Palaeolv@D@U@A P@DMOGA Discussion Vol

Total Page:16

File Type:pdf, Size:1020Kb

Palaeolv@D@U@A P@DMOGA Discussion Vol AWA PAlAEOlV@D@U@A P@DMOGA Discussion Vol. 38, No. 3/4, pp. 273-280, Warszawa, 1994 Candle wax shells, morphodynamics, and the Cambrian explosion ADOLF SEILACHER What I miss most with Antoni Hoffman is the ideal discussant for trying out new and often controversial ideas: very sharp and critical, yet warm- hearted enough not to become polemic. The last time we met, I told him about our candlewax shells and their implications for the emergence of new bauplans (Seilacher & Klug 1993). ~ur~risin~l~he reacted unlike the editors of a leading science journal who had just rejected my note without asking a referee. Instead he encouraged me by saying this was the deepest thought he had ever heard from me. Thank you, Toni! So here is the story again, hopefully in a more ordered form. Candle wax shells The experiment. - The crucial discovery was made by our Tubingen student Christian Klug, or rather his mother. During Christmas prepara- tions, she had placed a burning candle into a bowl of water. The bottom of the massive float that grew in the water from the molten wax (Fig. 1) resembled a real bivalve shell to the extent that even a specialist could be fooled. There was not only the familiar geometry of a spiral cone with large expansion rate; the shell also bore a hemispherical prodissoconch at the umbo and sets of growth lines mimicking daily and monthly increments. Repeating this unsophisticated experiment under controlled conditions, C. Klug and H. Luginsland produced hundreds of such wax shells. In spite of great variability, they show a general rule: populations grown in cold water have narrow and highly vaulted geometries and bear heavy growth lines (Gryphaea type; Fig. 2A-C). With rising temperatures, the expansion rate increases, outlines become more circular and growth lines fainter (Placunatype; Fig. 2H). Eventually, as the water reaches the melting point of the wax, shells switch into the morphospace of floating oildrops that we know from a good broth. Attempts to simulate , by the same procedure, fully coiled ammonite or gastropod shells did fail for practical reasons. The manipulations necess- ary (growth around a floating tooth stick; lateral shift of the wax source) invariably derailed the growth process. Minor translation (and low-degree helicoidality), however, did occur in variants in which a slight asymmetry 274 Discussion: SEILACHER happened to become enhanced during further growth of the float. Only patelliform cones could be produced by pouring the molten wax freely down on the water (Fig. 3A). Some of the occasional monsters tell stories of their own. If, for instance, the initial structure consists of many clustering drops instead of a single one, the accretionary spiral coils in proportion to the enlarged radius and starts with a sharp angle - as it does in oysters with broad attachment areas (Fig. 3B). Or, when a floating dirt particle has locally indented a growth line, it takes several more increments to restore the smooth curve -just like in mollusc shells 'healing' a marginal bite mark. Reductionistic Interpretation.- In line with our scientific tradition, we may try to identify the local controls responsible for corresponding features in the two systems: Wax float Bivalve shell Prodissoconch free pneu surface of initial drop replica of hydrostatic veliger larva wax flow freezes marginally in rhythmic growth phases of mant- small increments le are frozen by biomineralization Rounded contour 1 margin (Markov Effect) control by water table I control by margin of opposite valve flexible connection of float with flexible ligament, with tendency to candle causes tilting expand laterally for hinge function Helicoidality accidental overload on one anatomical anteroposterior ~rnside, self-enhancing differentiation differential immersion growth rates decline with age growth lines decreases with size In this view, candle wax shells only confirm what has already been known from computer simulations: regular shell geometries result from relatively simple sets of parameters and processes, whose variability defines a certain morphospace. But does a mere list of determining factors - however complete - do justice to the phenomenon as a whole? In an organism, individuality emerges because each shell is an integrated structure with a particular history. Why not in a physical system? Holistic Interpretation (Morphodynamics).- In the view of Gunji et al. (in press), biological systems are non-programmable in principle. Not that there is no program behind; but since informations propagate and are translated by enzymes (and therefore more slowly than in physical sys- tems), other signals or state changes can interfere during the process. As a result, the outcome can never be predicted in every detail. This means that computer simulation refers only to the basic, programmable part of a biological structure. The rest is either random or has the aspect of finality. ACTA PALAEONTOLOGICA POLONICA (38) (3/4) 275 Fig. 1. The lower surface of a self-organized candlewax float (B) could be easily mistaken for the cast of a real bivalve (A), complete with prodissoconch, daily and monthly growth lines and spiral cone geometry. Scale bar - 1 cm. Wax shells come closer to biological reality than computer simulations, because they imply unpredictability at the local level, historical (Marko- vim) self-reference and a finite size imposed by the dimensions of the experimental setting. In the above list, one feature of the wax floats deserves special attention: the growth lines. In an organism, we use to relate them to fluctuations in the physiological state, whether intrinsic or environmentally imposed. But wax shells form in minutes, under constant conditions and from a con- tinuous flow, comparable to lava flowing into the ocean. Thus the growth lines observed in either case reflect an intrinsic rhythm generated by the self-referent interaction between molten and frozen states. In such sy- nergetic oscillations (Haken 1983),it is also a familar phenomenon that higher-order periodicities emerge on top of the lower ones. The mantle/shell complex of a real mollusk forms a similar interactive system. During growth, biomineralization freezes the previous soft state whose shape was controlled by the mantle edge and a hydrostatic perios- tracum fold. At the same time, the frozen edge serves as a scaffold for the next growth ring. Since growth rings are also found in mollusc shells from the deep sea (i.e. in the absence of tidal, diurnal and seasonal forcing), rhythmic growth appears to be an intrinsic quality of biological skeletons 276 Discussion: SEILACHER - which does not exclude secondary linkage with external periodicities in particular environmental settings. This insight has consequences for sclerochronology; but more import- ant is the message that in morphogenesis one should not even think of skeletons and soft parts in isolation, because they form the necessary partners in a synergetic system. Nobody would challenge the statement that a mollusc or brachiopod shell is the product of the mantle. But the opposite is equally true in this self-referent system: the shell produces the mantle! The Cambrian turnover The sudden appearance of skeletonized animal phyla at the base of the Cambrian is perhaps the greatest riddle of the biohistorical record. In reality, it presents us with a whole bundle of problems: (1)the suddenness of the evolutionary event, (2) its synchroneity, (3) the ecological turnovers combined with it. Suddenness ('Cambrian explosion').- In the gradualistic view, ani- mal phyla had their roots far back in the Proterozoic, but became visible in the fossil record only with the acquisition of hard skeletons (e.g. Conway Morris 1990). If one assumes, however, that the impressions of large soft-bodied organisms of the Late Recambrian ('Ediacaran Fauna') repre- sent an extinct clade unrelated to modem animal phyla (Vendobionta hypothesis; Seilacher 1992a, b), this view looses considerable substance. On the other hand, behaviorally differentiated trace fossils tell us that small, worm-grade bilaterians with highly developed locomotory and neu- ral systems did burrow and forage underneath microbial mats long before the Cambrian revolution. Alternatively, the punctualistic view faces the old problem of 'hopeful monsters'; i.e. the emergence of new bauplans by a small number of serendipitous macromutations, for which known microevolutionary mech- anisms fail to provide actualistic models. If, however, bauplans (like many innovations at lower taxonomic levels; Seilacher 1991) arose largely by synergetic self-organization, their relatively sudden appearance becomes more acceptable. The synergetic view may also solve another problem. In recent years, molecular distances of DNA and its products in present-day organisms have increasingly provided us with a key to phylogenetic relationships, in addition to morphological similarities and the fossil record. According to molecular data, branching points between modem phyla appear to pre- date the Cambrian explosion (Bergstrom 1986 ); i.e. they favor a more gradualistic view. Synergetic innovation, however, may revolutionize mor- phological design without affecting the molecular clock. An Early Cambrian mollusc was probably close to its worm-like Precambrian ancestor in molecular terms, yet represented a fundamentally different world with regard to design and life style. Therefore, incongruence between molecular ACTA PALAEONTOLOGICA POLONICA (38)(3/4) 277 Fig. 2. Candlewax shell morphologies change consistently with water temperature. In cold water they tend to be narrow and highly convex with prominent growth lines (Gryphaeatype: A-C). At higher temperatures, shapes get wider and flatter, while growth lines become fainter (Placunatype; G-H). Above the melting point, wax floats switch into the morphospace of oil drops. Scale bar - 1 cm. and structural disparity should be expected, the first suggesting a more gradualistic, the other a punctuated mode of change. Synchroneity of skeletonization. - Firstly , the 'big bang' view of the Cambrian revolution needs to be relativated. In geohistoric perspective, 'sudden' may still mean a million years. Also, some skeletal phyla (e.g.
Recommended publications
  • Skeletonized Microfossils from the Lower–Middle Cambrian Transition of the Cantabrian Mountains, Northern Spain
    Skeletonized microfossils from the Lower–Middle Cambrian transition of the Cantabrian Mountains, northern Spain SÉBASTIEN CLAUSEN and J. JAVIER ÁLVARO Clausen, S. and Álvaro, J.J. 2006. Skeletonized microfossils from the Lower–Middle Cambrian transition of the Cantabrian Mountains, northern Spain. Acta Palaeontologica Polonica 51 (2): 223–238. Two different assemblages of skeletonized microfossils are recorded in bioclastic shoals that cross the Lower–Middle Cambrian boundary in the Esla nappe, Cantabrian Mountains. The uppermost Lower Cambrian sedimentary rocks repre− sent a ramp with ooid−bioclastic shoals that allowed development of protected archaeocyathan−microbial reefs. The shoals yield abundant debris of tube−shelled microfossils, such as hyoliths and hyolithelminths (Torellella), and trilobites. The overlying erosive unconformity marks the disappearance of archaeocyaths and the Iberian Lower–Middle Cambrian boundary. A different assemblage occurs in the overlying glauconitic limestone associated with development of widespread low−relief bioclastic shoals. Their lowermost part is rich in hyoliths, hexactinellid, and heteractinid sponge spicules (Eiffelia), chancelloriid sclerites (at least six form species of Allonnia, Archiasterella, and Chancelloria), cambroclaves (Parazhijinites), probable eoconchariids (Cantabria labyrinthica gen. et sp. nov.), sclerites of uncertain af− finity (Holoplicatella margarita gen. et sp. nov.), echinoderm ossicles and trilobites. Although both bioclastic shoal com− plexes represent similar high−energy conditions, the unconformity at the Lower–Middle Cambrian boundary marks a drastic replacement of microfossil assemblages. This change may represent a real community replacement from hyolithelminth−phosphatic tubular shells to CES (chancelloriid−echinoderm−sponge) meadows. This replacement coin− cides with the immigration event based on trilobites previously reported across the boundary, although the partial infor− mation available from originally carbonate skeletons is also affected by taphonomic bias.
    [Show full text]
  • A Stem Group Echinoderm from the Basal Cambrian of China and the Origins of Ambulacraria
    ARTICLE https://doi.org/10.1038/s41467-019-09059-3 OPEN A stem group echinoderm from the basal Cambrian of China and the origins of Ambulacraria Timothy P. Topper 1,2,3, Junfeng Guo4, Sébastien Clausen 5, Christian B. Skovsted2 & Zhifei Zhang1 Deuterostomes are a morphologically disparate clade, encompassing the chordates (including vertebrates), the hemichordates (the vermiform enteropneusts and the colonial tube-dwelling pterobranchs) and the echinoderms (including starfish). Although deuter- 1234567890():,; ostomes are considered monophyletic, the inter-relationships between the three clades remain highly contentious. Here we report, Yanjiahella biscarpa, a bilaterally symmetrical, solitary metazoan from the early Cambrian (Fortunian) of China with a characteristic echinoderm-like plated theca, a muscular stalk reminiscent of the hemichordates and a pair of feeding appendages. Our phylogenetic analysis indicates that Y. biscarpa is a stem- echinoderm and not only is this species the oldest and most basal echinoderm, but it also predates all known hemichordates, and is among the earliest deuterostomes. This taxon confirms that echinoderms acquired plating before pentaradial symmetry and that their history is rooted in bilateral forms. Yanjiahella biscarpa shares morphological similarities with both enteropneusts and echinoderms, indicating that the enteropneust body plan is ancestral within hemichordates. 1 Shaanxi Key Laboratory of Early Life and Environments, State Key Laboratory of Continental Dynamics and Department of Geology, Northwest University, 710069 Xi’an, China. 2 Department of Palaeobiology, Swedish Museum of Natural History, Box 50007104 05, Stockholm, Sweden. 3 Department of Earth Sciences, Durham University, Durham DH1 3LE, UK. 4 School of Earth Science and Resources, Key Laboratory for the study of Focused Magmatism and Giant Ore Deposits, MLR, Chang’an University, 710054 Xi’an, China.
    [Show full text]
  • Ambulacraria - Andrew B
    PHYLOGENETIC TREE OF LIFE – Ambulacraria - Andrew B. Smith AMBULACRARIA Andrew B. Smith Department of Palaeontology, The Natural History Museum, London SW7 5BD, UK Keywords: Echinoderms, crinoids, ophiuroids, asteroids, echinoids, holothurians, hemichordates, enteropneustes, pterobranchs, Xenoturbella, phylogeny, evolution, mode of life, developmental biology, fossil record, biodiversity Contents 1. General Introduction 2. The Echinodermata 2.1. General features 2.2. Crinoidea (sea lillies and feather stars) 2.3. Asteroidea (starfishes and cushion stars) 2.4. Ophiuroidea (brittlestars and basket stars) 2.5. Holothuroidea (sea cucumbers) 2.6. Echinoidea (sea urchins) 2.7. Stem group echinoderms 3. The Hemichordata 3.1. General features 3.2. Pterobranchs 3.3. Enteropneusts. 4. Plactosphaeroidea (Xenoturbella) Bibliography Bibliographical sketch Summary The Ambulacraria is a major clade of invertebrates that are the immediate sister group to the chordates. It comprises the phyla Echinodermata and Hemichordata and the puzzling genus Xenoturbella, the latter being included on the basis of its molecular similarity. The morphological characters uniting Echinodermata and Hemichordata are listed, as are those that characterize each phylum separately. The five classes of echinoderm and two classes of hemichordate are brief described, and information is provided about their mode of life, development, geological history and current views on their phylogenetic relationships. 1. General Introduction Ambulacraria is the formal name applied to a group of invertebrate animals that includes the echinoderms and hemichordates. They are exclusively marine and their origins extend back some 525 Ma to the Cambrian radiation when the earliest examples appear in the fossil record, although their actual origins probably lie slightly earlier, based on molecular clock studies.
    [Show full text]
  • Ultrastructural and Microanalytical Results from Echinoderm Calcite: Implications for Biomineralization and Diagenesis of Skeletal Material
    Micron and Microscopica Acta, Vol. 15, No. 2, pp. 85-90, 1984. 0739-6260/84 83.00+0.00 Printed in Great Britain. C) 1984 Pergamon Press Ltd. ULTRASTRUCTURAL AND MICROANALYTICAL RESULTS FROM ECHINODERM CALCITE: IMPLICATIONS FOR BIOMINERALIZATION AND DIAGENESIS OF SKELETAL MATERIAL DAVID F. BLAKE, DONALD R. PEACOR Department of Geological Sciences, University of Michigan, Ann Arbor, MI 48109, U.S.A. and LAWRENCE F. ALLARD Department of Materials and Metallurgical Engineering, University of Michigan, Ann Arbor, MI 48109, U.S.A. (Received 9 January 1984) Abstract—Magnesian calcite skeletal elements ofthe modern crinoid echinoderm Neocrinus blakei were studied using high resolution TEM, high voltage TEM and STEM microanalysis. Unlike inorganic magnesian calcites which are compositionally heterogeneous, magnesium in these skeletal calcites is homogeneous to at least the 0.1 jim level. While a mosaic structure exists in echinoderm calcite, high voltage TEM reveals the absence of defects or dislocation features which should exist as a consequence ofthe structure. By comparison, inorganic magnesian calcites show a plethora of defects and dislocation features. High resolution lattice fringe images of the echinoderm calcite exhibit a kinking of fringes between mosaic domains, the boundaries ofwhich are largely coherent. Large scale dislocation structures are not observed. Such a ‘stressed’ lattice structure, if pervasive, explains conflicting observations concerning the ‘single crystal’ or ‘polycrystalline aggregate’ nature of echinoderm calcite. The microstructural and microchemical data demonstrate strong organismal control of skeletal deposition in Echinodermata. Both ultrastructural and compositional heterogeneity/homogeneity should be assessed when determining the susceptibility of skeletal material to diagenetic change. Index key words: Echinoderm calcite, biomineralization, analytical electron microscopy, skeletal diagenesis, magnesian calcite.
    [Show full text]
  • Chemical Composition and Microstructural Morphology of Spines and Tests of Three Common Sea Urchins Species of the Sublittoral Zone of the Mediterranean Sea
    animals Article Chemical Composition and Microstructural Morphology of Spines and Tests of Three Common Sea Urchins Species of the Sublittoral Zone of the Mediterranean Sea 1, , 1, , 2 3 Anastasios Varkoulis * y, Konstantinos Voulgaris * y, Stefanos Zaoutsos , Antonios Stratakis and Dimitrios Vafidis 1 1 Department of Ichthyology and Aquatic Environment, Nea Ionia, University of Thessaly, 38445 Volos, Greece; dvafi[email protected] 2 Department of Energy Systems, University of Thessaly, 41334 Larisa, Greece; [email protected] 3 School of Mineral Resources Engineering, Crete Technical University of Crete, 73100 Chania, Greece; [email protected] * Correspondence: [email protected] (A.V.); [email protected] (K.V.) These authors contributed equally to this work. y Received: 19 June 2020; Accepted: 2 August 2020; Published: 4 August 2020 Simple Summary: Arbacia lixula, Paracentrotus lividus and Sphaerechinus granularis play a key role in many sublittoral biocommunities of the Mediterranean Sea. However, their skeletons seem to differ, both morphologically and in chemical composition. Thus, the skeletal elements display different properties, which are affected not only by the environment, but also by the vital effect of each species. We studied the microstructural morphology and crystalline phase of the test and spines, while also examining the effect of time on their elemental composition. Results showed morphologic differences among the three species both in spines and tests. They also seem to respond differently to possible time-related changes. The mineralogical composition of P.lividus appears to be quite different compare to the other two species. The results of the present study may contribute to a better understanding of the skeletal properties of these species, this being especially useful in predicting the effects of ocean acidification.
    [Show full text]
  • Middle Ordovician) of Västergötland, Sweden - Faunal Composition and Applicability As Environmental Proxies
    Microscopic echinoderm remains from the Darriwilian (Middle Ordovician) of Västergötland, Sweden - faunal composition and applicability as environmental proxies Christoffer Kall Dissertations in Geology at Lund University, Bachelor’s thesis, no 403 (15 hp/ECTS credits) Department of Geology Lund University 2014 Microscopic echinoderm remains from the Darriwilian (Middle Ordovician) of Västergötland, Sweden - faunal composition and applicability as environmental proxies Bachelor’s thesis Christoffer Kall Department of Geology Lund University 2014 Contents 1 Introduction ......................................................................................................................................................... 7 1.1 The Ordovician world and faunas 8 1.2 Phylum Echinodermata 8 1.3 Ordovician echinoderms 9 1.3.1 Asterozoans, 1.3.2 Blastozoans 9 1.3.3 Crinoids 10 1.3.4 Echinozoans 10 1.3.4.1 Echinoidea, 1.3.4.2 Holothuroidea, 1.3.4.3 Ophiocistoidea,…., 1.3.4.6 Stylophorans 10 1.4 Pelmatozoan morphology 10 2 Geologocal setting ............................................................................................................................................. 11 3 Materials and methods ..................................................................................................................................... 13 4 Results ................................................................................................................................................................ 14 4.1 Morphotypes 15 4.1.1 Morphotype
    [Show full text]
  • Antarctic Urchin Ctenocidaris Speciosa Spines: Lessons from the Deep
    Cali. Biol. Mar. (2013) 54 : 649-655 Antarctic urchin Ctenocidaris speciosa spines: lessons from the deep Ana I. CATARINO1, Virginie GUIBOURT1, Claire MOUREAUX1, Chantai DE RIDDER1, Philippe COMPERE2 and Philippe DUBOIS1 H) Laboratoire de Biologie Marine, Université Libre de Bruxelles, CP 160/10; av FD Roosevelt 50; 1050 Brussels, Belgium. Telephone: +32-2-650.29.70, fax: +32-2-650.27.96, E-mail:[email protected] O) Département des Sciences et Gestion de IEnvironnement, Université de Liège, Bât. B6c, allée du 6 Août 10; 4000 Liège, Belgium Abstract: Ocean acidification is leading to changes in the oceanic carbonate system. As a result, calcium carbonate saturation horizon is shallowing, especially at high latitudes. Biogenic high magnesium-calcites could be particularly vulnerable, since their solubility is either similar or greater than that of aragonite. Cidaroid urchins have magnesium-calcite spines covered by a polycrystalline cortex which becomes exposed to seawater when mature (not covered by an epidermis). However, deep species live at low calcium carbonate saturation states, especially at high latitudes. We describe here the morphology and the magnesium content of Ctenocidaris speciosa spines collected at different depths from the Weddell Sea (Antarctica) and relate the features with seawater calcium carbonate saturation. We observed that the spines cortex of C. speciosa presented a thicker inner cortex layer and a lower [Mg2+] below the aragonite saturation horizon. We suggest that the cortex of cidaroid spines is able to resist to low calcium carbonate saturation state. Résumé : Les épines de l ’oursin antarctique Ctenocidaris speciosa : leçons venues des profondeurs. L’acidification des océans apporte des changements dans le système des carbonates de l’eau de mer.
    [Show full text]
  • Strength and Toughness of Bio-Fusion Materials
    Polymer Journal (2015) 47, 99–105 & 2015 The Society of Polymer Science, Japan (SPSJ) All rights reserved 0032-3896/15 www.nature.com/pj FOCUS REVIEW Strength and toughness of bio-fusion materials Ko Okumura In nature, there are many strong and tough biomaterials that result from the fusion of soft and hard elements. These materials include nacre, crustacean exoskeletons and spider webs. Here, we review previous studies on such bio-fusion materials, emphasizing the importance of simple models to gain a physical understanding of the emergence of strength and toughness from these structures. Thus, a simple understanding obtained through biologically inspired models provides useful guiding principles for the development of artificial tough composites by mimicking biomaterials. Polymer Journal (2015) 47, 99–105; doi:10.1038/pj.2014.97; published online 5 November 2014 INTRODUCTION of a monolith of the hard element.6 In recent years, more detailed Various animals and plants in nature have developed strong and tough substructures have been found.24–26 materials, often with magnificent hierarchical structures.1–4 Nacre, a There has been a controversy regarding the elastic behavior of glittering layer found on the surface of pearls or inside certain nacre’s soft element. The estimation of the modulus ranges from seashells, is one such example: hard layers are glued together by thin 4GPa6 to 100 Pa.27 However, the soft protein-based elements have soft adhesive sheets,5 which results in remarkable strength and been observed to behave like gels.5
    [Show full text]
  • Biological Control of Skeleton Properties in Echinoderms
    Echinoderm Research, De Ridder. Dubois, Lahaye & Jangoux (eds) 0 1990 Balkema, Rotterdam. ISBN 90 6191 141 9 Biological control of skeleton properties in echinoderms Ph. Dubois* Laboratoire de Biologie marine (CP 160), Universitd Libre de Bnucelles, Bnucelles, Belgique ABSTRACT: Echinoderms have a high-magnesium calcite skeleton whose cristallographic, chemical, and morphological properties make it different from abiotic calcites. The available data show that the single crystal behaviour, the conchoidal fracture properties, the high-magnesium content, and the stereom structure could be partly explained by the properties of the organic nacromolecules associated with the mineral phase. Data suzest that these compounds could produce the stereom properties through stereochemical interactions with calcite. of CaC03 and MgC03 in a calcite lattice. i.e. a high-magnesium calcite (Chave Echinoderms have a calcitic skeleton of 1952). The RgC03 content ranges from 3.0 mesodermal origin. This skeleton is to 43.5 mole?/, (Schroeder et al. 1969) developed by most postmetamorphic and averages 13.5-16.2 mole% according individuals as well as by larvae of to the class considered (V!eber 1969). echinoids and ophiuroids. The growing Such a concentration would make evidence indicates that the echinoderm skeleton metastable in postmetamorphic and larval skeletons are standard inorganic temperature/ pressure homologous structures (see Emlet 1985, conditions (Lerman 1965). Parks et al. 1987, Drager et al. 1989, Most single ossicles show properties Dubois 6r Chen 1989, Richardson et al. of light polarization and X-ray 1989). The echinoderm skeleton may be diffraction as though they were carved considered as a paradigm of biologically out of a single crystal of calcite even controlled mineralized structures (I.:ann when they are several centimetres in et al.
    [Show full text]
  • Potential Effects of Ocean Acidification on Cold-Water Marine Invertebrates
    Potential Effects of Ocean Acidification on Cold-Water Marine Invertebrates by © Katie Helena Verkaik A thesis submitted to the School of Graduate Studies in partial fulfillment of the requirements for the degree of Master of Science in Marine Biology Department of Ocean Sciences Memorial University August 2015 St. John’s, Newfoundland and Labrador Abstract Anthropogenic emissions of carbon dioxide are causing an overall decrease of ocean pH, now termed ocean acidification (OA). This change in water chemistry has potentially dire implications for organisms living in marine environments, especially at high latitudes where carbonate saturation states are already low. OA has been shown to affect processes such as calcification, physiology, reproduction and development, with species-specific differences being observed. The goal of the present study was to better understand the effects of OA on weakly calcifying, cold-water species with lecitotrophic larvae, using the sea cucumber Cucumaria frondosa. In addition, it aimed to gain information on how OA might affect deep-sea organisms, using the hermaphroditic polychaete Ophryotrocha sp. Focal species were exposed to a ~0.4 unit decrease in pH for 19-26 weeks using a realistic flow-through system. I then investigated the reproductive output of each species, as well as its behaviour, spawning, larval development and calcification. Lipid and fatty acid profiles were also examined in C. frondosa. Findings varied between the two species. Gamete synthesis was disrupted by low pH in C. frondosa. Consequently, mature oocytes exhibited morphological discrepancies and negative buoyancy, leading to high embryonic mortality. Skeletal ossicles were affected in terms of abundance, microstructural appearance and chemical composition.
    [Show full text]
  • 2540 Organic Matrix-Related Mineralization of Sea Urchin
    [Frontiers in Bioscience 16, 2540-2560, June 1, 2011] Organic Matrix-related mineralization of sea urchin spicules, spines, test and teeth Arthur Veis Feinberg School of Medicine, Northwestern University, Department of Cell and Molecular Biology, 303 E. Chicago Avenue, Chicago Illinois, USA TABLE OF CONTENTS 1. Abstract 2. Introduction 3. Body plan and skeletal elements of the mature echinoid, Lytechinus variegatus (Lv) 3.1. Teeth and masticatory structure 3.2. Spines and body wall 3.3. Pluteus and embryonic spicule formation 4. Protein components of the sea urchin skeletal elements and biomineralization 5. Biochemical and immunological identification of mineralization related proteins 6. Categorizing the mineralization-related genomic sequences 7. The potential role of phosphopeptides in calcite mineralization processes 8. Prospects for the future 9. Acknowledgements 10. References 1. ABSTRACT 2. INTRODUCTION The camarodont echinoderms have five distinct Echinoderms have long been a subject of study of mineralized skeletal elements: embryonic spicules, mature special interest to students of genetics and developmental test, spines, lantern stereom and teeth. The spicules are biology and an extensive literature has been developed. In transient structural elements whereas the spines, and test 2006 the Sea Urchin Sequencing Consortium (1) published plates are permanent. The teeth grow continuously. The the complete genome of the Strongylocentrotus purpuratus. mineral is a high magnesium calcite, but the magnesium While most of the genes were involved with the content is different in each type of skeletal element, varying developmental, metabolic and immunological aspects of from 5 to 40 mole% Mg. The organic matrix creates the functions of the urchins, several hundred genes were spaces and environments for crystal initiation and growth.
    [Show full text]
  • Stereom Microstructures of Cambrian Echinoderms Revealed by Cathodoluminescence (CL)
    Palaeontologia Electronica palaeo-electronica.org Stereom microstructures of Cambrian echinoderms revealed by cathodoluminescence (CL) Przemysław Gorzelak and Samuel Zamora ABSTRACT Echinoderms possess a skeleton with a unique and distinctive meshlike micro- structure called stereom that is underpinned by a specific family of genes. Stereom is thus considered the major echinoderm synapomorphy and is recognized already in some Cambrian echinoderm clades. However, data on the skeletal microstructures of early echinoderms are still sparse and come only from isolated ossicles of limited taxo- nomic value in which the primary calcium carbonate has been replaced or thinly coated by phosphates, silica or iron oxides. Here, we applied cathodoluminescence (CL) to reveal stereom microstructures of the diagenetically altered calcitic skeletons of some Cambrian echinoderms (in particu- lar Protocinctus, Stromatocystites and Dibrachicystidae). CL not only provides insights into the diagenesis of their skeletons but also reveals primary microstructural details that are not visible under transmitted light or SEM. Different stereom types (resembling labyrinthic, fascicular, galleried, microperforate and imperforate microfabrics) compara- ble to those observed in extant echinoderms have been recognized for the first time in these Cambrian taxa. Our results show that the stereom microstructures widely occur in various Cambrian echinoderm clades which suggest that they likely evolved the same genetically controlled biomineralization mechanisms as those observed in mod- ern echinoderms. These results underline that the CL technique can be a powerful tool in the detec- tion of the microstructural organization in even severely recrystallized echinoderm specimens. Given the close association between the skeletal microstructure and the investing soft tissues, the method presented here opens new possibilites for revealing skeletal growth and soft tissue palaeoanatomy of fossil echinoderms.
    [Show full text]