Approved Conservation Advice for Lasionectes Exleyi

Total Page:16

File Type:pdf, Size:1020Kb

Approved Conservation Advice for Lasionectes Exleyi This Conservation Advice was approved by the Minister / Delegate of the Minister on: 3/7/2008 Approved Conservation Advice (s266B of the Environment Protection and Biodiversity Conservation Act 1999) Approved Conservation Advice for Lasionectes exleyi This Conservation Advice has been developed based on the best available information at the time this conservation advice was approved. Description Lasionectes exleyi, Family Speleonectidae, also known as Cape Range Remipede, is a free- swimming, cave-dwelling, remipede crustacean. It is characterised by a short head and long trunk composed of 21–24 segments, each with a pair of paddle-like swimming appendages. This species grows to 1–1.5 cm long (Yager & Humphreys, 1996). Conservation Status Lasionectes exleyi is listed as vulnerable. This species is eligible for listing as vulnerable under the Environment Protection and Biodiversity Conservation Act 1999 (Cwlth) (EPBC Act) as, prior to the commencement of the EPBC Act, it was listed as vulnerable under Schedule 1 of the Endangered Species Protection Act 1992 (Cwlth). The species is also listed as rare or likely to become extinct under Schedule 1 of the Wildlife Conservation (Specially Protected Fauna) Notice 1998 (Western Australia). Distribution and Habitat Lasionectes exleyi is known from a single anchialine (submerged) cave, Bundera Sinkhole, on the Cape Range peninsula, Western Australia. The Bundera Sinkhole is 1200 km north of Perth and 1.7 km inland from the Indian Ocean (Yager & Humphreys, 1996). The surface of the sinkhole is eutrophic, limiting the penetration of light into the water (Humphreys et al., 1999). The species is found at a depth of 30 m in a layer of saline water lying beneath a layer of brackish water at the surface (Black et al., 2001). Other fauna that occur in Bundera Sinkole include a blind fish, Milyeringa veritas, the hadziid amphipod Liagoceradocus branchialis, ostracods including Danielopolina kornickeri, an atyid shrimp (Page et al., 2008), and diverse copepods (Black et al., 2001). This species occurs within the Rangelands (Western Australia) Natural Resource Management Region. Bundera Sinkhole is in a hot and extremely dry region where the terrestrial vegetation is predominantly hummock grassland and sparse shrubs (Humphreys, 1999; Humphreys et al., 1999). Lasionectes exleyi is an ancient species and is the only remipede known in the Southern Hemisphere (Yager & Humphreys, 1996). The disjunct distribution of remipede species suggests that dispersal is limited. The distribution of this species is not known to overlap with any EPBC Act-listed threatened ecological communities. Threats The main identified threats to Lasionectes exleyi include disruption to water stratification in Bundera Sinkhole; pollution; and a lack of formal protection of the cave and associated inflows. Although uncommon, diving threatens the sinkhole by disrupting the temperature and chemical stratification of the water profile (Humphreys et al., 1999). Development in the area that increases water inflow into Bundera Sinkhole threatens Lasionectes exleyi (Black et al., 2001). Bundera Sinkhole is accessible from a popular track and any pollution from visitors or toxic waste dumping (e.g. a car battery) would be catastrophic (Black et al., 2001). Lasionectes exleyi Conservation Advice - Page 1 of 3 This Conservation Advice was approved by the Minister / Delegate of the Minister on: 3/7/2008 The main potential threats to Lasionectes exleyi include contamination from nearby land uses; contamination from feral goats (Capra hircus); introduction of feral fish, especially the Guppy (Poecilia reticulata), and the disruption of groundwater flows into Bundera Sinkhole. Land use in the area is the overfly zone for the Learmonth Air Weapons Range but has largely uncontrolled access, and camping and waste disposal occurs on this coastal plain between occasional closures of the area for RAAF operational reasons. Use of the pool by feral goats and macropods may be the cause of high nutrient levels in the sinkhole. Guppies (Poecilia sp.) are tolerant to a wide range of salinities and may colonise caves with high H2S levels (Plath et al., 2007) and their introduction, or that of other predacious exotic fish, could eliminate Lasionectes exleyi. The broad chemocline between brackish and saline layers, initially considered stable, is dynamic, a site of exceptional microbiological diversity (Seymour et al., 2007) and where chemoautotrophic energy fixation may support the underlying stygal community of which L. exleyi is part (Humphreys, 1999). Research Priorities Research priorities that would inform future regional and local priority actions include: • Design and implement a monitoring program (Clarke & Spier-Ashcroft, 2003). • Investigate the extent of occurrence of suitable habitat. • Investigate how the chemocline contributes to the energy supply and stability of the water body. Regional and Local Priority Actions The following regional and local priority recovery and threat abatement actions can be done to support the recovery of Lasionectes exleyi. Habitat Loss, Disturbance and Modification • Monitor the progress of recovery, including the effectiveness of management actions and the need to adapt them if necessary. • Manage threats to surrounding areas of vegetation. • Control access routes to suitably constrain public access to Bundera Sinkhole. • Ensure chemicals used within the region do not have a significant adverse impact on L. exleyi. • Ensure road widening and maintenance activities (or other infrastructure or development activities) do not adversely impact on the known population. • Manage any changes to hydrology that may result in changes to the water table levels, increased run-off, sedimentation or pollution (Clarke & Spier-Ashcroft, 2003). • Manage any disruptions to water flows. • Investigate extending Cape Range National Park to encompass Bundera Sinkhole and associated water inflows (Clarke & Spier-Ashcroft, 2003). Animal Disturbance • Implement a management plan for the control and eradication of feral goats in the local region (EA, 1999). Animal Predation or Competition • Manage threats to control potential introduction of exotic fish. Conservation Information • Raise awareness of L. exleyi within the local community. Enable Recovery of Additional Sites and/or Populations • Investigate options for enhancing or establishing additional populations. Lasionectes exleyi Conservation Advice - Page 2 of 3 This Conservation Advice was approved by the Minister / Delegate of the Minister on: 3/7/2008 This list does not necessarily encompass all actions that may be of benefit Lasionectes exleyi, but highlights those that are considered to be of highest priority at the time of preparing the conservation advice. Existing Plans/Management Prescriptions that are Relevant to the Species • Cape Range Remipede Community (Bundera Sinkhole) and Cape Range Remipede Interim Recovery Plan 2000-2003 (Black et al., 2001), and • Threat Abatement Plan for Competition and Land Degradation by Feral Goats (EA, 1999). These prescriptions were current at the time of publishing; please refer to the relevant agency’s website for any updated versions. Information Sources: Black, S, Burbidge, AA, Brooks, D, Green, P, Humphreys, WF, Kendrick, P, Myers, D, Shepherd, R & Wann, J 2001, Cape Range Remipede Community (Bundera Sinkhole) and Cape Range Remipede Interim Recovery Plan 2000-2003, Interim Recovery Plan No. 75, Department of Conservation and Land Management, Western Australia Species and Communities Unit, viewed 10 April 2008, <http://www.naturebase.net/pdf/plants_animals/threatened_species/irps/bundera_irp75.pdf>. Clarke, G & Spier-Ashcroft, F 2003, A Review of the Conservation Status of Selected Australian Non-Marine Invertebrates, National Heritage Trust, pp. 65–9, viewed 10 April 2008, <http://www.environment.gov.au/biodiversity/threatened/publications/action/non-marine- invertebrates/pubs/non-marine-invertebrates.pdf>. Environment Australia (EA) 1999, Threat Abatement Plan for Competition and Land Degradation by Feral Goats, Biodiversity Group, Environment Australia, viewed 10 April 2008, <http://www.environment.gov.au/biodiversity/threatened/publications/tap/goats/index.html>. Humphreys, WF 1999, ‘Physico-chemical profile and energy fixation in Bundera Sinkhole, an anchialine remipede habitat in north-western Australia’, Journal of the Royal Society of Western Australia, vol. 82, pp. 89–98. Humphreys, WF, Poole, A, Eberhard, SM & Warren, D 1999, ‘Effects of research diving on the physico- chemical profile of Bundera Sinkhole, an anchialine remipede habitat at Cape Range, Western Australia’, Journal of the Royal Society of Western Australia, vol. 82, pp. 99–108. Page TJ, Humphreys WF & Hughes, JM 2008, ‘Shrimps Down Under: Evolutionary relationships of subterranean crustaceans from Western Australia (Decapoda: Atyidae: Stygiocaris)’, PLoS ONE, vol. 3, no. 2. Plath, M, Hauswaldt, JS, Moll, K, Tobler, M, Garciadeleon, FJ, Schlupp, I & Tiedermann, R, 2007, ‘Local adaptation and pronounced genetic differentiation in an extremophile fish, Poecilia mexicana, inhabiting a Mexican cave with toxic hydrogen sulphide’, Molecular Ecology, vol. 16, pp. 967–76. Seymour, JR, Humphreys, WF & Mitchell, JG 2007, ‘Stratification of the microbial community inhabiting an anchialine sinkhole’, Aquatic Microbial Ecology, vol. 50, pp. 11-24 Yager, J & Humphreys, WF 1996, ‘Lasionectes exleyi, sp. nov., the first remipede crustacean recorded from Australia and the Indian Ocean, with a key to the world species’, Invertebrate Taxonomy, vol. 10, pp. 171–87. Lasionectes exleyi Conservation Advice - Page 3 of 3 .
Recommended publications
  • A Classification of Living and Fossil Genera of Decapod Crustaceans
    RAFFLES BULLETIN OF ZOOLOGY 2009 Supplement No. 21: 1–109 Date of Publication: 15 Sep.2009 © National University of Singapore A CLASSIFICATION OF LIVING AND FOSSIL GENERA OF DECAPOD CRUSTACEANS Sammy De Grave1, N. Dean Pentcheff 2, Shane T. Ahyong3, Tin-Yam Chan4, Keith A. Crandall5, Peter C. Dworschak6, Darryl L. Felder7, Rodney M. Feldmann8, Charles H. J. M. Fransen9, Laura Y. D. Goulding1, Rafael Lemaitre10, Martyn E. Y. Low11, Joel W. Martin2, Peter K. L. Ng11, Carrie E. Schweitzer12, S. H. Tan11, Dale Tshudy13, Regina Wetzer2 1Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom [email protected] [email protected] 2Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007 United States of America [email protected] [email protected] [email protected] 3Marine Biodiversity and Biosecurity, NIWA, Private Bag 14901, Kilbirnie Wellington, New Zealand [email protected] 4Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China [email protected] 5Department of Biology and Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602 United States of America [email protected] 6Dritte Zoologische Abteilung, Naturhistorisches Museum, Wien, Austria [email protected] 7Department of Biology, University of Louisiana, Lafayette, LA 70504 United States of America [email protected] 8Department of Geology, Kent State University, Kent, OH 44242 United States of America [email protected] 9Nationaal Natuurhistorisch Museum, P. O. Box 9517, 2300 RA Leiden, The Netherlands [email protected] 10Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, 10th and Constitution Avenue, Washington, DC 20560 United States of America [email protected] 11Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543 [email protected] [email protected] [email protected] 12Department of Geology, Kent State University Stark Campus, 6000 Frank Ave.
    [Show full text]
  • Decapod Crustacean Phylogenetics
    CRUSTACEAN ISSUES ] 3 II %. m Decapod Crustacean Phylogenetics edited by Joel W. Martin, Keith A. Crandall, and Darryl L. Felder £\ CRC Press J Taylor & Francis Group Decapod Crustacean Phylogenetics Edited by Joel W. Martin Natural History Museum of L. A. County Los Angeles, California, U.S.A. KeithA.Crandall Brigham Young University Provo,Utah,U.S.A. Darryl L. Felder University of Louisiana Lafayette, Louisiana, U. S. A. CRC Press is an imprint of the Taylor & Francis Croup, an informa business CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, Fl. 33487 2742 <r) 2009 by Taylor & Francis Group, I.I.G CRC Press is an imprint of 'Taylor & Francis Group, an In forma business No claim to original U.S. Government works Printed in the United States of America on acid-free paper 109 8765 43 21 International Standard Book Number-13: 978-1-4200-9258-5 (Hardcover) Ibis book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid­ ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Faw, no part of this book maybe reprinted, reproduced, transmitted, or uti­ lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy­ ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.
    [Show full text]
  • Perspectives on Typhlatya (Crustacea, Decapoda)
    Contributions to Zoology, 65 (2) 79-99 (1995) SPB Academic Publishing bv, Amsterdam New perspectives on the evolution of the genus Typhlatya (Crustacea, Decapoda): first record of a cavernicolous atyid in the Iberian Peninsula, Typhlatya miravetensis n. sp. Sebastián Sanz & Dirk Platvoet 1 Unitat d'Ecologia, Facultat de Ciències Biologiques, Universitat de Valencia, E-46100 Burjassot, 2 Valencia, Spain; Institutefor Systematics and Population Biology (Zoological Museum, Amsterdam), University of Amsterdam, P.O. Box 94766, 1090 GT Amsterdam, The Netherlands Keywords: Typhlatya, Decapoda, Spain, subterranean waters, systematics, zoogeography, vicariance, evolution, key to genus Abstract historia geológica de la zona y la distribución mundial del género, del grupo de géneros, y la familia. On several occasions, shrimps belonging to a new species ofthe genus Typhlatya were collected in a cave in the province of Castellón, Spain. This is the first record of the in the genus Introduction Iberian Peninsula. The species is described and the validity, dis- tribution, and zoogeography of the genus, as well as the status In 1993 and were on several of the discussed. 1994, shrimps caught genus Spelaeocaris, are Former models for the occasions in in the evolution of the genus Typhlatya and its genus group are re- a cave near Cabanes, province viewed, as well asthe system ofinner classification of the Atyidae of Castellón, eastern Spain. The specimens belong and its For the and evolution of biogeographical meaning. age the to genus Typhlatya Creaser, 1936, a genus the genus we developed a new model based on vicariance prin- with members known from the Galápagos Islands, ciples that involves further evolution of each species after the Ascension and the Caribbean of the ancestral This allows estimations Island, Bermuda, disruption range.
    [Show full text]
  • Stygofauna Survey – Exmouth Cape Aquifer: Scoping Document Describing Work Required to Determine Ecological Water Requirements for the Exmouth Cape Aquifer
    Stygofauna Survey – Exmouth Cape Aquifer: Scoping Document Describing Work Required to Determine Ecological Water Requirements for the Exmouth Cape Aquifer Prepared for Department of Water by Bennelongia Pty Ltd April 2008 Report 2008/09 Bennelongia Pty Ltd Exmouth Cape Aquifer Stygofauna EWRs Stygofauna Survey – Exmouth Cape Aquifer: Scoping Document Describing Work Required to Determine Ecological Water Requirements for the Exmouth Cape Aquifer Bennelongia Pty Ltd 64 Jersey Street Jolimont WA 6913 www.bennelongia.com.au ACN 124 110 167 April 2008 Report 2008/09 i Bennelongia Pty Ltd Exmouth Cape Aquifer Stygofauna EWRs LIMITATION: This review has been prepared for use by the Department of Water and its agents. Bennelongia accepts no liability or responsibility in respect of any use or reliance on the review by any third party. Bennelongia has not attempted to verify the accuracy and completeness of all information supplied by the Department of Water. COPYRIGHT: The document has been prepared to the requirements of the Department of Water. Copyright and any other Intellectual Property associated with the document belong to Bennelongia and may not be reproduced without written permission of the Department of Water or Bennelongia. Client – Department of Water Report Version Prepared by Checked by Submitted to Client Method Date Draft report Vers. 1 Stuart Halse email 8.iv.08 Vers. 2 Stuart Halse email 10.iv.08 Vers. 3 Stuart Halse email 26.v.08 Final report Stuart Halse email 2.vii.08 K:/Projects/DoW_01/Report/BEC_Exmouth_EWRs_29vii08 ii Bennelongia Pty Ltd Exmouth Cape Aquifer Stygofauna EWRs Executive Summary Water resources on the Exmouth peninsula are very limited and future expansion of the Exmouth townsite will place considerable pressure on potable water supplies.
    [Show full text]
  • Shedding Light on the Diversification of Subterranean Insects.Journal of Biology 2010, 9
    Juan and Emerson Journal of Biology 2010, 9:17 http://jbiol.com/content/9/3/17 MINIREVIEW Evolution underground: shedding light on the diversification of subterranean insects Carlos Juan*1 and Brent C Emerson2 See research article http://www.biomedcentral.com/1471-2148/10/29 Abstract explanation [2]. Mirroring this debate, both the development of a topographic or ecological barrier A recent study in BMC Evolutionary Biology has resulting in the separation of a once continuously reconstructed the molecular phylogeny of a large distributed ancestral population or species into separate Mediterranean cave-dwelling beetle clade, revealing populations (vicariance) and dispersal, have been an ancient origin and strong geographic structuring. discussed as contrasting factors shaping subterranean It seems likely that diversication of this clade in the animal distributions. Vicariance is typically considered Oligocene was seeded by an ancestor already adapted the dominant of these two processes, as subterranean to subterranean life. species have very limited dispersal potential, particularly in ecologically unsuitable areas [4]. Testing hypotheses of origin and adaptation among Cave organisms have long been considered a model subterranean taxa has been hindered by the inherent system for testing evolutionary and biogeographic hypo- difficulties of sampling the rare and more elusive cave theses because of their isolation, simplicity of community taxa and extensive morphological convergence caused by structure and specialization. Adaptation to cave environ- strong selection pressures imposed by the subterranean ments promotes the regression of functionless (unused) environment [4]. In recent years molecular phylogenies characters across a broad taxonomic range, in concert have been obtained for numerous taxonomic groups with evolutionary change in other morphological traits.
    [Show full text]
  • The Subterranean Fauna of Barrow Island, North-Western Australia: 10 Years On
    RECORDS OF THE WESTERN AUSTRALIAN MUSEUM 83 145–158 (2013) SUPPLEMENT The subterranean fauna of Barrow Island, north-western Australia: 10 years on Garth Humphreys1,2,3,8, Jason Alexander1, Mark S. Harvey2,3,4,5,6 and William F. Humphreys2,3,7 1 Biota Environmental Sciences Pty Ltd, PO Box 155, Leederville, Western Australia 6903, Australia. 2 Department of Terrestrial Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, Western Australia 6986, Australia. 3 School of Animal Biology, University of Western Australia, Crawley, Western Australia 6009, Australia. 4 Division of Invertebrate Zoology, American Museum of Natural History, 79th Street at Central Park West, New York, New York 10024-5192, U.S.A. 5 Department of Entomology, California Academy of Sciences, Golden Gate Park, San Francisco, CA 94103-3009, U.S.A. 6 School of Natural Sciences, Edith Cowan University, Joondalup, Western Australia 6009, Australia. 7 School of Earth and Environmental Sciences, University of Adelaide, South Australia 5005, Australia 8 Corresponding author: Email: [email protected] ABSTRACT – Barrow Island, situated off the north-west Australian coast, is well recognised for its subterranean fauna values. Sampling for both stygobitic and troglobitic fauna has taken place on the island since 1991, and Humphreys (2001) summarised the then current state of knowledge of the island’s subterranean fauna. Sampling for impact assessment purposes on the island over the past decade has substantially increased the recorded species richness of Barrow Island. The number of documented stygal taxa has more than doubled since 2001, from 25 to 63 species now known. Troglobitic diversity has also substantially increased, with six species known in 2001 and 19 troglobitic taxa known today.
    [Show full text]
  • Adec Preview Generated PDF File
    The significance of the subterranean fauna in biogeographical reconstruction: examples from Cape Range peninsula, Western Australia W. F. Humphreys Western Australian Museum, Franeis Street, Perth, WA 6000, Australia. Abstract Cape Range peninsula contains a diverse troglobite (obligatory cave inhabitants) fauna, the only rich troglobite community known in Western Australia and in the semi-arid tropics. At least thirty- eight species of troglobite (or stygobiont) in this sparsely sampled area place it amongst the worlds faunistically diverse karst areas. The characteristics of the region and its subterranean fauna are broadly examined in this paper. The area (with Barrow Island) has high generic endemism with c. 14 apparently endemic genera including amphipods, shrimps, snails, millipedes, schizomids, spiders, archaeognaths, thysanurans and fish. In the context of cave biology the communities are not simple with up to seven troglobites occupying a single cave, together with many other speeies lacking such overt modification to cave life but seemingly out of place in a semi-arid climate. The affinities of the fauna are varied but a large element of the terrestrial fauna is derived from the humid tropics and is relietual from times when humid forest covered this region. lbe cave systems in Cape Range are fossil and were clearly formed under more humid conditions, as evidenced by the cave fauna Stalagmite growth has been extraordinary slow, suggesting that the climate was not been substantially wetter than at present over the la-., 170,000 years. Hence, the climate required for cave formation and forest cover predates this. However, sympatric congenors both in the range and on the coastal plain suggest that climatic/eustatic fluctuations have led to fragmentation and rejoining of populations.
    [Show full text]
  • Distribution Patterns, Carbon Sources and Niche Partitioning in Cave Shrimps (Atyidae: Typhlatya) E
    www.nature.com/scientificreports OPEN Distribution patterns, carbon sources and niche partitioning in cave shrimps (Atyidae: Typhlatya) E. M. Chávez‑Solís1,2, C. Solís3, N. Simões2,4,5 & M. Mascaró2,4* Cave shrimps of the Typhlatya genus are common and widespread in fresh, brackish and marine groundwater throughout the Yucatan Peninsula (Mexico). These species are ideal models to test niche partitioning within sympatric species in oligotrophic systems. Nevertheless, their food sources remain unidentifed, and despite their frequency and functional importance, distribution and abundance patterns of these species within caves have not been fully recognized. Here, we describe the abundance of three Typhlatya species in diferent temporal and spatial scales, investigate changes in water conditions, and potential sources of carbon as an indication of food origin. Species composition and abundance varied markedly in space and time revealing patterns that difered from one system to another and in relation to environmental parameters. Isotope analysis showed that each species refects a particular δ13C and Δ14C fngerprint, suggesting they feed in diferent proportions from the available carbon sources. Overall, our fndings suggest a niche partitioning of habitat and feeding sources amongst the three Typhlatya species investigated, where environmental characteristics and physiological diferences could play an important role governing their distribution patterns. Te lack of photosynthesis in caves and the resulting limitation in food sources is one of the strongest selection pressures and drivers of evolution for life in caves1. Competition for nutrients in oligotrophic environments, such as anchialine ecosystems—defned as subterranean estuaries that extend inland to the limit of seawater penetration2, certainly requires a unique set of specialization traits that allow for niche partitioning amongst stygobionts (aquatic species strictly bound to the subterranean habitat).
    [Show full text]
  • Shrimps Down Under: Evolutionary Relationships of Subterranean Crustaceans from Western Australia (Decapoda: Atyidae: Stygiocaris)
    Shrimps Down Under: Evolutionary Relationships of Subterranean Crustaceans from Western Australia (Decapoda: Atyidae: Stygiocaris) Timothy J. Page1*, William F. Humphreys2, Jane M. Hughes1 1 Australian Rivers Institute, Griffith University, Nathan, Queensland, Australia, 2 Western Australian Museum, Welshpool DC, Western Australia, Australia Abstract Background: We investigated the large and small scale evolutionary relationships of the endemic Western Australian subterranean shrimp genus Stygiocaris (Atyidae) using nuclear and mitochondrial genes. Stygiocaris is part of the unique cave biota of the coastal, anchialine, limestones of the Cape Range and Barrow Island, most of whose nearest evolutionary relations are found in coastal caves of the distant North Atlantic. The dominance of atyids in tropical waters and their food resources suggest they are pivotal in understanding these groundwater ecosystems. Methodology/Principle Findings: Our nuclear and mitochondrial analyses all recovered the Mexican cave genus Typhlatya as the sister taxon of Stygiocaris, rather than any of the numerous surface and cave atyids from Australia or the Indo-Pacific region. The two described Stygiocaris species were recovered as monophyletic, and a third, cryptic, species was discovered at a single site, which has very different physiochemical properties from the sites hosting the two described species. Conclusions/Significance: Our findings suggest that Stygiocaris and Typhlatya may descend from a common ancestor that lived in the coastal marine habitat of the ancient Tethys Sea, and were subsequently separated by plate tectonic movements. This vicariant process is commonly thought to explain the many disjunct anchialine faunas, but has rarely been demonstrated using phylogenetic techniques. The Cape Range’s geological dynamism, which is probably responsible for the speciation of the various Stygiocaris species, has also led to geographic population structure within species.
    [Show full text]
  • A New Locality and Phylogeny of the Stygobitic Typhlatya Shrimps for the Yucatan Peninsula
    Espinasa et al. A new locality and phylogeny of the stygobitic Typhlatya shrimps for the Yucatan Peninsula Luis Espinasa1,2, Efraín M. Chávez Solís3, Maite Mascaró4, Carlos Rosas4, Nuno Simoes4, & Gregory Violette1 1 School of Science, Marist College, 3399 North Rd, Poughkeepsie, New York 12601, USA 2 [email protected] (corresponding author) 2 Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Copilco-Universidad, Ciudad de México 04510, México 3 Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Sisal 97355, Yucatán, México Key Words: Troglobite, stygobite, anchialine, histone, shrimp, cave. Typhlatya is a genus of small, stygobitic shrimp in the family Atyidae. Species in this genus are found in subterranean anchialine habitats, and they span salt, brackish and fresh waters. None have been reported in the open sea (Botello et al. 2013). Phylogenetic studies indicate that the genus, as presently defined, is paraphyletic and needs to be redefined, as two of its 17 described species cluster with members of different genera: Typhlatya galapagensis Monod & Cals, 1970 clusters with the widespread Halocaridina and T. monae Chace, 1954 likely clusters with the Australian Stygiocaris (Botello et al. 2013; Jurado-Rivera et al. 2017). Typhlatya species often have very small ranges, limited to single caves, islands, or portions of a coast (Botello et al. 2013). The genus has a broad distribution in many coastal subterranean habitats. Species are found in the West Mediterranean region (France and Spain), West Indian Ocean (Zanzibar), Caribbean region (the Antilles, Bahamas and Yucatán), south Atlantic sea (Ascension Island) and the Galápagos (Botello et al.
    [Show full text]
  • A New Species of Typhlatya (Crustacea: Decapoda: Atyidae) from Anchialine Caves on the French Mediterranean Coast
    Blackwell Science, LtdOxford, UKZOJZoological Journal of the Linnean Society0024-4082The Lin- nean Society of London, 2005? 2005 1443 387414 Original Article NEW ANCHIALINE ATYID FROM MEDITERRANEAN CAVESD. JAUME and F. BRÉHIER Zoological Journal of the Linnean Society, 2005, 144, 387–414. With 19 figures A new species of Typhlatya (Crustacea: Decapoda: Atyidae) from anchialine caves on the French Mediterranean coast DAMIÀ JAUME1* and FRANCK BRÉHIER2 1IMEDEA (CSIC-UIB), Instituto Mediterráneo de Estudios Avanzados, C/. Miquel Marquès 21, E-07190 Esporles (Mallorca), Spain 2Alas, F-09800 Balaguères, France Received June 2004; accepted for publication March 2005 A new species of the thermophylic Tethyan relict prawn Typhlatya is described from two anchialine caves near Per- pignan (southern France). The new species is closely related to a congener known only from a freshwater cave at Cas- tellón (eastern Spain), about 400 km to the south-west, differing apparently only in the size and shape of the rostrum and the armature of the dactylus of the fifth pereiopod. Based on palaeogeographical evidence and assuming a sister- group relationship between both species, we suggest that their common ancestor could not be older than early Pliocene in age, and that it was already a stygobiont taxon adapted to live in shallow-water marine crevicular habitats. This ancestor would have vanished from the western Mediterranean after the cooling associated with the onset of northern Hemisphere glaciation, about 3 Mya, as documented for other Mediterranean marine taxa. Indeed, the genus is completely stygobiont and does not occur in fluvial environments. The Pyrenees represent a watershed boundary that eliminates the possibility of the derivation of one species from the other by active dispersal after establishment in continental waters.
    [Show full text]
  • In the Great Artesian Basin, Australia
    Caridina thermophila, an Enigmatic and Endangered Freshwater Shrimp (Crustacea: Decapoda: Atyidae) in the Great Artesian Basin, Australia Satish C. Choy1 Abstract Only one species of freshwater shrimp, Caridina thermophila, has been recorded from the Great Artesian Basin (GAB) springs and associated wetlands in central Queensland. The species seems to be endemic to Queensland, has a restricted distribution and, whilst it is listed as Endangered in the IUCN Red List of Threatened Species, is not specifically protected under any Australian state or federal legislation. Although C. thermophila was first described from hot-water springs, it is now known to also inhabit much cooler waters, and hence its temperature tolerance range is quite broad. Apart from its general ecology and associated spring communities (many of which include rare and endangered endemic species), very little is known about the population dynamics and resilience of this species, particularly in relation to anthropogenic pressures and climate change. It is recom- mended that this species be specifically protected under national legislation, and a conservation plan be developed and implemented to ensure its long-term survival. Keywords: Great Artesian Basin, springs, wetland, shrimp, Caridina thermophila, endemic, endangered 1 [email protected] Introduction species that occur in the springs of the Great Artesian Caridina thermophila (Figure 1) was first described by Basin (Fensham et al., 2010). Its status has, however, Riek (1953) along with several other freshwater atyid been somewhat questionable and the species has not shrimps from Australia. All his C. thermo phila speci- been treated as uniquely as other endemic species (e.g. mens, including the types, were collected on 27 May Fensham & Fairfax, 2005; Rossini et al., 2018).
    [Show full text]