Stereom Differentiation in Sea Urchin Spines Under Special Consideration As a Model for a New Impact Protective System

Total Page:16

File Type:pdf, Size:1020Kb

Stereom Differentiation in Sea Urchin Spines Under Special Consideration As a Model for a New Impact Protective System Stereom differentiation in sea urchin spines under special consideration as a model for a new impact protective system Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften der Geowissenschaftlichen Fakultät der Eberhard Karls Universität Tübingen vorgelegt von Jan Nils Großmann aus Frankfurt/Main 2010 Tag der mündlichen Prüfung: 30.09.2010 Dekan: Prof. Dr. Peter Grathwohl 1. Berichterstatter: Prof. Dr. James H. Nebelsick 2. Berichterstatter: Prof. Dr. Oliver Betz Table of contents Overview: Aim of the project .................................................................................................... 1 Chapter 1: The world of echinoderms ....................................................................................... 4 Abstract .................................................................................................................................. 4 1. Introduction & general features ......................................................................................... 4 2. General development of echinoderms ............................................................................... 5 3. Defence strategy of echinoderms ....................................................................................... 6 4. General morphology & body plan of sea urchins .............................................................. 6 5. General features of spines .................................................................................................. 9 6. General regeneration possibilities and growth of spines and plates ................................ 11 7. References ........................................................................................................................ 13 Chapter 2: Morphological differentiations in sea urchin spines ............................................. 19 Abstract ................................................................................................................................ 19 1. Introduction ..................................................................................................................... 19 1.1 Bionically inspired material based on the echinoderm skeleton ........................... 19 1.2 Sea urchins skeletal morphology ........................................................................... 20 1.2.1 Stereom in spines .................................................................................... 22 1.2.2 Morphology of the spine ......................................................................... 23 2. Materials & Methods ....................................................................................................... 24 2.1 Aquaria & technical equipment ............................................................................. 24 2.2 Sample preparation ................................................................................................ 27 2.3 SEM ....................................................................................................................... 27 2.4 Critical point drying .............................................................................................. 28 2.5 Measurement of the stereom morphology ............................................................. 28 3. Results ............................................................................................................................. 31 3.1 Cidaroid spines: Surface morphology ................................................................... 32 3.1.1 Plococidaris verticillata ......................................................................... 33 3.1.2 Plococidaris verticillata: Medulla .......................................................... 35 3.1.3 Plococidaris verticillata: Radiating layer ............................................... 38 3.2 Phyllacanthus imperialis ....................................................................................... 40 3.2.1 Phyllacanthus imperialis: Oral spines .................................................... 40 3.2.2 Phyllacanthus imperialis: Medulla ......................................................... 42 3.2.3 Phyllacanthus imperialis: Radiating layer .............................................. 45 3.2.4 Phyllacanthus imperialis spines (aboral): Medulla ................................ 48 3.2.5 Phyllacanthus imperialis spines (aboral): Radiating Layer .................... 51 3.3 Eucidaris metularia ............................................................................................... 53 3.3.1 Eucidaris metularia: Medulla ................................................................. 54 3.3.2 Eucidaris metularia: Radiating layer ...................................................... 57 3.4 Prionocidaris baculosa ......................................................................................... 59 3.4.1 Prionocidaris baculosa: Medulla ........................................................... 60 3.4.2 Prionocidaris baculosa: Radiating layer ................................................ 63 3.5 Spines of Echinoida: Surface morphology ............................................................ 66 3.5.1 Heterocentrotus mammillatus ................................................................. 66 3.5.2 Heterocentrotus mammillatus: Juvenile spine ........................................ 67 3.5.3 Heterocentrotus mammillatus spines (juvenile): Medulla ...................... 69 3.5.4 Heterocentrotus mammillatus spines (juvenile): Radiating Layer ......... 72 3.5.5 Heterocentrotus mammillatus spines (fully grown): Medulla ................ 75 3.5.6 Heterocentrotus mammillatus spines (fully grown): Radiating layer ..... 78 3.6 Stereom types and morphology ............................................................................. 81 3.7 Critical point drying .............................................................................................. 82 4. Discussion ........................................................................................................................ 85 5. Conclusion ....................................................................................................................... 87 6. References ........................................................................................................................ 88 7. Supplement ...................................................................................................................... 95 7.1 Aquaria assemblage ............................................................................................... 95 7.2 Scanning electron microscopy images .................................................................. 97 Chapter 3: Computer tomography of sea urchin spines ........................................................ 103 Abstract .............................................................................................................................. 103 1. Introduction ................................................................................................................... 103 2. Materials & Methods ..................................................................................................... 105 2.1 Materials .............................................................................................................. 105 2.1.1 X-ray Computer Tomography .............................................................. 105 2.2 Methods ............................................................................................................... 105 3. Results ........................................................................................................................... 106 3.1 Heterocentrotus mammillatus .............................................................................. 106 3.1.1 Heterocentrotus mammillatus: Aboral spines ....................................... 106 3.1.2 Heterocentrotus mammillatus: Oral spines ........................................... 110 3.2 Phyllacanthus imperialis ...................................................................................... 111 3.2.1 Phyllacanthus imperialis: Aboral spines ............................................... 111 3.2.2 Phyllacanthus imperialis: Oral spines ................................................... 112 3.3 Prionocidaris baculosa ........................................................................................ 114 4. Discussion ...................................................................................................................... 116 5. Conclusion ..................................................................................................................... 118 6. References....................................................................................................................... 119 Chapter 4: 3-point-bending-tests of sea urchin spines .......................................................... 124 Abstract .............................................................................................................................. 124 1. Introduction ................................................................................................................... 124 2. Materials & Methods ..................................................................................................... 127 2.1 Materials .............................................................................................................. 127
Recommended publications
  • Download Full Article 1.7MB .Pdf File
    https://doi.org/10.24199/j.mmv.1934.8.08 September 1934 Mem. Nat. Mus. Vict., viii, 1934. THE CAINOZOIG CIDARIDAE OF AUSTRALIA. By Frederick Chapman, A.L.S., F.G.S., Commonwealth Palaeon- tologist, and Francis A. Cudmore, Hon. Palaeontologist, National Museum. Plates XII-XV. Nearly 60 years ago Professor P. M. Duncan described the first Australian Cainozoic cidaroid before the Geological Society of London. During the next 20 years Professors R. Tate and J. W. Gregory published references to our fossil cidaroids, but further descriptive work was not attempted until the present authors undertook to examine the accumulated material in the National Museum, the Tate Collection at Adelaide University Museum, the Commonwealth Palaeontological Collection, and the private collections made by the late Dr. T. S. Hall, F. A. Singleton, the Rev. Geo. Cox and the authors. The classification of the Cidaridae is founded mainly upon living species and it is partly based on structures which are only rarely preserved in fossils. Fossil cidaroid tests are usually imperfect. On abraded tests the conjugation of ambulacral pores is obscure. The apical system is preserved only in one specimen among those examined. The spines are rarely attached to the test and pedicellariae are wanting. Therefore, in dealing with our specimens we have been guided mainly by the appear- ance and structure of ambulacral and interambulacral areas. Certain features used in our classification vary with the growth stage of the test : for instance, the number of coronal plates in vertical series, the number of ambulacral plates adjacent to the largest coronal plate, and sometimes the number of granules on the inner end of ambulacral plates.
    [Show full text]
  • Predation Has No Competition: Factors Influencing Space and Resource Use by Echinoids in Deep-Sea Coral Habitats, As Evidenced by Continuous Video Transects
    1 Marine Ecology Achimer December 2015, Volume 36, Issue 4, Pages 1454-1467 http://dx.doi.org/10.1111/maec.12245 http://archimer.ifremer.fr http://archimer.ifremer.fr/doc/00242/35303/ © 2014 Blackwell Verlag GmbH Predation has no competition: factors influencing space and resource use by echinoids in deep-sea coral habitats, as evidenced by continuous video transects Stevenson Angela 1, * , Mitchell Fraser J. G. 1, Davies Jaime 2 1 School of Natural Sciences; Trinity College Dublin; Dublin Ireland 2 Ifremer; Département LEP; Centre de Brest; Plouzané France * Corresponding author : Angela Stevenson, email address : [email protected] Abstract : Predation and competition are highly influential factors determining space use in foraging animals, and ultimately contribute to the spatial heterogeneity observed within habitats. Here we investigated the influence of competition and predation on space and resource use via continuous video transect observations – a tool that has not previously been employed for this purpose. This study therefore also evaluates video data as a pragmatic tool to study community interactions in the deep sea. Observations were compiled from 15 video transects spanning five submarine canyons in the Bay of Biscay, France. Substrate choice, positioning on the coral, echinoid aggregate size, and the presence/absence of predators (e.g. fish and decapods) as well as competitors (both inter- and intra-specific) were recorded. Two dominant co-existing echinoid taxa, echinothurids and Cidaris cidaris (3188 total observations), were observed in the study. For the echinothurids, no significant trends were detected in the inter- and intra-specific competition data. For Cidaris cidaris, significant shifts in substrate use were correlated to the presence of inter-specific competitors (echinothurids), whereby an increase in dead coral substrate usage was observed.
    [Show full text]
  • Systematic Comparison of Sea Urchin and Sea Star Developmental Gene Regulatory Networks Explains How Novelty Is Incorporated in Early Development
    ARTICLE https://doi.org/10.1038/s41467-020-20023-4 OPEN Systematic comparison of sea urchin and sea star developmental gene regulatory networks explains how novelty is incorporated in early development Gregory A. Cary 1,3,5, Brenna S. McCauley1,4,5, Olga Zueva1, Joseph Pattinato1, William Longabaugh2 & ✉ Veronica F. Hinman 1 1234567890():,; The extensive array of morphological diversity among animal taxa represents the product of millions of years of evolution. Morphology is the output of development, therefore phenotypic evolution arises from changes to the topology of the gene regulatory networks (GRNs) that control the highly coordinated process of embryogenesis. A particular challenge in under- standing the origins of animal diversity lies in determining how GRNs incorporate novelty while preserving the overall stability of the network, and hence, embryonic viability. Here we assemble a comprehensive GRN for endomesoderm specification in the sea star from zygote through gastrulation that corresponds to the GRN for sea urchin development of equivalent territories and stages. Comparison of the GRNs identifies how novelty is incorporated in early development. We show how the GRN is resilient to the introduction of a transcription factor, pmar1, the inclusion of which leads to a switch between two stable modes of Delta-Notch signaling. Signaling pathways can function in multiple modes and we propose that GRN changes that lead to switches between modes may be a common evolutionary mechanism for changes in embryogenesis. Our data additionally proposes a model in which evolutionarily conserved network motifs, or kernels, may function throughout development to stabilize these signaling transitions. 1 Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
    [Show full text]
  • (Echinodermata: Holothuroidea) from the Latest Cretaceous Of
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Universität München: Elektronischen Publikationen 285 Zitteliana 89 Short Communication First report of sea cucumbers (Echinodermata: Holothuroidea) from the latest Cretaceous of Paläontologie Bayerische Bavaria,GeoBio- Germany & Geobiologie Center Staatssammlung 1,2,3 LMU München für Paläontologie und Geologie LMUMike MünchenReich 1 n München, 01.07.2017 SNSB - Bayerische Staatssammlung für Paläontologie und Geologie, Richard-Wagner-Straße 10, 80333 Munich, Germany 2 n Manuscript received Ludwig-Maximilians-Universität München, Department für Geo- und Umweltwissenschaften, 30.12.2016; revision ac- Paläontologie und Geobiologie, Richard-Wagner-Straße 10, 80333 Munich, Germany 3 cepted 21.01.2017 GeoBio-Center der Ludwig-Maximilians-Universität München, Richard-Wagner-Straße 10, 80333 Munich, Germany n ISSN 0373-9627 E-mail: [email protected] n ISBN 978-3-946705-00-0 Zitteliana 89, 285–289. Key words: fossil Holothuroidea; Cretaceous; Maastrichtian; Bavaria; Germany Schüsselwörter: fossile Holothuroidea; Kreide; Maastrichtium; Bayern; Deutschland The Bavarian Gerhardtsreit Formation (‶Gerhardts- 1993; Smith 2004) due to different reasons (Reich reiter Mergel″ / ‶Gerhardtsreiter Schichten″; cf. 2013). There are nearly 1,700 valid extant sea cucum- Böhm 1891; Hagn 1960; Wagreich et al. 2004), also ber species (Smiley 1994; Kerr 2003; Paulay pers. known as Gerhartsreit Formation (‶Gerhartsreiter comm.) known worldwide. The fossil record (since Schichten″; Hagn et al. 1981, 1992; Schwarzhans the Middle Ordovician; Reich 1999, 2010), by con- 2010; Pollerspöck & Beaury 2014) or ‶Gerhards- trast, is discontinuous in time and recorded ranges reuter Schichten″ (Egger 1899; Hagn & Hölzl 1952; of species with around 1,000 reported forms (Reich de Klasz 1956; Herm 1979, 2000) is exposed in Up- 2013, 2014, 2015b) since the early 19th century.
    [Show full text]
  • Textbasierte Annotation Von Abbildungen Mit Kategorien Von Wikimedia
    Hochschule Hannover Fakultät III – Medien, Information und Design Abteilung Information und Kommunikation Studiengang Informations- und Wissensmanagement Textbasierte Annotation von Abbildungen mit Kategorien von Wikimedia Masterarbeit Frieda Josi E-Mail: [email protected] Erstprüfer: Prof. Dr. Christian Wartena Zweitprüferin: Dr. Ina Blümel 19.01.2018, Hannover Kurzfassung In der vorliegenden Masterarbeit geht es um die automatische Annotation von Bildern mithilfe der Kategoriesystematik der Wikipedia1. Die Annotation soll anhand der Bildbeschriftungen und ihren Textreferenzen erfolgen. Hierbei wird für vorhandene Bilder eine passende Kategorie vorgeschlagen. Es handelt sich bei den Bildern um Abbildungen aus naturwissenschaftlichen Artikeln, die in Open Access Journals ver- öffentlicht wurden. Ziel der Arbeit ist es, ein konzeptionelles Verfahren zu erarbeiten, dieses anhand einer ausgewählten Anzahl von Bildern durchzuführen und zu evalu- ieren. Die Abbildungen sollen für weitere Forschungsarbeiten und für die Projekte der Wikimedia Foundation2 zur Verfügung stehen. Das Annotationsverfahren findet im Projekt NOA - Nachnutzung von Open Access Abbildungen3 Verwendung. Abstract This master thesis deals with the automatic annotation of images using the Wikipedia category system.4 The annotation is carried out using the image’s captions and their respective text references. A suitable category is suggested for existing images. The images are illustrations from scientific articles published in open access journals. The aim of the work is to develop a conceptual procedure and to carry out and evaluate it on the basis of a selected number of images. The images shall be available for further research and for projects of the Wikimedia Foundation.5 The annotation method is used in the NOA project - reuse of open access media.6 1Das Projekt Wikipedia ist eine mehrsprachige Online-Enzyklopädie, die frei und kollektiv erstellt wird.
    [Show full text]
  • Animal Spot Animal Spot Uses Intriguing Specimens from Cincinnati Museum Center’S Collections to Teach Children How Each Animal Is Unique to Its Environment
    Animal Spot Animal Spot uses intriguing specimens from Cincinnati Museum Center’s collections to teach children how each animal is unique to its environment. Touch a cast of an elephant’s skull, feel a real dinosaur fossil, finish a three-layer fish puzzle, observe live fish and use interactives to explore how animals move, “dress” and eat. Case 1: Modes of Balance and Movement (Case design: horse legs in boots) Animals walk, run, jump, fly, and/or slither to their destination. Animals use many different parts of their bodies to help them move. The animals in this case are: • Blue Jay (Cyanocitta cristata) • Grasshopper (Shistocerca americana) • Locust (Dissosteira carolina) • Broad-wing damselfly (Family: Calopterygidae) • King Rail (Rallus elegans) • Eastern Mole (Scalopus aquaticus) • Brown trout (Salmo trutta) • Gila monster (Heloderma suspectum) • Damselfly (Agriocnemis pygmaea) • Pufferfish (Family: Tetraodontidae) • Bullfrog (Rona catesbrana) • Cicada (Family: Cicadidae) • Moths and Butterflies (Order: Lepidoptera) • Sea slugs (Order: Chepalaspidea) • Koala (Phascolarctos cinereus) • Fox Squirrel (Sciurus niger) • Giant Millipede (Subspecies: Lules) Case 2: Endo/Exoskeleton (Case design: Surrounded by bones) There are many different kinds of skeletons; some inside the body and others outside. The animals with skeletons on the inside have endoskeletons. Those animals that have skeletons on the outside have exoskeletons. Endoskeletons • Hellbender salamander (Genus: Cryptobranchus) • Python (Family: Boidae) • Perch (Genus: Perca)
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • X-Ray Microct Study of Pyramids of the Sea Urchin Lytechinus Variegatus
    Journal of Structural Biology Journal of Structural Biology 141 (2003) 9–21 www.elsevier.com/locate/yjsbi X-ray microCT study of pyramids of the sea urchin Lytechinus variegatus S.R. Stock,a,* S. Nagaraja,b J. Barss,c T. Dahl,c and A. Veisc a Institute for Bioengineering and Nanoscience in Advanced Medicine, Northwestern University, 303 E. Chicago Avenue, Tarry 16-717, Chicago, IL 60611-3008, USA b School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA c Department of Cell and Molecular Biology, Northwestern University, Chicago, IL 60611, USA Received 19 June 2002, and in revised form 23 September 2002 Abstract This paper reports results of a novel approach, X-ray microCT, for quantifying stereom structures applied to ossicles of the sea urchin Lytechinus variegatus. MicroCT, a high resolution variant of medical CT (computed tomography), allows noninvasive mapping of microstructure in 3-D with spatial resolution approaching that of optical microscopy. An intact pyramid (two demi- pyramids, tooth epiphyses, and one tooth) was reconstructed with 17 lm isotropic voxels (volume elements); two individual demipyramids and a pair of epiphyses were studied with 9–13 lm isotropic voxels. The cross-sectional maps of a linear attenuation coefficient produced by the reconstruction algorithm showed that the structure of the ossicles was quite heterogeneous on the scale of tens to hundreds of micrometers. Variations in magnesium content and in minor elemental constitutents could not account for the observed heterogeneities. Spatial resolution was insufficient to resolve the individual elements of the stereom, but the observed values of the linear attenuation coefficient (for the 26 keV effective X-ray energy, a maximum of 7.4 cmÀ1 and a minimum of 2cmÀ1 away from obvious voids) could be interpreted in terms of fractions of voxels occupied by mineral (high magnesium calcite).
    [Show full text]
  • DNA Variation and Symbiotic Associations in Phenotypically Diverse Sea Urchin Strongylocentrotus Intermedius
    DNA variation and symbiotic associations in phenotypically diverse sea urchin Strongylocentrotus intermedius Evgeniy S. Balakirev*†‡, Vladimir A. Pavlyuchkov§, and Francisco J. Ayala*‡ *Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697-2525; †Institute of Marine Biology, Vladivostok 690041, Russia; and §Pacific Research Fisheries Centre (TINRO-Centre), Vladivostok, 690600 Russia Contributed by Francisco J. Ayala, August 20, 2008 (sent for review May 9, 2008) Strongylocentrotus intermedius (A. Agassiz, 1863) is an economically spines of the U form are relatively short; the length, as a rule, does important sea urchin inhabiting the northwest Pacific region of Asia. not exceed one third of the radius of the testa. The spines of the G The northern Primorye (Sea of Japan) populations of S. intermedius form are longer, reaching and frequently exceeding two thirds of the consist of two sympatric morphological forms, ‘‘usual’’ (U) and ‘‘gray’’ testa radius. The testa is significantly thicker in the U form than in (G). The two forms are significantly different in morphology and the G form. The morphological differences between the U and G preferred bathymetric distribution, the G form prevailing in deeper- forms of S. intermedius are stable and easily recognizable (Fig. 1), water settlements. We have analyzed the genetic composition of the and they are systematically reported for the northern Primorye S. intermedius forms using the nucleotide sequences of the mitochon- coast region (V.A.P., unpublished data). drial gene encoding the cytochrome c oxidase subunit I and the Little is known about the population genetics of S. intermedius; nuclear gene encoding bindin to evaluate the possibility of cryptic the available data are limited to allozyme polymorphisms (4–6).
    [Show full text]
  • SI Appendix for Hopkins, Melanie J, and Smith, Andrew B
    Hopkins and Smith, SI Appendix SI Appendix for Hopkins, Melanie J, and Smith, Andrew B. Dynamic evolutionary change in post-Paleozoic echinoids and the importance of scale when interpreting changes in rates of evolution. Corrections to character matrix Before running any analyses, we corrected a few errors in the published character matrix of Kroh and Smith (1). Specifically, we removed the three duplicate records of Oligopygus, Haimea, and Conoclypus, and removed characters C51 and C59, which had been excluded from the phylogenetic analysis but mistakenly remain in the matrix that was published in Appendix 2 of (1). We also excluded Anisocidaris, Paurocidaris, Pseudocidaris, Glyphopneustes, Enichaster, and Tiarechinus from the character matrix because these taxa were excluded from the strict consensus tree (1). This left 164 taxa and 303 characters for calculations of rates of evolution and for the principal coordinates analysis. Other tree scaling methods The most basic method for scaling a tree using first appearances of taxa is to make each internal node the age of its oldest descendent ("stand") (2), but this often results in many zero-length branches which are both theoretically questionable and in some cases methodologically problematic (3). Several methods exist for modifying zero-length branches. In the case of the results shown in Figure 1, we assigned a positive length to each zero-length branch by having it share time equally with a preceding, non-zero-length branch (“equal”) (4). However, we compared the results from this method of scaling to several other methods. First, we compared this with rates estimated from trees scaled such that zero-length branches share time proportionally to the amount of character change along the branches (“prop”) (5), a variation which gave almost identical results as the method used for the “equal” method (Fig.
    [Show full text]
  • Field Keys to Common Hawaiian Marine Animals and Plants
    DOCUMENT RESUME ED 197 993 SE 034 171 TTTTE Field Keys to Common Hawaiian Marine Animals and Plants: INSTITUTTON Hawaii State Dept. of Education, Honolulu. Officeof In::tructional Services. SEPOPT NO RS-78-5247 PUB DATE Mar 78 NOT? 74p.: Not available in he*:dcopy due to colored pages throughout entire document. EDRS PRICE MFO1 Plus Postage. PC Not Available frcm EPRS. DESCRIPTORS *Animals: Biology: Elementary Secondary Education: Environmental Education: *Field Trips: *Marine Biology: Outdoor Education: *Plant Identification: Science Educat4on TDENTIFTERS Hawaii ABSTRACT Presented are keys for identifyingcommon Hawaiian marine algae, beach plants, reef corals,sea urci.ins, tidepool fishes, and sea cucumbers. Nearly all speciesconsidered can be distinguished by characte-istics visible to- thenaked eye. Line drawings illustrate most plants atd animals included,and a list of suggested readings follows each section. (WB) *********************************************************************** Reproductions supplied by FDPS are the best thatcan be lade from the original document. **************************t***************************************** Field Keys to Common Hawaiian Marine Animals and Plants Office of Instructional Services/General Education Branch Department of Education State of Hawaii RS 78-5247 March 1978 "PERMISSION TO REPRODUCE THIS U S DEPARTMENT OF HEALTH. MATERIAL HAS BEEN GRANTED BY EDUCATION &WELFARE NATIONAL INSTITUTE OF EDUCATION P. Tz_urylo THIS DOCUMENT HAS BEEN qEPRO. DuCED EXACTLY AS PECE1VEDPO.` THE PE PSON OP OPC,AN7ATION ORIGIN. TING IT POINTS Or vIEW OR OPINIONS SATED DO NOT NECESSARILY PE PPE. TO THE EDUCATIONAL RESOURCES SENTO<<IC I AL NATIONAL INSTITUTE 0, INFORMATION CENTER (ERIC)." EDuCA T,ON POSIT.ON OR CY O A N 11 2 The Honorable George R. Arlyoshl Governor, State of Hawaii BOARD OF EDUCATION Rev.
    [Show full text]
  • Variation in Coral-Associated Cryptofaunal Communities Across Spatial Scales and Environmental Gradients
    Coral Reefs (2018) 37:827–840 https://doi.org/10.1007/s00338-018-1709-7 REPORT Variation in coral-associated cryptofaunal communities across spatial scales and environmental gradients 1 1 2 Chelsie W. W. Counsell • Megan J. Donahue • Kyle F. Edwards • 1 3 Erik C. Franklin • Mark A. Hixon Received: 2 March 2018 / Accepted: 20 June 2018 / Published online: 5 July 2018 Ó Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract Most of the diversity on coral reefs is in the wave height, and chlorophyll-a were significant drivers of cryptofauna, the hidden organisms that inhabit the inter- occurrence. Depth and percent live coral tissue were also stitial spaces of corals and other habitat-forming benthos. identified as important correlates for community compo- However, little is known about the patterns and drivers of sition with distinct responses across taxa. Analyzing spe- diversity in cryptofauna. We investigated how the crypto- cies-specific responses to environmental gradients faunal community associated with the branching coral documented a unique pattern for the guard crab Trapezia Pocillopora meandrina varies across spatial scales and intermedia, which had a higher probability of occurring on environmental gradients. We performed nondestructive smaller colonies (in contrast to 18 other common taxa). visual surveys of the cryptofaunal community on 751 P. The results of a principal coordinates analysis on com- meandrina colonies around the island of O‘ahu (30–73 munity composition and a co-occurrence analysis further colonies per site, 3–6 sites per region, five regions). We supported T. intermedia as having a unique distribution identified 91 species, including 48 fishes and 43 inverte- across colonies, even in comparison with four other Tra- brates.
    [Show full text]