observed under transmission electron microscopy. Products of the expected size were amplified by PCR using nested, phytoplasma-specific primer pairs. In addition, plants temporarily showed amelioration of phytoplasma symptoms following treatment with the antibiotic tetracycline. Additional keywords: mycoplasma-like organism, electrophoresis, witches’ broom, proliferation, pathogen. Portulaca grandiflora (family Portulacaceae), commonly known as moss-rose purslane, is widely grown in temperate climates and is popular as an ornamental as it blooms all summer long. Portulaca is also used for medicinal purposes such as for relieving teeth grinding and muscle spasms, and for soothing gunpowder burns. As a food, Portulaca is used raw in salads or cooked like spinach. Portulaca is very rich in vitamins A, B1 and C and has antimicrobial and cytotoxic activity (Abou El Seoud et al. 2003). Phytoplasmas (earlier mycoplasma-like organisms) are emerging as devastating plant pathogens and are associated typically with little leaf diseases of several hundred plant species.