Karst Wetlands Biodiversity Ani) Continuity Through Major Climatic Change: an Example from Arid Tropical Western Australia

Total Page:16

File Type:pdf, Size:1020Kb

Karst Wetlands Biodiversity Ani) Continuity Through Major Climatic Change: an Example from Arid Tropical Western Australia KARST WETLANDS BIODIVERSITY ANI) CONTINUITY THROUGH MAJOR CLIMATIC CHANGE: AN EXAMPLE FROM ARID TROPICAL WESTERN AUSTRALIA W.F.Humphreys krrestrial InvertebrateZoology, Museum o.f l,{atural Science, WesternAustralian Museum, Francis Street,Perth, WA6000, Australia; E-mail: [email protected]. gov. au Abstract Subterraneankarst wetlands,recently included as a wetland type under the Ramsarclassification, are introducedhere to the wetlandsbiodiversity literature.The generalcharacteristics of karst land- scapesexplain the connectionswith non-karsticwetlands, the often diffuse limits to karst wetlands and their vulnerability to exploitation and pollution. Less than l0oA of the Earth shows distinctive karst landforms but on a global basiskarst wetlandssupport the greaterpart of subterraneanbiodi- versity.This introduction is amplified by a detailed account of a single karst wetland Cape Range peninsula,Western Australia. Cape Range,the only orogenicTertiary limestone in Australia, occurs on a continent relatively devoid of karst. It lies in the arid tropics where surface water flows are mostly episodic and fre- quently saline. The Cape Range karst wetlands contain both freshwater and anchialine wetlands whose natural accessis through a few karst windows and caves.The anchialine system shows marked stratification of their physico-chemicaland biological profiles. The lack of surfacewaters and the particular geographical context means that much of the groundwater fauna represents ancient geographical or phyletic relicts. A general case is made supporting the persistenceof groundwaterfauna in karstic systemsthrough geologicaleras. Introduction The 6th Conferenceof ContractingParties to the RamsarConventionl (Brisbane 1996) voted to include subterraneankarst wetlandsas a wetland type under the Ramsarclassification system. This inclusionhas far reachingimplications, not only for karst regions,but also for a wide rangeof wetlands,and for groundwatercon- servationgenerally. Karst hydrologicalsystems are extensive,occur in many guis- es, are vulnerable,and frequentlysupport unique phyletic and distributionalrelict- ual faunas(see Humphreys. in pressa). In addition,they havedrainage characteris- tics (Ford and Williams 1989) that serveto influencethe hydrologicalchanges experiencedby wetlandsremote from the karst systemsthemselves. I Conventionon Wetlandsof InternationalImportance especially as Waterfowl Habitat (RamsaqIran 197r). BiodiversiQ in wetlands: assessment,function and conservation, volume l edited by B. Gopal, W.J.Junk and J.A. Davis, pp. 227-258 @ 2000 Backht:s Publishers. Leiden. The Netherlands 228 WE Httmphrevs The biota of karstlandscomprise a wide rangeof epigeantaxa, including calci- phytesand calciphile lineages such as molluscs - which canbe both highly diverse andlocally endemic (Solem 1981a, 1981b, 1984,1985, 1997, Woodruff and Solem 1990)- and,in karstwetlands, phreatophytic vegetation that makesdirect use of the groundwaterand which canhave a major influenceon the local hydrology(Tromble 1977).But it also includesthe specialisedfauna restrictedto subterraneanaquatic systems- thesewill be referredto generallyas stygobitesor stygofauna(Gibert et al. 1994)in contradistinctionto troglobiteswhich are essentiallyterrestrial fauna restrictedto subterraneanair-filled voids (the term troglobitesis sometimesused sensulqto to encompassall hypogeanenvironments). Stygofauna can alsobe both highlydiverse and locally endemic (e.g. Holsinger 1978, Longley 1981, Holsinger and Culver. 1988,Wilson and Ponder1992, Stoch 1995,Bradbury and Williams 1996a, 1996b, 1997a, 1997b, Knott and Jasinska 1998, Humphreys 1999a, Humphreys,in pressb, Wilson andKeable 1999). What is Karst The unusualgeomorphic features of the Kras - known as Karst in the period of the Austro-Hungarianempire - region on the Italo-Slovenianborder have become known as 'karst phenomena'.The term karst denotesthe distinctivestyle of terrain resulting predominantlyfrom the dissolutionof rock by natural waters,hence the term 'solublerock landscape'is sometimesused. Owing to their solubilitykarst is most fully developedin carbonaterocks suchas limestoneand dolomite,and evap- oraterocks suchas gypsum.Such areas are characterrzedby sinking streams,caves, encloseddepressions, fluted rock outcropsand large springs(Fig. 1, Ford and Williams 1989).The integrity of such landscapesis dependentupon the mainte- nanceof the natural hydrologicalsystem and they are potentiallyhighly sensitive,, comparablein this respectto desertsor coastalmargins. Whether the coincidence of karst,desert and coastalsystems, as in the CapeRange karst discussedbelow, makesthe areaextraordinarily vulnerable is a moot point. The Limits to Karst Wetlands The dissolutionof carbonaterocks occursmost rapidly with running water and at the interfacesbetween waters of differing chemicalcomposition, and especially betweenfreshwater and saltwater(Ford and Williams 1989).In mostregions water tables,at somestage, have been lower thanat presentowing, inter alia, to previously drier climateor lower sealevel, hence, for this reasonalone, karst formationsare found commonly well below the current water table. Even in arid zonesthe lower partsof karstare usually below the watertable (phreatic zone) and may containboth lentic(groundwater) and lotic (pressuretubes) wetland systems. Even in thoseparts of the karst abovethe local water table (vadosezone) there may be lotic wetlands, as found for example,in undergroundstream passages. Wheresurface exposures of wateroccur in karstlands,the normalrange of wet- land featuresis producedbut,, in addition,a numberof distinctivefeatures - some- times with specializedfaunas - may also occur associatedwith karst.Amongst theseare anchialine pools (Maciolek 1986, Brock et al. 1987,Thomas et al. 1991, Karst wetlands biodiversity and continuiQ through ntajor climatic chctnge 229 Fig. l. The comprehensivekarst system.(Fig 1.1 of Ford and Williams 1989;with permission). 1992,I1iffe1992, in press,Sket 1996), springs and spring brooks (Botosaneanu 1998), mound springs(Williams 1965,Harris 1992,Ponder et al. 1995,Knott and Jasinska 1998),tufa (travertine)dams (Julia 1983,Marias 1990,Pentecost 1992, Drysdale and Head 1994,Humphreys, Awramik andJebb 1995), calcretes (Humphreys 1999a) and blue holes(Stock 1986b,Ilitre 1992),details of which will be presentedonly where they are relevantto the examplepresented later in this chapter. Furthermore,open conduit flow permits large-scalemovements within karst which may facilitatedynamical processes - which may themselvesbe extrinsicto the karst system- supportingthe fauna associatedwith the karst. For example,in the EdwardsAquifer (artesian),Texas (Kuehn and Koehn 1988,Longley 1981, 1992),and in Movile Cave (karstic) in Romania(Sarbu and Popa 1992,Sarbu, in press,Sarbu et al. 1996),sulphides, respectively of petroleumand magmatic origin, supportchemoautotrophic ecosystems (Poulson and Lavoie,,in press).Analagous systemsare found associatedwith both hydrothermal(Childress and Fisher 1992) and cold deepsea vents (Arp and Fisher 1995,Scott and Fisher1995), with fauna in the latter also utilising methaneharvesting bacteria (MacDonald et al. 1989). Chemoautotropyhas also been demonstratedin FrasassiCave (Sarbu et al., in press),and strongly indicatedin anchialinesystems (Pohlman et a1.,in press, Humphreys1999b). Karst wetlandsmerge imperceptiblyinto groundwater- water which doesnot interact in the short term with surface waters - and with flow paths beneath (hyporheic)and alongside(epirheic zone))surface water courseswith which short- term interactionstake place through upwellings and downwellings(Stanford and Ward 1988,Gibert et al. 1994,Ward et al.,in press)which haveprofound effects on 230 WF Htmphreys stygalecology (e.g. Dole-Olivier et. al. 1994,Danielopol et al., in press).The fauna typical of karstwetlands may extendinto lavatubes (Wilkens et al.1986),riverine gravels(Boulton 1993),and into immediatelysub-littoral systems such as subma- rine springs (Danielopol and Bonaduce 1990). In addition, through Gyben- Hetzbergsystems - in which freshwaterlens overlie seawater intrusions(Ford and Williams 1989) they mergewith the marinesystems especially in coastsexhibit- ing anchialine(var. anchihaline) waters which may supportextremely diverse, often relictualfaunas (Thomas et al. l99l,Iliffe 1992,in press,Thomas et al. 1992,Sket 1996,Yager and Humphreys 1996).Anchialine systemsare near coastal subter- raneanmixohaline waters that are undertidal influencebut haveonly subterranean connectionswith the sea;they typically occur in volcanicor limestonebedrock and have limited surfaceexposure (Stock et al. 1986).Such waterstypically exhibit markedchanges in the depth profiles of numerousphysico-chemical parameters (Iliffe, in press,Yager and Humphreys1996, Humphreys 1999b). Karst wetlandsinclude two distinctprocesses that integrateto producethe char- acteristickarst landscapes. For, in additionto the dissolutionprocesses defining karst, there are also constructionalkarst featuresinvolving the accumulationof new car- bonatemasses that rangein scalefrom minor speleothemdeposition to massivetufa depositson hillsides.Such depositions may involveboth biogenicand physicochem- ical processes(Humphreys, Awrwnik and Jebb 1995).Associated coral reef com- plexesmay be consideredan integralparl of the karst system(Hamilton-Smith et al. 1998),as, for example,the largeNingaloo reef fringing the CapeRange peninsula. Calcretesare a form of carbonaterock generallyomitted from discussionsof
Recommended publications
  • Junior Cave Scientist Cave and Karst Program Activity Book Ages 5 – 12+
    National Park Service U.S. Department of the Interior Geologic Resources Division Junior Cave Scientist Cave and Karst Program Activity Book Ages 5 – 12+ Name: Age: Explore • Learn • Protect 1 Become a Junior Cave Scientist Caves and karst landscapes are found throughout the United States. These features are important as part of our Nation's geologic heritage. In this book, you will explore a fascinating and fragile underground world, learn about the values of caves and karst landscapes, and complete fun educational activities. Explore magnificent and beautiful caves. You will find an amazing underground world just beneath your feet! Learn about caves and karst systems and the work that cave scientists do. Protect our natural environments and the things that make caves and karst areas special. To earn your badge, complete at least activities. (Your Age) Activities in this book are marked with an age indicator. Look for the symbols below: Flashlight Lantern Helmet and Headlamp Ages 5 - 7 Ages 8 – 11 Ages 12 and Older Put a check next to your age indicator on each page that you complete. I received this book from: After completing the activities, there are two ways to receive your Junior Cave Scientist badge: • Return the completed book to a ranger at a participating park, or 2 • Visit go.nps.gov/jrcavesci What are Speleo-Fact: Mammoth Cave is the longest cave in world with over 405 miles (652 km) of connected passageways. Caves and Karst? Caves are naturally occurring voids, cavities, interconnected passageways, or alcoves in the earth. Caves preserve fossils, minerals, ecosystems, and records of past climates.
    [Show full text]
  • Hobbs, H.H., and D.C. Culver. 2009
    of the L"SA _~arional ~Ylogical Society, Inc. -~- J the ~ational Speleological Society, Inc. 13 Cave Avenue Ennrsville.Alabama 35810-4431, U.S.A. 256-852-1300 E-mail: [email protected] Web page: http://www.caves.org All rights reserved, including the right to reproduce this book or portions thereof in any fonn or by any means, mechanical or electronic, including photocopying, recording, or by any information storage or retrieval system without permission in writing from the publisher. All inquiries should be addressed to the National Speleological Society. Editors: Arthur N. Palmer and Margaret V. Palmer Graphics: M.Y. Palmer andA.N. Palmer Formatting and photograph preparation: A.N. Palmer Library of Congress Control Number: 2007943932 ISBN: 9781879961289 Printed in the U.S.A. ged; and they, their contents, and their biota deserve our protection. Try to leave no trace of your _-hDDiJ:tmcm~ are on private property, and land-owner relations can be delicate. For these reasons, specific ~ ~ ~ IJM inrhuinf in publications of the National Speleological Society. Caves can also pose a danger to those 'T who lack experience. Access to caves, and assistance in meeting the requirements for safe .~ lUI!~aticjeJ i1:r rarwrrring local chapters of the NSS. 15 Cave Biology An Overview of Cave Biology in the USA The transition zone of caves is a dynamic region of constant darkn (aphotic), but where the microclimate is noticeably still affected Horton H. Hobbs III and David C. Culver surface events. Fluctuations in temperature and humidity, decreasi diversity of species, and lower biomass reflect the influences of bo AVES have traditionally been considered exotic and rare habitats, epigean and hypogean environments.
    [Show full text]
  • Annual Report 2010–2011
    Australian Museum 2010–2011 Report Annual Australian Museum Annual Report 2010–2011 Australian Museum Annual Report 2010 – 2011 ii Australian Museum Annual Report 2010 –11 The Australian Museum Annual Report 2010 –11 Availability is published by the Australian Museum Trust, This annual report has been designed for accessible 6 College Street Sydney NSW 2010. online use and distribution. A limited number of copies have been printed for statutory purposes. © Australian Museum Trust 2011 This report is available at: ISSN 1039-4141 www.australianmuseum.net.au/Annual-Reports. Editorial Further information on the research and education Project management: Wendy Rapee programs and services of the Australian Museum Editing and typesetting: Brendan Atkins can be found at www.australianmuseum.net.au. Proofreading: Lindsay Taaffe Design and production: Australian Museum Environmental responsibility Design Studio Printed on Sovereign Offset, an FSC- certified paper from responsibly grown fibres, made under an All photographs © Australian Museum ISO 14001– accredited environmental management 2011, unless otherwise indicated. system and without the use of elemental chlorine. Contact Australian Museum 6 College Street Sydney NSW 2010 Open daily 9.30 am – 5.00 pm t 02 9320 6000 f 02 9320 6050 e [email protected] w www.australianmuseum.net.au www.facebook.com/australianmuseum www.twitter.com/austmus www.youtube.com/austmus front cover: The Museum's after-hours program, Jurassic Lounge, attracted a young adult audience to enjoy art, music and new ideas. Photo Stuart Humphreys. iii Minister The Hon. George Souris, MP and Minister for the Arts Governance The Museum is governed by a Trust established under the Australian Museum Trust Act 1975.
    [Show full text]
  • Hotspots of Subterranean Biodiversity in Caves and Wells
    David C. Culver and Boris Sket - Hotspots of Subterranean Biodiversity in Caves and Wells. Journal of Cave and Karst Studies 62(1):11-17. HOTSPOTS OF SUBTERRANEAN BIODIVERSITY IN CAVES AND WELLS DAVID C. CULVER Department of Biology, American University, 4400 Massachusetts Ave., NW, Washington, DC 20016, USA, [email protected] BORIS SKET Department of Biology, Biotechnical Faculty, University of Ljubljana, P.O. Box 2995, 1001 Ljubljana, SLOVENIA, [email protected] We documented 18 caves and two karst wells that have 20 or more stygobites and troglobites. Crustacea dominated the aquatic fauna. Taxonomic composition of the terrestrial fauna varied, but Arachnida and Insecta together usually dominated. Geographically, the sites were concentrated in the Dinaric Karst (6 caves). Sites tended to have high primary productivity or rich organic input from the surface, be large caves, or have permanent groundwater (phreatic water). Dokumentirala sva 18 jam in dva kraška vodnjaka, iz katerih je znanih 20 ali vec vrst troglobiontov in stigobiontov. V vodni favni preladujejo raki. Taksonomski sestav kopenske favne je raznolik, vendar pajkovci in zuzelke skupaj navadno prevladujejo. Najvec takšnih jam (šest) je v Dinarskem krasu. Nadpovprecno so zastopane jame z lastno primarno produkcijo ali bogatim vnosom hrane s površja, obsezne jame in jame, ki vkljucujejo tudi freatsko plast. Over the past few years, there has been a growing aware- terns at individual sites. Even though most subterranean bio- ness and concern with biodiversity worldwide. Books and diversity results from the accumulation of different species monographs with a focus on biodiversity have appeared (e.g., from nearby sites, there are some outstanding examples of high Wilson 1992; Master et al.
    [Show full text]
  • Stygofauna Survey – Exmouth Cape Aquifer: Scoping Document Describing Work Required to Determine Ecological Water Requirements for the Exmouth Cape Aquifer
    Stygofauna Survey – Exmouth Cape Aquifer: Scoping Document Describing Work Required to Determine Ecological Water Requirements for the Exmouth Cape Aquifer Prepared for Department of Water by Bennelongia Pty Ltd April 2008 Report 2008/09 Bennelongia Pty Ltd Exmouth Cape Aquifer Stygofauna EWRs Stygofauna Survey – Exmouth Cape Aquifer: Scoping Document Describing Work Required to Determine Ecological Water Requirements for the Exmouth Cape Aquifer Bennelongia Pty Ltd 64 Jersey Street Jolimont WA 6913 www.bennelongia.com.au ACN 124 110 167 April 2008 Report 2008/09 i Bennelongia Pty Ltd Exmouth Cape Aquifer Stygofauna EWRs LIMITATION: This review has been prepared for use by the Department of Water and its agents. Bennelongia accepts no liability or responsibility in respect of any use or reliance on the review by any third party. Bennelongia has not attempted to verify the accuracy and completeness of all information supplied by the Department of Water. COPYRIGHT: The document has been prepared to the requirements of the Department of Water. Copyright and any other Intellectual Property associated with the document belong to Bennelongia and may not be reproduced without written permission of the Department of Water or Bennelongia. Client – Department of Water Report Version Prepared by Checked by Submitted to Client Method Date Draft report Vers. 1 Stuart Halse email 8.iv.08 Vers. 2 Stuart Halse email 10.iv.08 Vers. 3 Stuart Halse email 26.v.08 Final report Stuart Halse email 2.vii.08 K:/Projects/DoW_01/Report/BEC_Exmouth_EWRs_29vii08 ii Bennelongia Pty Ltd Exmouth Cape Aquifer Stygofauna EWRs Executive Summary Water resources on the Exmouth peninsula are very limited and future expansion of the Exmouth townsite will place considerable pressure on potable water supplies.
    [Show full text]
  • Stygofauna of Karstic Ecosystem in Ponor Mountains, Western Bulgaria: Present Knowledge and Research Challenges
    ACTA ZOOLOGICA BULGARICA Acta zool. bulg., 61 (2), 2009: 161-168 Stygofauna of Karstic Ecosystem in Ponor Mountains, Western Bulgaria: Present Knowledge and Research Challenges Vesela V. Evtimova1*, Ivan S. Pandourski1, Aleksey D. Benderev2 1 Institute of Zoology, Bulgarian Academy of Sciences, 1, Tsar Osvoboditel Blvd., 1000 Sofi a, Bulgaria; E-mails: [email protected]; [email protected]; 2 Geological Institute, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 24, 1113 Sofi a, Bulgaria; E-mail: [email protected] Abstract: The purpose of this research is to examine the relationships between the karstic complexes and the hydro- geological characteristics of karst on one hand, and the distribution of stygobiont species, on the other. The research was conducted in the karstic region of Ponor Mountains, part of Stara Planina range, Western Bulgaria, with an area of approximately 60 km2 and average elevation of about 1000 m a.s.l. The karstic springs in the foot of the mountains are the only water source for nearly 15 000 people. Two basic rock complexes can be distinguished regarding karstifi cation: Triassic karstic complex and Upper Jurassic complex. The principal collector of the groundwater is the Triassic complex with annual discharge of 2900 dm3/s from which 80% is leaving the system through the Iskretski izvori springs. The Jurassic complex is lacking superfi cial outfl ow which determines its precipitation alimentation. The stygofauna of Ponor Mountains is very heterogeneously distributed and its composition varies greatly from one station to another. Nevertheless, the similarity calculated on the basis of presence/absence of stygobiont species is high (above 0.7) for the locations from Quaternary and Jurassic complexes.
    [Show full text]
  • Troglofauna Survey at Koolyanobbing
    Troglofauna survey at Koolyanobbing Prepared for Portman Ltd by Bennelongia Pty Ltd November 2008 Report 2008/49 Troglofauna survey at Koolyanobbing Bennelongia Pty Ltd 64 Jersey Street Jolimont WA 6913 www.bennelongia.com.au ACN 124 110 167 November 2008 Report 2008/49 Bennelongia Pty Ltd Koolyanobbing troglofauna LIMITATION: This review has been prepared for use by Portman Ltd and its agents. Bennelongia accepts no liability or responsibility in respect of any use or reliance on the review by any third party. Bennelongia has not attempted to verify the accuracy and completeness of all information supplied by Portman. COPYRIGHT: The document has been prepared to the requirements of Portman. Copyright and any other Intellectual Property associated with the document belong to Bennelongia and may not be reproduced without written permission of Portman or Bennelongia. Client – Portman Ltd Report Version Prepared by Checked by Submitted to Client Method Date Draft report Vers. 1 Andrew Trotter Stuart Halse email 25.xi.08 Final report Andrew Trotter Stuart Halse email 12.xii.08 K:\Projects\B_PORT_01\Report\Koolyanobbing\BEC_Koolyanobbing_final_12.xii.08.docx ii Bennelongia Pty Ltd Koolyanobbing troglofauna Executive Summary This report provides the results of a troglofauna survey at Portman Ltd’s proposed mine sites in B and C Deposit (proposed B and C Pits) at Koolyanobbing, which is located approximately 50 km north of Southern Cross in the Yilgarn region of Western Australia. Portman is seeking environmental approval to mine B and C Deposits. The purpose of this survey was to document the troglofaunal community at the proposed mine sites and assess the potential impacts of the proposed mines on troglofauna.
    [Show full text]
  • Troglobitic Specimens Recorded
    655000 660000 665000 670000 675000 680000 685000 690000 695000 7450000 7445000 Deposit H Deposit I A3b (!*# (! Deposit B (! !((! Deposit G (! ^ 7440000 *# (! A2d Deposit C Legend (! (! Study Area Deposit D (! Deposit Deposit A Deposit F 7435000 Troglibitic specimens Mt Ella (! Anillini ‘sp. indet’. Deposit E (! Atelurinae ‘sp. indet.’ (! Cormocephalus 'CHI003'. A4 - -Pp (! Embioptera ‘sp. indet.’ 7430000 (! Hydrobiomorpha 'sp. indet.’ A4 - -Pp *# Meenoplidae ‘sp. indet.’ (! Nocticola ‘sp. indet.’ K A2d ^ Prethopalpus 'sp indet.' 0 2.5 5 !( Pseudodiploexochus ‘sp. nov.’ 7425000 Kilometres (! Trogiidae ‘sp. indet.’ Absolute Scale - 1:110,000 Figure: 4.3 Drawn: BG Project ID: 1459 Date: 12/2/2013 Troglobitic specimens recorded Coordinate System Unique Map ID: BG282 Name: GDA 1994 MGA Zone 50 Projection: Transverse Mercator Datum: GDA 1994 A3 Rio Tinto Greater West Angelas Subterranean Fauna Assessment This page has been left blank intentionally May 2013 34 Rio Tinto Greater West Angelas Subterranean Fauna Assessment 4.3 SUMMARY OF TROGLOFAUNA GROUPS RECORDED 4.3.1 Thysanura FAMILY NICOLETIIDAE Atelurinae ‘sp. Indet.’ A single specimen was collected from Deposit D in bore WAD 358. Pilbara thysanurans are poorly known and the taxonomy of Nicoletiidae is based on their DNA sequences rather than published species descriptions. Subterranean Atelurinae are well known throughout the Pilbara; however, nearly all of the species recognised to date appear to be range restricted. This specimen appears to be characteristic of the Pilbara nicoletiids. This species is a likely SRE. 4.3.2 Psocoptera FAMILY TROGIIDAE Trogiidae ‘sp. indet.’ A single specimen was collected from Deposit D in bore DDRC 006. Only identification to family level was possible.
    [Show full text]
  • Mt Gibson Ranges - Iron Hill Deposits: Troglofauna Assessment
    Mt Gibson Ranges - Iron Hill Deposits: Troglofauna Assessment Prepared for: Mount Gibson Mining February 2016 Final Report Iron Hill Deposit Troglofauna Mount Gibson Mining Mt Gibson Ranges - Iron Hill Deposits: Troglofauna Assessment Bennelongia Pty Ltd 5 Bishop Street Jolimont WA 6913 P: (08) 9285 8722 F: (08) 9285 8811 E: [email protected] ACN: 124 110 167 Report Number: 244 Report Version Prepared by Reviewed by Submitted to Client Method Date Draft Andrew Trotter Stuart Halse email 10 August 2015 Stuart Halse Andrew Trotter Draft email 11 February 2016 Danilo Harms Danilo Harms Final Renee Young Stuart Halse email 26 February 2016 K:\Projects\B_MGIB_02\Survey Report_BEC_Iron Hill Deposit Troglofauna Survey Assessment_final16ii16 This document has been prepared to the requirements of the Client and is for the use by the Client, its agents, and Bennelongia Environmental Consultants. Copyright and any other Intellectual Property associated with the document belong to Bennelongia Environmental Consultants and may not be reproduced without written permission of the Client or Bennelongia. No liability or responsibility is accepted in respect of any use by a third party or for purposes other than for which the document was commissioned. Bennelongia has not attempted to verify the accuracy and completeness of information supplied by the Client. © Copyright 2014 Bennelongia Pty Ltd. vi Iron Hill Deposit Troglofauna Mount Gibson Mining EXECUTIVE SUMMARY Mt Gibson Mining Limited is proposing the development of the Iron Hill Deposits as a southerly extension to the existing Mt Gibson Ranges mine operations, located 77 km north-east of Wubin in the Murchison Province of the Yilgarn Craton.
    [Show full text]
  • Journal of Cave and Karst Studies
    June 2020 Volume 82, Number 2 JOURNAL OF ISSN 1090-6924 A Publication of the National CAVE AND KARST Speleological Society STUDIES DEDICATED TO THE ADVANCEMENT OF SCIENCE, EDUCATION, EXPLORATION, AND CONSERVATION Published By BOARD OF EDITORS The National Speleological Society Anthropology George Crothers http://caves.org/pub/journal University of Kentucky Lexington, KY Office [email protected] 6001 Pulaski Pike NW Huntsville, AL 35810 USA Conservation-Life Sciences Julian J. Lewis & Salisa L. Lewis Tel:256-852-1300 Lewis & Associates, LLC. [email protected] Borden, IN [email protected] Editor-in-Chief Earth Sciences Benjamin Schwartz Malcolm S. Field Texas State University National Center of Environmental San Marcos, TX Assessment (8623P) [email protected] Office of Research and Development U.S. Environmental Protection Agency Leslie A. North 1200 Pennsylvania Avenue NW Western Kentucky University Bowling Green, KY Washington, DC 20460-0001 [email protected] 703-347-8601 Voice 703-347-8692 Fax [email protected] Mario Parise University Aldo Moro Production Editor Bari, Italy [email protected] Scott A. Engel Knoxville, TN Carol Wicks 225-281-3914 Louisiana State University [email protected] Baton Rouge, LA [email protected] Exploration Paul Burger National Park Service Eagle River, Alaska [email protected] Microbiology Kathleen H. Lavoie State University of New York Plattsburgh, NY [email protected] Paleontology Greg McDonald National Park Service Fort Collins, CO The Journal of Cave and Karst Studies , ISSN 1090-6924, CPM [email protected] Number #40065056, is a multi-disciplinary, refereed journal pub- lished four times a year by the National Speleological Society.
    [Show full text]
  • Adec Preview Generated PDF File
    The significance of the subterranean fauna in biogeographical reconstruction: examples from Cape Range peninsula, Western Australia W. F. Humphreys Western Australian Museum, Franeis Street, Perth, WA 6000, Australia. Abstract Cape Range peninsula contains a diverse troglobite (obligatory cave inhabitants) fauna, the only rich troglobite community known in Western Australia and in the semi-arid tropics. At least thirty- eight species of troglobite (or stygobiont) in this sparsely sampled area place it amongst the worlds faunistically diverse karst areas. The characteristics of the region and its subterranean fauna are broadly examined in this paper. The area (with Barrow Island) has high generic endemism with c. 14 apparently endemic genera including amphipods, shrimps, snails, millipedes, schizomids, spiders, archaeognaths, thysanurans and fish. In the context of cave biology the communities are not simple with up to seven troglobites occupying a single cave, together with many other speeies lacking such overt modification to cave life but seemingly out of place in a semi-arid climate. The affinities of the fauna are varied but a large element of the terrestrial fauna is derived from the humid tropics and is relietual from times when humid forest covered this region. lbe cave systems in Cape Range are fossil and were clearly formed under more humid conditions, as evidenced by the cave fauna Stalagmite growth has been extraordinary slow, suggesting that the climate was not been substantially wetter than at present over the la-., 170,000 years. Hence, the climate required for cave formation and forest cover predates this. However, sympatric congenors both in the range and on the coastal plain suggest that climatic/eustatic fluctuations have led to fragmentation and rejoining of populations.
    [Show full text]
  • Distribution Patterns, Carbon Sources and Niche Partitioning in Cave Shrimps (Atyidae: Typhlatya) E
    www.nature.com/scientificreports OPEN Distribution patterns, carbon sources and niche partitioning in cave shrimps (Atyidae: Typhlatya) E. M. Chávez‑Solís1,2, C. Solís3, N. Simões2,4,5 & M. Mascaró2,4* Cave shrimps of the Typhlatya genus are common and widespread in fresh, brackish and marine groundwater throughout the Yucatan Peninsula (Mexico). These species are ideal models to test niche partitioning within sympatric species in oligotrophic systems. Nevertheless, their food sources remain unidentifed, and despite their frequency and functional importance, distribution and abundance patterns of these species within caves have not been fully recognized. Here, we describe the abundance of three Typhlatya species in diferent temporal and spatial scales, investigate changes in water conditions, and potential sources of carbon as an indication of food origin. Species composition and abundance varied markedly in space and time revealing patterns that difered from one system to another and in relation to environmental parameters. Isotope analysis showed that each species refects a particular δ13C and Δ14C fngerprint, suggesting they feed in diferent proportions from the available carbon sources. Overall, our fndings suggest a niche partitioning of habitat and feeding sources amongst the three Typhlatya species investigated, where environmental characteristics and physiological diferences could play an important role governing their distribution patterns. Te lack of photosynthesis in caves and the resulting limitation in food sources is one of the strongest selection pressures and drivers of evolution for life in caves1. Competition for nutrients in oligotrophic environments, such as anchialine ecosystems—defned as subterranean estuaries that extend inland to the limit of seawater penetration2, certainly requires a unique set of specialization traits that allow for niche partitioning amongst stygobionts (aquatic species strictly bound to the subterranean habitat).
    [Show full text]