Distribution Patterns, Carbon Sources and Niche Partitioning in Cave Shrimps (Atyidae: Typhlatya) E
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Classification of Living and Fossil Genera of Decapod Crustaceans
RAFFLES BULLETIN OF ZOOLOGY 2009 Supplement No. 21: 1–109 Date of Publication: 15 Sep.2009 © National University of Singapore A CLASSIFICATION OF LIVING AND FOSSIL GENERA OF DECAPOD CRUSTACEANS Sammy De Grave1, N. Dean Pentcheff 2, Shane T. Ahyong3, Tin-Yam Chan4, Keith A. Crandall5, Peter C. Dworschak6, Darryl L. Felder7, Rodney M. Feldmann8, Charles H. J. M. Fransen9, Laura Y. D. Goulding1, Rafael Lemaitre10, Martyn E. Y. Low11, Joel W. Martin2, Peter K. L. Ng11, Carrie E. Schweitzer12, S. H. Tan11, Dale Tshudy13, Regina Wetzer2 1Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom [email protected] [email protected] 2Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007 United States of America [email protected] [email protected] [email protected] 3Marine Biodiversity and Biosecurity, NIWA, Private Bag 14901, Kilbirnie Wellington, New Zealand [email protected] 4Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China [email protected] 5Department of Biology and Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602 United States of America [email protected] 6Dritte Zoologische Abteilung, Naturhistorisches Museum, Wien, Austria [email protected] 7Department of Biology, University of Louisiana, Lafayette, LA 70504 United States of America [email protected] 8Department of Geology, Kent State University, Kent, OH 44242 United States of America [email protected] 9Nationaal Natuurhistorisch Museum, P. O. Box 9517, 2300 RA Leiden, The Netherlands [email protected] 10Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, 10th and Constitution Avenue, Washington, DC 20560 United States of America [email protected] 11Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543 [email protected] [email protected] [email protected] 12Department of Geology, Kent State University Stark Campus, 6000 Frank Ave. -
Decapod Crustacean Phylogenetics
CRUSTACEAN ISSUES ] 3 II %. m Decapod Crustacean Phylogenetics edited by Joel W. Martin, Keith A. Crandall, and Darryl L. Felder £\ CRC Press J Taylor & Francis Group Decapod Crustacean Phylogenetics Edited by Joel W. Martin Natural History Museum of L. A. County Los Angeles, California, U.S.A. KeithA.Crandall Brigham Young University Provo,Utah,U.S.A. Darryl L. Felder University of Louisiana Lafayette, Louisiana, U. S. A. CRC Press is an imprint of the Taylor & Francis Croup, an informa business CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, Fl. 33487 2742 <r) 2009 by Taylor & Francis Group, I.I.G CRC Press is an imprint of 'Taylor & Francis Group, an In forma business No claim to original U.S. Government works Printed in the United States of America on acid-free paper 109 8765 43 21 International Standard Book Number-13: 978-1-4200-9258-5 (Hardcover) Ibis book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Faw, no part of this book maybe reprinted, reproduced, transmitted, or uti lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. -
Perspectives on Typhlatya (Crustacea, Decapoda)
Contributions to Zoology, 65 (2) 79-99 (1995) SPB Academic Publishing bv, Amsterdam New perspectives on the evolution of the genus Typhlatya (Crustacea, Decapoda): first record of a cavernicolous atyid in the Iberian Peninsula, Typhlatya miravetensis n. sp. Sebastián Sanz & Dirk Platvoet 1 Unitat d'Ecologia, Facultat de Ciències Biologiques, Universitat de Valencia, E-46100 Burjassot, 2 Valencia, Spain; Institutefor Systematics and Population Biology (Zoological Museum, Amsterdam), University of Amsterdam, P.O. Box 94766, 1090 GT Amsterdam, The Netherlands Keywords: Typhlatya, Decapoda, Spain, subterranean waters, systematics, zoogeography, vicariance, evolution, key to genus Abstract historia geológica de la zona y la distribución mundial del género, del grupo de géneros, y la familia. On several occasions, shrimps belonging to a new species ofthe genus Typhlatya were collected in a cave in the province of Castellón, Spain. This is the first record of the in the genus Introduction Iberian Peninsula. The species is described and the validity, dis- tribution, and zoogeography of the genus, as well as the status In 1993 and were on several of the discussed. 1994, shrimps caught genus Spelaeocaris, are Former models for the occasions in in the evolution of the genus Typhlatya and its genus group are re- a cave near Cabanes, province viewed, as well asthe system ofinner classification of the Atyidae of Castellón, eastern Spain. The specimens belong and its For the and evolution of biogeographical meaning. age the to genus Typhlatya Creaser, 1936, a genus the genus we developed a new model based on vicariance prin- with members known from the Galápagos Islands, ciples that involves further evolution of each species after the Ascension and the Caribbean of the ancestral This allows estimations Island, Bermuda, disruption range. -
Hotspots of Subterranean Biodiversity in Caves and Wells
David C. Culver and Boris Sket - Hotspots of Subterranean Biodiversity in Caves and Wells. Journal of Cave and Karst Studies 62(1):11-17. HOTSPOTS OF SUBTERRANEAN BIODIVERSITY IN CAVES AND WELLS DAVID C. CULVER Department of Biology, American University, 4400 Massachusetts Ave., NW, Washington, DC 20016, USA, [email protected] BORIS SKET Department of Biology, Biotechnical Faculty, University of Ljubljana, P.O. Box 2995, 1001 Ljubljana, SLOVENIA, [email protected] We documented 18 caves and two karst wells that have 20 or more stygobites and troglobites. Crustacea dominated the aquatic fauna. Taxonomic composition of the terrestrial fauna varied, but Arachnida and Insecta together usually dominated. Geographically, the sites were concentrated in the Dinaric Karst (6 caves). Sites tended to have high primary productivity or rich organic input from the surface, be large caves, or have permanent groundwater (phreatic water). Dokumentirala sva 18 jam in dva kraška vodnjaka, iz katerih je znanih 20 ali vec vrst troglobiontov in stigobiontov. V vodni favni preladujejo raki. Taksonomski sestav kopenske favne je raznolik, vendar pajkovci in zuzelke skupaj navadno prevladujejo. Najvec takšnih jam (šest) je v Dinarskem krasu. Nadpovprecno so zastopane jame z lastno primarno produkcijo ali bogatim vnosom hrane s površja, obsezne jame in jame, ki vkljucujejo tudi freatsko plast. Over the past few years, there has been a growing aware- terns at individual sites. Even though most subterranean bio- ness and concern with biodiversity worldwide. Books and diversity results from the accumulation of different species monographs with a focus on biodiversity have appeared (e.g., from nearby sites, there are some outstanding examples of high Wilson 1992; Master et al. -
On the Troglobitic Shrimps of the Yucatan Peninsula, Mexico (Decapoda: Atyidae and Palaemonidae)
On the Troglobitic Shrimps of the Yucatan Peninsula, Mexico (Decapoda: Atyidae and Palaemonidae) H. H. HOBBS III and HORTON H. HOBBS, JR. SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 240 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world cf science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review. -
Stygofauna Survey – Exmouth Cape Aquifer: Scoping Document Describing Work Required to Determine Ecological Water Requirements for the Exmouth Cape Aquifer
Stygofauna Survey – Exmouth Cape Aquifer: Scoping Document Describing Work Required to Determine Ecological Water Requirements for the Exmouth Cape Aquifer Prepared for Department of Water by Bennelongia Pty Ltd April 2008 Report 2008/09 Bennelongia Pty Ltd Exmouth Cape Aquifer Stygofauna EWRs Stygofauna Survey – Exmouth Cape Aquifer: Scoping Document Describing Work Required to Determine Ecological Water Requirements for the Exmouth Cape Aquifer Bennelongia Pty Ltd 64 Jersey Street Jolimont WA 6913 www.bennelongia.com.au ACN 124 110 167 April 2008 Report 2008/09 i Bennelongia Pty Ltd Exmouth Cape Aquifer Stygofauna EWRs LIMITATION: This review has been prepared for use by the Department of Water and its agents. Bennelongia accepts no liability or responsibility in respect of any use or reliance on the review by any third party. Bennelongia has not attempted to verify the accuracy and completeness of all information supplied by the Department of Water. COPYRIGHT: The document has been prepared to the requirements of the Department of Water. Copyright and any other Intellectual Property associated with the document belong to Bennelongia and may not be reproduced without written permission of the Department of Water or Bennelongia. Client – Department of Water Report Version Prepared by Checked by Submitted to Client Method Date Draft report Vers. 1 Stuart Halse email 8.iv.08 Vers. 2 Stuart Halse email 10.iv.08 Vers. 3 Stuart Halse email 26.v.08 Final report Stuart Halse email 2.vii.08 K:/Projects/DoW_01/Report/BEC_Exmouth_EWRs_29vii08 ii Bennelongia Pty Ltd Exmouth Cape Aquifer Stygofauna EWRs Executive Summary Water resources on the Exmouth peninsula are very limited and future expansion of the Exmouth townsite will place considerable pressure on potable water supplies. -
Stygofauna of Karstic Ecosystem in Ponor Mountains, Western Bulgaria: Present Knowledge and Research Challenges
ACTA ZOOLOGICA BULGARICA Acta zool. bulg., 61 (2), 2009: 161-168 Stygofauna of Karstic Ecosystem in Ponor Mountains, Western Bulgaria: Present Knowledge and Research Challenges Vesela V. Evtimova1*, Ivan S. Pandourski1, Aleksey D. Benderev2 1 Institute of Zoology, Bulgarian Academy of Sciences, 1, Tsar Osvoboditel Blvd., 1000 Sofi a, Bulgaria; E-mails: [email protected]; [email protected]; 2 Geological Institute, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 24, 1113 Sofi a, Bulgaria; E-mail: [email protected] Abstract: The purpose of this research is to examine the relationships between the karstic complexes and the hydro- geological characteristics of karst on one hand, and the distribution of stygobiont species, on the other. The research was conducted in the karstic region of Ponor Mountains, part of Stara Planina range, Western Bulgaria, with an area of approximately 60 km2 and average elevation of about 1000 m a.s.l. The karstic springs in the foot of the mountains are the only water source for nearly 15 000 people. Two basic rock complexes can be distinguished regarding karstifi cation: Triassic karstic complex and Upper Jurassic complex. The principal collector of the groundwater is the Triassic complex with annual discharge of 2900 dm3/s from which 80% is leaving the system through the Iskretski izvori springs. The Jurassic complex is lacking superfi cial outfl ow which determines its precipitation alimentation. The stygofauna of Ponor Mountains is very heterogeneously distributed and its composition varies greatly from one station to another. Nevertheless, the similarity calculated on the basis of presence/absence of stygobiont species is high (above 0.7) for the locations from Quaternary and Jurassic complexes. -
Shedding Light on the Diversification of Subterranean Insects.Journal of Biology 2010, 9
Juan and Emerson Journal of Biology 2010, 9:17 http://jbiol.com/content/9/3/17 MINIREVIEW Evolution underground: shedding light on the diversification of subterranean insects Carlos Juan*1 and Brent C Emerson2 See research article http://www.biomedcentral.com/1471-2148/10/29 Abstract explanation [2]. Mirroring this debate, both the development of a topographic or ecological barrier A recent study in BMC Evolutionary Biology has resulting in the separation of a once continuously reconstructed the molecular phylogeny of a large distributed ancestral population or species into separate Mediterranean cave-dwelling beetle clade, revealing populations (vicariance) and dispersal, have been an ancient origin and strong geographic structuring. discussed as contrasting factors shaping subterranean It seems likely that diversication of this clade in the animal distributions. Vicariance is typically considered Oligocene was seeded by an ancestor already adapted the dominant of these two processes, as subterranean to subterranean life. species have very limited dispersal potential, particularly in ecologically unsuitable areas [4]. Testing hypotheses of origin and adaptation among Cave organisms have long been considered a model subterranean taxa has been hindered by the inherent system for testing evolutionary and biogeographic hypo- difficulties of sampling the rare and more elusive cave theses because of their isolation, simplicity of community taxa and extensive morphological convergence caused by structure and specialization. Adaptation to cave environ- strong selection pressures imposed by the subterranean ments promotes the regression of functionless (unused) environment [4]. In recent years molecular phylogenies characters across a broad taxonomic range, in concert have been obtained for numerous taxonomic groups with evolutionary change in other morphological traits. -
Reproduction and Development in Halocaridina Rubra Holthuis, 1963 (Crustacea: Atyidae) Clarifies Larval Ecology in the Hawaiian Anchialine Ecosystem
Reference: Biol. Bull. 229: 134–142. (October 2015) © 2015 Marine Biological Laboratory Reproduction and Development in Halocaridina rubra Holthuis, 1963 (Crustacea: Atyidae) Clarifies Larval Ecology in the Hawaiian Anchialine Ecosystem JUSTIN C. HAVIRD*,†, REBECCA C. VAUGHT, DAVID A. WEESE‡, AND SCOTT R. SANTOS Department of Biological Sciences and Molette Laboratory for Climate Change and Environmental Studies, Auburn University, 101 Rouse Life Sciences Bldg., Auburn, Alabama 36849 Abstract. Larvae in aquatic habitats often develop in and significantly higher in brackish and seawater (88% and environments different from those they inhabit as adults. 72%, respectively). Correlated with this finding, identifi- Shrimp in the Atyidae exemplify this trend, as larvae of able gills capable of ion transport did not develop until many species require salt or brackish water for develop- metamorphosis into juveniles. Thus, early life stages of ment, while adults are freshwater-adapted. An exception H. rubra are apparently excluded from surface waters, within the Atyidae family is the “anchialine clade,” which which are characterized by lower and fluctuating salini- are euryhaline as adults and endemic to habitats with sub- ties. Instead, these stages are restricted to the subterra- terranean fresh and marine water influences. Although the nean (where there is higher and more stable salinity) Hawaiian anchialine atyid Halocaridina rubra is a strong portion of Hawaii’s anchialine habitats due to their in- osmoregulator, its larvae have never been observed in na- ability to tolerate low salinities. Taken together, these ture. Moreover, larval development in anchialine species is data contribute to the understudied area of larval ecology poorly studied. Here, reproductive trends in laboratory col- in the anchialine ecosystem. -
The Subterranean Fauna of Barrow Island, North-Western Australia: 10 Years On
RECORDS OF THE WESTERN AUSTRALIAN MUSEUM 83 145–158 (2013) SUPPLEMENT The subterranean fauna of Barrow Island, north-western Australia: 10 years on Garth Humphreys1,2,3,8, Jason Alexander1, Mark S. Harvey2,3,4,5,6 and William F. Humphreys2,3,7 1 Biota Environmental Sciences Pty Ltd, PO Box 155, Leederville, Western Australia 6903, Australia. 2 Department of Terrestrial Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, Western Australia 6986, Australia. 3 School of Animal Biology, University of Western Australia, Crawley, Western Australia 6009, Australia. 4 Division of Invertebrate Zoology, American Museum of Natural History, 79th Street at Central Park West, New York, New York 10024-5192, U.S.A. 5 Department of Entomology, California Academy of Sciences, Golden Gate Park, San Francisco, CA 94103-3009, U.S.A. 6 School of Natural Sciences, Edith Cowan University, Joondalup, Western Australia 6009, Australia. 7 School of Earth and Environmental Sciences, University of Adelaide, South Australia 5005, Australia 8 Corresponding author: Email: [email protected] ABSTRACT – Barrow Island, situated off the north-west Australian coast, is well recognised for its subterranean fauna values. Sampling for both stygobitic and troglobitic fauna has taken place on the island since 1991, and Humphreys (2001) summarised the then current state of knowledge of the island’s subterranean fauna. Sampling for impact assessment purposes on the island over the past decade has substantially increased the recorded species richness of Barrow Island. The number of documented stygal taxa has more than doubled since 2001, from 25 to 63 species now known. Troglobitic diversity has also substantially increased, with six species known in 2001 and 19 troglobitic taxa known today. -
Journal of Cave and Karst Studies
June 2020 Volume 82, Number 2 JOURNAL OF ISSN 1090-6924 A Publication of the National CAVE AND KARST Speleological Society STUDIES DEDICATED TO THE ADVANCEMENT OF SCIENCE, EDUCATION, EXPLORATION, AND CONSERVATION Published By BOARD OF EDITORS The National Speleological Society Anthropology George Crothers http://caves.org/pub/journal University of Kentucky Lexington, KY Office [email protected] 6001 Pulaski Pike NW Huntsville, AL 35810 USA Conservation-Life Sciences Julian J. Lewis & Salisa L. Lewis Tel:256-852-1300 Lewis & Associates, LLC. [email protected] Borden, IN [email protected] Editor-in-Chief Earth Sciences Benjamin Schwartz Malcolm S. Field Texas State University National Center of Environmental San Marcos, TX Assessment (8623P) [email protected] Office of Research and Development U.S. Environmental Protection Agency Leslie A. North 1200 Pennsylvania Avenue NW Western Kentucky University Bowling Green, KY Washington, DC 20460-0001 [email protected] 703-347-8601 Voice 703-347-8692 Fax [email protected] Mario Parise University Aldo Moro Production Editor Bari, Italy [email protected] Scott A. Engel Knoxville, TN Carol Wicks 225-281-3914 Louisiana State University [email protected] Baton Rouge, LA [email protected] Exploration Paul Burger National Park Service Eagle River, Alaska [email protected] Microbiology Kathleen H. Lavoie State University of New York Plattsburgh, NY [email protected] Paleontology Greg McDonald National Park Service Fort Collins, CO The Journal of Cave and Karst Studies , ISSN 1090-6924, CPM [email protected] Number #40065056, is a multi-disciplinary, refereed journal pub- lished four times a year by the National Speleological Society. -
Adec Preview Generated PDF File
The significance of the subterranean fauna in biogeographical reconstruction: examples from Cape Range peninsula, Western Australia W. F. Humphreys Western Australian Museum, Franeis Street, Perth, WA 6000, Australia. Abstract Cape Range peninsula contains a diverse troglobite (obligatory cave inhabitants) fauna, the only rich troglobite community known in Western Australia and in the semi-arid tropics. At least thirty- eight species of troglobite (or stygobiont) in this sparsely sampled area place it amongst the worlds faunistically diverse karst areas. The characteristics of the region and its subterranean fauna are broadly examined in this paper. The area (with Barrow Island) has high generic endemism with c. 14 apparently endemic genera including amphipods, shrimps, snails, millipedes, schizomids, spiders, archaeognaths, thysanurans and fish. In the context of cave biology the communities are not simple with up to seven troglobites occupying a single cave, together with many other speeies lacking such overt modification to cave life but seemingly out of place in a semi-arid climate. The affinities of the fauna are varied but a large element of the terrestrial fauna is derived from the humid tropics and is relietual from times when humid forest covered this region. lbe cave systems in Cape Range are fossil and were clearly formed under more humid conditions, as evidenced by the cave fauna Stalagmite growth has been extraordinary slow, suggesting that the climate was not been substantially wetter than at present over the la-., 170,000 years. Hence, the climate required for cave formation and forest cover predates this. However, sympatric congenors both in the range and on the coastal plain suggest that climatic/eustatic fluctuations have led to fragmentation and rejoining of populations.