Landsnails of Eastern Australia Bibliography

Total Page:16

File Type:pdf, Size:1020Kb

Landsnails of Eastern Australia Bibliography Elucidating the diversity of mid-eastern Queensland Pinwheel Snails (Eupulmonata: Charopidae) using aspects of shell morphology Author Holcroft, Lorelle Published 2018-04 Thesis Type Thesis (Masters) School School of Environment and Sc DOI https://doi.org/10.25904/1912/1217 Copyright Statement The author owns the copyright in this thesis, unless stated otherwise. Downloaded from http://hdl.handle.net/10072/380059 Griffith Research Online https://research-repository.griffith.edu.au Elucidating the diversity of mid-eastern Queensland Pinwheel Snails (Eupulmonata: Charopidae) using aspects of shell morphology. Lorelle Holcroft School of Environment and Science Griffith University Submitted in fulfilment of the requirements of the degree of Master of Philosophy April, 2018 DECLARATION This work has not previously been submitted for a degree or diploma in any university. To the best of my knowledge and belief, the thesis contains no material previously published or written by another person except where due reference is made in the thesis itself. Lorelle Holcroft Elucidating the diversity of mid-eastern Queensland Pinwheel Snails (Eupulmonata: Charopidae) using aspects of shell morphology. Lorelle Holcroft s5063935 1 | P a g e ACKNOWLEDGMENTS The research presented in this dissertation could not have been done without the help of many colleagues and friends who supported me in many ways during the last two years. Only the names of some of them can be listed here. Firstly, Griffith University and my supervisors, Professor Jane Hughes and Dr Chris Burwell for their unstinting support, feedback and encouragement. Thank you, Jane for skillfully ensuring the right mix of ‘supervision’ and ‘independent latitude’ in research. I have learnt much these past two years, and that could not have happened without your guidance. I have benefited greatly from the valuable feedback and suggestions of my other supervisor, Dr Chris Burwell. Thank you Chris, for the comprehensive critique and discussions. This was enormously informative and constructive. Thanks also to Kathryn Real from Griffith University for the DNA extraction and subsequent support and especially to PhD student, Jeremy Wilson, for help and guidance with the cladistic analyses of the molecular data. Sincere gratitude is expressed to two eminent biologists, Dr Christine Lambkin from the Queensland Museum who spent time teaching the process for running a PAUP analysis and who supervised the author’s first efforts, and Dr Frank Köhler from the Australian Museum for his support for the DNA analysis. Over the past two years, I have had the great pleasure of interacting with an incredible group of people including PhD students and professors from the Griffith School of Environment and Science - the ‘Geek’ group. I do hope you enjoyed your treats. In particular, I would like to thank Jeremy Wilson, Dr Dan Schmidt and Kathryn Real for taking an interest in my research and offering valuable advice. To the staff at Queensland Museum who have been so encouraging and supportive whenever I have had questions, Dr Christine Lambkin, Darryl Potter, Dr John Healy, Geoff Thompson, photographer extraordinaire, all the Level 6 scientists and in particular, the vertebrate crowd who gave me space in their lab - thank you. The copyright of all photographs of shells in Chapters 2 to 5 belongs to the Queensland Museum unless otherwise stated. The Australian Rivers Institute is recognised for many educational opportunities and ongoing support offered. Petney Dickson, a big thank you for cheerfully handling all administrative niggles, and the IT staff at Queensland Museum for their technical support and wizardry. Finally, I would like to thank Dr John Stanisic who has provided immeasurable help and support over the course of this work, for continual encouragement, for brainstorming ideas and theories for many hours and for teaching me much about these tiny snails as well as providing me many forums in which to learn. His advice and insights have been extremely helpful in shaping the research and I would like to dedicate this thesis to John. To many family members and friends have assisted throughout the production of this thesis in a number of ways, my thanks go to them. Elucidating the diversity of mid-eastern Queensland Pinwheel Snails (Eupulmonata: Charopidae) using aspects of shell morphology. Lorelle Holcroft s5063935 2 | P a g e ABSTRACT Species of Charopidae from mid-eastern Queensland in the collections of the Queensland and Australian Museums were reviewed primarily using aspects of shell morphology. Protoconch sculpture played a key role in this revision and 261 protoconchs were examined by scanning electron microscopy in order to develop a basic terminology that could be used in descriptions of genera and species. Eleven baseline patterns, some with subtle variations, were established. Eight of these are shown to be present in mid- eastern Queensland Charopidae. Studies of protoconch and teleoconch sculpture combined with shell coiling patterns showed that a number of genera and species, many newly documented, are represented. A cladistic analysis using a range of shell measurements was conducted to confirm these results. Additional verification, though limited, was sought through molecular analysis where animal tissue was available. Anatomical dissection of the male genitalia was performed on specimens of two species for which adequate preserved material was available. From an initial 13 known species, thirty-nine species of charopid are documented including a reallocation of the three ‘Gyrocochlea’ species currently described from the region resulting in three new genera, Whitcochlea gen. nov., Stanisicaropa gen. nov. and Radiolaropa gen. nov., and a new species, Radiolaropa eungella sp. nov. An additional four new Gyrocochlea-grade species are described in four new genera, Amfractaropa gen. nov., Comularopa gen. nov. Nodularopa gen. nov., and Xenoropa gen. nov. The genera Isolderopa Stanisic 2010 and Pereduropa Stanisic 2010 are expanded with the description of six new species. A new genus, Tristanoropa gen. nov. is diagnosed for the inclusion of three new species. Twelve additional species, some based on damaged specimens, are briefly described in order to complete the inventory. The majority of mid-eastern Queensland species appear to be endemic to the region. Biogeographical discussions focus on how the charopid fauna of the Central Mackay Coast Bioregion relates to similar faunas in bioregions to the north and south. Isolation of the region and its rainforests by dry corridors to the north and south that have developed as result of continental aridification since the Miocene may offer an explanation for the high endemicity of the mid-eastern Queensland charopid species. PAPERS INCLUDED IN THESIS Included in this thesis are papers in Chapters 3, 4 and 5 for which I am the sole author. Appropriate acknowledgements of those who contributed to the research but did not qualify as authors are included in each paper. The bibliographic details for these papers are: Chapter 3: Holcroft, L. 2018a. Protoconch sculpture as a taxonomic tool in Australian charopid systematics (Gastropoda: Eupulmonata: Charopidae), Molluscan Research, DOI:10.1080/13235818.2017.1409069. Molluscan Research copyright- permission for reprinting within the thesis. Elucidating the diversity of mid-eastern Queensland Pinwheel Snails (Eupulmonata: Charopidae) using aspects of shell morphology. Lorelle Holcroft s5063935 3 | P a g e Chapter 4: Holcroft, L. 2018b. A revision of Gyrocochlea-grade Charopidae from mid-eastern Queensland and a redescription and generic reassignment of Gyrocochlea iuloidea (Forbes, 1851), G. chambersae Stanisic 2010 and G. danieli Stanisic, 2010. (Eupulmonata: Charopidae). Memoirs of the Queensland Museum-Nature, DOI:10.17082/j.2204-1478.60.2018.2017-14. Queensland Museum- permission for reprinting within the thesis. Chapter 5: Holcroft, L. in prep. A revision of Charopidae with a finely cancellate protoconch sculpture from mid-eastern Queensland. (Eupulmonata: Charopidae). Memoirs of the Queensland Museum- Nature (in prep). TABLE OF CONTENTS DECLARATION ................................................................................................................................... 1 ACKNOWLEDGMENTS ....................................................................................................................... 2 ABSTRACT.......................................................................................................................................... 3 PAPERS INCLUDED IN THESIS ......................................................................................................... 3 TABLE OF CONTENTS ................................................................................................................... 4 DIAGRAMS AND ILLUSTRATIONS ................................................................................................. 9 LIST OF TABLES .......................................................................................................................... 11 CHAPTER 1: Introduction ................................................................................................................ 12 1.2 Aims of this study ......................................................................................................................... 13 1.3 Thesis overview ..........................................................................................................................
Recommended publications
  • Classification of New Zealand Arionacea (Mollusca : Pulmonata
    CLASSIFICATION OF NEW ZEA L AND ARIONACEA (MOLLUSCA: PULMONATA ) A REVISION OF SOME ENDODONTID GENERA ( ENDODONTIDAE PILSBRY, 1894 ) VOL. 1 F RANCIS MARTIN CLIMO 1 969 A T HESIS PRESENTED FOR THE D E GREE OF DOCTOR OF PHILOSOPHY IN Z OOLOGY AT CANTERBURY UN IVERSITY, CHRISTCHURCH, NEW ZEA L A ND "The creation of natural hierarchical systems of organisms is based on hierarchic combinative differentiation of characte rs, more precisely, of the systems of characte rs. None of the characters taken alone can s e r ve as a crite rion for the determination of the rank of a taxonomic category. Obj ective crite ria exist for the species only, due to the pres enc e of continuous variability within the species and in its absence b etween the species. " (B. A. Wainstein, Zool. Zh. , Vol. 39 (1960) p. 1 778) 1. GENERAL INTRODUCTION The following systematic revisions of New Zealand taxa within the Arionacean subfamilies F l ammulininae Climo, 1969, Otoconchinae Cockerell, 1893 and Endodontinae Suter, 1913 (family Endodontidae Pilsbry, 1894) are based on quantitative reappraisals of shell morphology and studi es on radular and soft-part morphology. The last major revision of these New Zealand pulmonate taxa was presented by Suter (1 913) i n hi s Manual of the New Zealand Mollusca, and illustra ted in hi s Atlas of Plates which appeared in 1915. Suter' s work was, as were the great majority of earlier pulmonate systematic studies, based on studies of shell and radular morphology, and was the major contribution towards the erection of a systematic hierarchy which illustrated the indigenous nature of the New Zealand endodontid fauna.
    [Show full text]
  • Pu'u Wa'awa'a Biological Assessment
    PU‘U WA‘AWA‘A BIOLOGICAL ASSESSMENT PU‘U WA‘AWA‘A, NORTH KONA, HAWAII Prepared by: Jon G. Giffin Forestry & Wildlife Manager August 2003 STATE OF HAWAII DEPARTMENT OF LAND AND NATURAL RESOURCES DIVISION OF FORESTRY AND WILDLIFE TABLE OF CONTENTS TITLE PAGE ................................................................................................................................. i TABLE OF CONTENTS ............................................................................................................. ii GENERAL SETTING...................................................................................................................1 Introduction..........................................................................................................................1 Land Use Practices...............................................................................................................1 Geology..................................................................................................................................3 Lava Flows............................................................................................................................5 Lava Tubes ...........................................................................................................................5 Cinder Cones ........................................................................................................................7 Soils .......................................................................................................................................9
    [Show full text]
  • Plants Critical for Hawaiian Land Snail Conservation: Arboreal Snail Plant Preferences in Puʻu Kukui Watershed, Maui
    Plants critical for Hawaiian land snail conservation: arboreal snail plant preferences in Puʻu Kukui Watershed, Maui W ALLACE M. MEYER III, LILY M. EVANS,CONNOR J.K. KALAHIKI J OHN S LAPCINSKY,TRICIA C. GOULDING,DAVID G. ROBINSON D. POMAIKAʻ I K ANIAUPO-CROZIER,JAYNEE R. KIM K ENNETH A. HAYES and N ORINE W. YEUNG Abstract The Hawaiian archipelago was formerly home to plant species, which facilitate key interactions, is critical to one of the most species-rich land snail faunas (. species), the goal of conserving the remaining threatened snail fauna. with levels of endemism . %. Many native Hawaiian land Keywords Broussaisia arguta, critical habitat, extinction, snail species are now extinct, and the remaining fauna is gastropod, Hawaiʻi, mollusc, niche, Pacific islands vulnerable. Unfortunately, lack of information on critical habitat requirements for Hawaiian land snails limits the Supplementary material for this article is available at development of effective conservation strategies. The pur- doi.org/./S pose of this study was to examine the plant host preferences of native arboreal land snails in Puʻu Kukui Watershed, West Maui, Hawaiʻi, and compare these patterns to those from similar studies on the islands of Oʻahu and Hawaiʻi. Introduction Concordant with studies on other islands, we found that four species from three diverse families of snails in Puʻu he Hawaiian archipelago was formerly home to one of . Kukui Watershed had preferences for a few species of Tthe most species-rich land snail faunas ( species; understorey plants. These were not the most abundant can- Cowie et al., ; Yeung & Hayes, ). This rich fauna opy or mid canopy species, indicating that forests without resulted primarily from in situ speciation, leading to levels .
    [Show full text]
  • PUBLICATIONS 11 May 2021
    ROBERT H. COWIE – PUBLICATIONS 11 May 2021 Google Scholar metrics Citations – 8939 (3794 since 2016), h-index – 47 (32 since 2016), i10-index – 109 (65 since 2016) Books (5) Joshi, R.C., Cowie, R.H. & Sebastian, L.S. (eds.) 2017. Biology and Management of Invasive Apple Snails. Philippine Rice Research Institute, Muñoz, Nueva Ecija. xvii + 405 p. Cowie, R.H., Rundell, R.J. & Yeung, N.W. 2017. Samoan Land Snails and Slugs – An Identification Guide. Department of Marine and Wildlife Resources, American Samoa Government. viii + 71 p. Cowie, R.[H.] 2014. Journey to a Waterfall. A Biologist in Africa. Lulu, Raleigh. x + 279 p. Staples, G.W. & Cowie, R.H. (eds.) 2001. Hawai‘i’s Invasive species. A guide to invasive plants and animals in the Hawaiian Islands. Mutual Publishing & Bishop Museum Press, Honolulu. xii + 116 p. Cowie, R.H., Evenhuis, N.L. & Christensen, C.C. 1995. Catalog of the native land and freshwater molluscs of the Hawaiian Islands. Backhuys Publishers, Leiden. vi + 248 p. Journal articles (136) 2021 Gerlach, J., Barker, G.M., Bick, C.S., Bouchet, P., Brodie, G., Christensen, C.C., Collins, T., Coote, T., Cowie, R.H., Fiedler, G.C., Griffiths, O.L., Florens, F.B.V, Hayes, K.A., Kim, J., Meyer, J.-Y., Meyer, W.M., III, Richling, I., Slapcinsky, J.D., Winsor, L. & Yeung, N.W. 2021. Negative impacts of the invasive predators Euglandina ‘rosea’ (Mollusca: Spiraxidae) and Platydemus manokwari (Platyhelminthes: Geoplanidae) when used as biological control agents against the pest snail Lisschatina fulica (Mollusca: Achatinidae). Biological Invasions 23(4): 997-1031. Rollins, R.L., Cowie, R.H., Echaluse, M.V.
    [Show full text]
  • Fauna of New Zealand Ko Te Aitanga Pepeke O Aotearoa
    aua o ew eaa Ko te Aiaga eeke o Aoeaoa IEEAE SYSEMAICS AISOY GOU EESEAIES O ACAE ESEAC ema acae eseac ico Agicuue & Sciece Cee P O o 9 ico ew eaa K Cosy a M-C aiièe acae eseac Mou Ae eseac Cee iae ag 917 Aucka ew eaa EESEAIE O UIESIIES M Emeso eame o Eomoogy & Aima Ecoogy PO o ico Uiesiy ew eaa EESEAIE O MUSEUMS M ama aua Eiome eame Museum o ew eaa e aa ogaewa O o 7 Weigo ew eaa EESEAIE O OESEAS ISIUIOS awece CSIO iisio o Eomoogy GO o 17 Caea Ciy AC 1 Ausaia SEIES EIO AUA O EW EAA M C ua (ecease ue 199 acae eseac Mou Ae eseac Cee iae ag 917 Aucka ew eaa Fauna of New Zealand Ko te Aitanga Pepeke o Aotearoa Number / Nama 38 Naturalised terrestrial Stylommatophora (Mousca Gasooa Gay M ake acae eseac iae ag 317 amio ew eaa 4 Maaaki Whenua Ρ Ε S S ico Caeuy ew eaa 1999 Coyig © acae eseac ew eaa 1999 o a o is wok coee y coyig may e eouce o coie i ay om o y ay meas (gaic eecoic o mecaica icuig oocoyig ecoig aig iomaio eiea sysems o oewise wiou e wie emissio o e uise Caaoguig i uicaio AKE G Μ (Gay Micae 195— auase eesia Syommaooa (Mousca Gasooa / G Μ ake — ico Caeuy Maaaki Weua ess 1999 (aua o ew eaa ISS 111-533 ; o 3 IS -7-93-5 I ie 11 Seies UC 593(931 eae o uIicaio y e seies eio (a comee y eo Cosy usig comue-ase e ocessig ayou scaig a iig a acae eseac M Ae eseac Cee iae ag 917 Aucka ew eaa Māoi summay e y aco uaau Cosuas Weigo uise y Maaaki Weua ess acae eseac O o ico Caeuy Wesie //wwwmwessco/ ie y G i Weigo o coe eoceas eicuaum (ue a eigo oaa (owe (IIusao G M ake oucio o e coou Iaes was ue y e ew eaIa oey oa ue oeies eseac
    [Show full text]
  • Annual Report 2010–2011
    Australian Museum 2010–2011 Report Annual Australian Museum Annual Report 2010–2011 Australian Museum Annual Report 2010 – 2011 ii Australian Museum Annual Report 2010 –11 The Australian Museum Annual Report 2010 –11 Availability is published by the Australian Museum Trust, This annual report has been designed for accessible 6 College Street Sydney NSW 2010. online use and distribution. A limited number of copies have been printed for statutory purposes. © Australian Museum Trust 2011 This report is available at: ISSN 1039-4141 www.australianmuseum.net.au/Annual-Reports. Editorial Further information on the research and education Project management: Wendy Rapee programs and services of the Australian Museum Editing and typesetting: Brendan Atkins can be found at www.australianmuseum.net.au. Proofreading: Lindsay Taaffe Design and production: Australian Museum Environmental responsibility Design Studio Printed on Sovereign Offset, an FSC- certified paper from responsibly grown fibres, made under an All photographs © Australian Museum ISO 14001– accredited environmental management 2011, unless otherwise indicated. system and without the use of elemental chlorine. Contact Australian Museum 6 College Street Sydney NSW 2010 Open daily 9.30 am – 5.00 pm t 02 9320 6000 f 02 9320 6050 e [email protected] w www.australianmuseum.net.au www.facebook.com/australianmuseum www.twitter.com/austmus www.youtube.com/austmus front cover: The Museum's after-hours program, Jurassic Lounge, attracted a young adult audience to enjoy art, music and new ideas. Photo Stuart Humphreys. iii Minister The Hon. George Souris, MP and Minister for the Arts Governance The Museum is governed by a Trust established under the Australian Museum Trust Act 1975.
    [Show full text]
  • Land Snail Diversity in Brazil
    2019 25 1-2 jan.-dez. July 20 2019 September 13 2019 Strombus 25(1-2), 10-20, 2019 www.conchasbrasil.org.br/strombus Copyright © 2019 Conquiliologistas do Brasil Land snail diversity in Brazil Rodrigo B. Salvador Museum of New Zealand Te Papa Tongarewa, Wellington, New Zealand. E-mail: [email protected] Salvador R.B. (2019) Land snail diversity in Brazil. Strombus 25(1–2): 10–20. Abstract: Brazil is a megadiverse country for many (if not most) animal taxa, harboring a signifi- cant portion of Earth’s biodiversity. Still, the Brazilian land snail fauna is not that diverse at first sight, comprising around 700 native species. Most of these species were described by European and North American naturalists based on material obtained during 19th-century expeditions. Ear- ly 20th century malacologists, like Philadelphia-based Henry A. Pilsbry (1862–1957), also made remarkable contributions to the study of land snails in the country. From that point onwards, however, there was relatively little interest in Brazilian land snails until very recently. The last de- cade sparked a renewed enthusiasm in this branch of malacology, and over 50 new Brazilian spe- cies were revealed. An astounding portion of the known species (circa 45%) presently belongs to the superfamily Orthalicoidea, a group of mostly tree snails with typically large and colorful shells. It has thus been argued that the missing majority would be comprised of inconspicuous microgastropods that live in the undergrowth. In fact, several of the species discovered in the last decade belong to these “low-profile” groups and many come from scarcely studied regions or environments, such as caverns and islands.
    [Show full text]
  • Fauna of New Zealand Website Copy 2010, Fnz.Landcareresearch.Co.Nz
    aua o ew eaa Ko te Aiaga eeke o Aoeaoa IEEAE SYSEMAICS AISOY GOU EESEAIES O ACAE ESEAC ema acae eseac ico Agicuue & Sciece Cee P O o 9 ico ew eaa K Cosy a M-C aiièe acae eseac Mou Ae eseac Cee iae ag 917 Aucka ew eaa EESEAIE O UIESIIES M Emeso eame o Eomoogy & Aima Ecoogy PO o ico Uiesiy ew eaa EESEAIE O MUSEUMS M ama aua Eiome eame Museum o ew eaa e aa ogaewa O o 7 Weigo ew eaa EESEAIE O OESEAS ISIUIOS awece CSIO iisio o Eomoogy GO o 17 Caea Ciy AC 1 Ausaia SEIES EIO AUA O EW EAA M C ua (ecease ue 199 acae eseac Mou Ae eseac Cee iae ag 917 Aucka ew eaa Fauna of New Zealand Ko te Aitanga Pepeke o Aotearoa Number / Nama 38 Naturalised terrestrial Stylommatophora (Mousca Gasooa Gay M ake acae eseac iae ag 317 amio ew eaa 4 Maaaki Whenua Ρ Ε S S ico Caeuy ew eaa 1999 Coyig © acae eseac ew eaa 1999 o a o is wok coee y coyig may e eouce o coie i ay om o y ay meas (gaic eecoic o mecaica icuig oocoyig ecoig aig iomaio eiea sysems o oewise wiou e wie emissio o e uise Caaoguig i uicaio AKE G Μ (Gay Micae 195— auase eesia Syommaooa (Mousca Gasooa / G Μ ake — ico Caeuy Maaaki Weua ess 1999 (aua o ew eaa ISS 111-533 ; o 3 IS -7-93-5 I ie 11 Seies UC 593(931 eae o uIicaio y e seies eio (a comee y eo Cosy usig comue-ase e ocessig ayou scaig a iig a acae eseac M Ae eseac Cee iae ag 917 Aucka ew eaa Māoi summay e y aco uaau Cosuas Weigo uise y Maaaki Weua ess acae eseac O o ico Caeuy Wesie //wwwmwessco/ ie y G i Weigo o coe eoceas eicuaum (ue a eigo oaa (owe (IIusao G M ake oucio o e coou Iaes was ue y e ew eaIa oey oa ue oeies eseac
    [Show full text]
  • Land Snails of the Eungella Plateau and Environs, Clarke Range, Mid-Eastern Queensland
    LAND SNAILS OF THE EUNGELLA PLATEAU AND ENVIRONS, CLARKE RANGE, MID-EASTERN QUEENSLAND STANISIC, J.1 & WINDOW, E.2 This study documents the land snails recovered on the Eungella Biodiversity Survey. Thirty-three species belonging to 10 families are documented, representing the first attempt at analysing the altitudinal stratification of the Eungella land snail fauna. Three species were newly recorded and subsequently described from the survey, these being Eungellaropa crediton Holcroft 2018, Burwellia staceythomsonae Holcroft & Stanisic 2018, and Pereduropa burwelli Holcroft & Stanisic 2018. Fastosarion comerfordae Stanisic 2018 was also described from the survey material, having previ- ously been confused with the Mt Dryander Fastosarion superba (Cox, 1871). Species are discussed in relation to their current taxonomy, their local and more widespread distributions, and their habitat and microhabitat preferences. Shortcomings of the land snail survey are also briefly discussed. A bio- geographic overview of the Eungella rainforest land snails is presented. Keywords: elevational gradient, land snails, taxonomy, distributions 1 Biodiversity Program, Queensland Museum, PO Box 3300, South Brisbane, Queensland, Australia 2 School of Environmental & Natural Sciences, Griffith University, Nathan, Queensland, Australia INTRODUCTION given the predilec tion of land snails for humid The Eungella Biodiversity Survey (EBS) of 2014– wet forests along the length of the continent’s eastern 2015 (Ashton et al., this volume) was the first con- seaboard, the Eungella region appears to offer a num- certed effort at surveying and documenting the land ber of prime habitats for a robust community of land snails of the Eungella plateau and environs. Previous snails. land snail collecting in the area by the Queensland Museum (QM) comprised only short-term visits METHODS that formed part of more wide-ranging expeditions.
    [Show full text]
  • Mollusca: Gastropoda) from Islands Off the Kimberley Coast, Western Australia Frank Köhler1, Vince Kessner2 and Corey Whisson3
    RECORDS OF THE WESTERN AUSTRALIAN MUSEUM 27 021–039 (2012) New records of non-marine, non-camaenid gastropods (Mollusca: Gastropoda) from islands off the Kimberley coast, Western Australia Frank Köhler1, Vince Kessner2 and Corey Whisson3 1 Department of Environment and Conservation of Western Australia, Science Division, PO Box 51, Wanneroo, Western Australia 6946; and Australian Museum, 6 College Street, Sydney, New South Wales 2010, Australia. Email: [email protected] 2 162 Haynes Road, Adelaide River, Northern Terrritory 0846, Australia. Email: [email protected] 3 Department of Aquatic Zoology, Western Australian Museum, 49 Kew Street, Welshpool, Western Australia 6106, Australia. Email: [email protected] ABSTRACT – The coast of the Western Australian Kimberley boasts an archipelago that comprises several hundred large islands and thousands much smaller. While the non–marine gastropod fauna of the Kimberley mainland has been surveyed to some extent, the fauna of these islands had never been comprehensively surveyed and only anecdotal and unsystematic data on species occurrences have been available. During the Western Australian Department of Environment and Conservation’s Kimberley Island Survey, 2008–2010, 22 of the largest islands were surveyed. Altogether, 17 species of terrestrial non–camaenid snails were found on these islands. This corresponds to about 75% of all terrestrial, non–camaenid gastropods known from the entire Kimberley region. In addition, four species of pulmonate freshwater snails were found to occur on one or more of four of these islands. Individual islands harbour up to 15, with an average of eight, species each. Species diversity was found to be higher in the wetter parts of the region.
    [Show full text]
  • Rangelands, Western Australia
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • Biodiversity Summary: Rangelands, Western Australia
    Biodiversity Summary for NRM Regions Guide to Users Background What is the summary for and where does it come from? This summary has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. It highlights important elements of the biodiversity of the region in two ways: • Listing species which may be significant for management because they are found only in the region, mainly in the region, or they have a conservation status such as endangered or vulnerable. • Comparing the region to other parts of Australia in terms of the composition and distribution of its species, to suggest components of its biodiversity which may be nationally significant. The summary was produced using the Australian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. The list of families covered in ANHAT is shown in Appendix 1. Groups notnot yet yet covered covered in inANHAT ANHAT are are not not included included in the in the summary. • The data used for this summary come from authoritative sources, but they are not perfect.
    [Show full text]