<<

ZOBODAT - www.zobodat.at

Zoologisch-Botanische Datenbank/Zoological-Botanical Database

Digitale Literatur/Digital Literature

Zeitschrift/Journal: Beiträge zur Paläontologie

Jahr/Year: 1992

Band/Volume: 17

Autor(en)/Author(s): Nebelsick James H.

Artikel/Article: The Northern Bay of Safaga (, ): An Actuopalaeontological Approach III. Distribution of Echinoids. Die Nördliche Bucht von Safaga (Rotes Meer, Ägypten): ein aktuopaläontologisches Beispiel III. Verteilung von Echiniden 5-79 ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien Beitr. Paläont. Osterr., 17:5-79, Wien 1992 The Northern Bay of Safaga (Red Sea, Egypt): An Actuopalaeontological Approach III. Distribution of Echinoids Die Nördliche Bucht von Safaga (Rotes Meer, Ägypten): ein aktuopaläontologisches Beispiel III. Verteilung von Echiniden by James H. NEBELSICK" NEBELSICK, J. H., 1992. The Northern Bay of Safaga (Red Sea, Egypt): an actuopalaeontological approach. III. Distribution of echinoids. — Beitr. Palaont. Osterr. 17: 5-79, Wien.

Contents 5. Conclusions 45 6. Acknowledgements 48 Abstract 5 7. References 48 Zusammenfassung 6 1. Introduction .... 6 2. Methods 10 Abstract 3. Results 14 Actuopalaeontological investigations have been con­ 3.1. Distribution of echinoids and ducted on the echinoid fauna from the Northern Bay fragments . 14 of Safaga, Red Sea, Egypt. This area was chosen for 3.1.1. Regular echinoids 14 study as it represents a highly structured, shallow 3.1.2. Irregular echinoids ...24 water, tropical, carbonate environment. Echinoids 3.2. Correlation of echinoids .30 fragments were common in 67 bulk sediment samples 3.3. Multivariate statistical analysis .. 30 which were collected in a variety of bottom and sed­ 3.3.1. Analysis of all echinoid fragment imentary facies down to a depth of 57 m. The frag­ material 30 ments can be identified due to the numerous char­ 3.3.2. Analysis of regular echinoids ... 32 acters present on the echinoid test and spines upon 3.3.3. Analysis of irregular echinoids 32 comparison to complete sea-urchins found within the 3.3.4. Analysis of irregular echinoids study area and museum collections. without Clypeaster sp. 32 The fragment material of 18 taxa was distin­ 3.4. Comparison of echinoid fragments to guished, with the exception of Clypeaster sp. and bottom and sedimentary facies 36 Schizasteridae, at the level. Both regular and 3.5. Correlation to grain size fractions, sedimen­ irregular echinoid fragments were present in similar tary parameters and depth .. 36 amounts. 4. Discussion 38 Multivariate statistical analyses (cluster and prin­ 4.1. Taphonomic bias 38 cipal components) and correlation methods are used 4.2. Taxon distributions ...... 38 to analyze the distribution of fragment weights of all 4.3. Distribution of taxa with respect to environ­ echinoids, regular echinoids only, irregular echinoids mental parameters 40 only, and irregular echinoids without Clypeaster sp. 4.4. Relationship to facies distributions...... 43 The results of these analyses were compared to 4.5. Applicability to palaeontology 44 the distribution of bottom facies (PILLER ¿z PER- VESLER, 1989), sedimentary facies and mean grain •Institut für Paläontologie der Universität Wien, Univer­ sitätsstrasse 7, A-1010 Wien. (New address: Institut für Geo­ size distributions (PILLER &; MANSOUR, 1990). logie und Paläontologie der Universität Tübingen, Sigwart- The direct comparison of echinoid distribution with strasse 10, 0-7400, Tübingen 1, BRD.) detailed sedimentological parameters and grain size ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien 6 Beitr. Paläont. Osterr., 17, Wien 1992 distributions was possible for 45 samples. bereits publizierten qualitativen Untersuchungen The results of the analyses show that the echinoid von Echiniden aus dem Roten Meer und dem distributions can be distinguished for both regular Indo- Westpazifik vergleichen. Es ergibt sich eine and irregular echinoids despite taphonomic bias and enge Beziehung zwischen Echinidenverteilung und size restrictions (> 2 mm) imposed by the analytic Sediment- und Bodenfazies sowie Korngröße und method. There is a close correlation to sedimentary Wasserbewegung. Die Methoden, welche in dieser and bottom facies as well as environmental parame­ aktuopaläontologischen Untersuchung angewendet ters such as grain size characteristics and water en­ worden sind, sollten auch für das Erkennen der ergy. The methodology used in this actuopalaeonto- Verteilung fossiler Echinidenfaunen Verwendung logical investigation should be useful in recognizing finden. the distribution patterns of fossil echinoid faunas. 1. Introduction Zusammenfassung Actuopalaeontology has been described by DODD k An der Echinidenfauna der Nördlichen Bucht STANTON (1990) as the study of organisms in their von Safaga, Rotes Meer, Ägypten, einem tro­ modern environment from a geologic/palaeontologic pischen Seichtwasser-Karbonatbereich, wurde ak- perspective as developed by RICHTER (1929), tuopaläontologische Untersuchungen durchgeführt. ABEL (1935) and SCHÄFER (1962). The Northern Echinidenfragmente sind in insgesamt 67 Sediment­ Bay of Safaga, situated on the Egyptian Westcoast proben aus verschiedenen Boden- und Sediment­ of the Red Sea (Fig. 1), was chosen by researchers faziesbereichen in Tiefen bis zu 57 m angetroffen wor­ at the Institute of Palaeontology of the University of den. Die Fragmente von 18 verschiedenen Echiniden- Vienna as the object of such a study as it represents a taxa konnten mit Ausnahme von Clypeaster sp. und highly structured, shallow water, tropical, carbonate den Schizasteridae auf Artniveau identifiziert wer­ environment. The broad scope of research includes den. the general investigation on environmental param­ Reste von regulären und irregulären Seeigeln eters, topography, and bottom facies (PILLER k sind in etwa gleichen Mengen angetroffen worden. PERVESLER, 1989), sedimentary facies (PILLER, Die Identifizierung der Fragmente erfolgte anhand 1990; PILLER k MANSOUR, 1990), as well as a der zahlreichen Merkmale der Echinidenschale und wide range of detailed studies on relevant organisms -stacheln. Die Fragmente wurden mit komplett er­ of palaeontologic interest including foraminifers, red haltenen Exemplaren, die im Arbeitsgebiet gesam­ algae, bryozoans, molluscs (GOLEBIOWSKI, 1990), melt wurden oder sich im Museenbestand befinden, corals and boring bivalves (KLEEMANN, 1990A, verglichen. 1990B, 1992), echinoids (NEBELSICK, 1990, 1992), Multivariate Cluster- und Hauptkomponentenana­ and lebensspuren (DWORSCHAK k PERVESLER, lysen, sowie Korrelationsmethoden wurden angewen­ 1988; PERVESLER, 1990). det, um die Verteilung der Fragmentgewichte statis­ BOGGILD k ROSE (1984) showed the impor­ tisch zu untersuchen. Diese Analysen wurden nicht tance of drawing upon recent analogues in distin­ nur am gesamten Fragmentmaterial, sondern auch guishing biofacies and palaeoenvironments of echi­ getrennt für die regulären, irregulären sowie ir­ noid assemblages in the Mid-Tertiary carbonate suc­ regulären Seeigeln ohne Clypeaster sp. durchgeführt. cession of the Maltese Islands. There are, how­ Die Ergebnisse dieser Untersuchungen sind mit den ever, numerous problems in assessing recent echi­ Verteilungen von Boden- und Sedimentfaziestypen noid distributions and their implications for palaeon­ sowie den mittleren Korngrößen verglichen wor­ tological research. These include their cryptic and den. Direkte Vergleiche der Echinidenverteilung patchy distributions (BUCHANAN, 1966; DAFNI mit detaillierten sedimentologischen Parametern und k TOBOL, 1986), as well as the intricate tapho­ Korngrößenverteilungen (PILLERk PERVESLER, nomic pathways of these multi-element skeletons 1989; PILLER k MANSOUR, 1990) sind in (SCHÄFER, 1962; SEILACHER, 1979; STRATH- 45 Fällen möglich gewesen. Die Verteilung der MAN, 1981; SMITH, 1984; GREENSTEIN, 1989, Echinidenfragmente wurde auch innerhalb der jewei­ 1990, 1991; GREENSTEIN k MEYER, 1990; KID- ligen Bodenfazies und Sedimentfazies untersucht. WELL k BAUMILLER, 1990; DONOVAN, 1991). Die Ergebnisse der Analysen zeigen, daß die Research on the distributions and controlling envi­ Verteilung von Echiniden anhand deren Frag­ ronmental factors of sea- urchins have been restricted mente statistisch untersucht werden kann, obwohl to large scaled descriptive studies (KIER k GRANT, Verfälschungen durch taphonomische Vorgänge und 1965; ERNST ET AL., 1973; KIER, 1975), as well methodisch bedingte Einschränkungen bezüglich der as quantitative studies of regular taxa over smaller untersuchten Fragmentgrößen (> 2 mm) auftreten. areas, isolated sample points or along transects (e. g. Die Verteilung der Echiniden läßt sich gut mit EBERT, 1971; HERRING, 1972; MERGNER k ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien NEBELSICK, J. H., The Northern Bay of Safaga ... 7

Fig. 1. Location and general topography of the study area; modified after PILLER k MANSOUR 1990.

SCHUHMACHER, 1974; CAMPBELL k MORRI­ PILLER k PERVESLER (1989) and the investiga­ SON, 1988; DE BEER, 1990; DOTAN, 1990A). tions of sedimentary facies and grain size parame­ One method in overcoming the difficulties of as­ ters in PILLER k MANSOUR (1990). The study sessing echinoid distributions over larger areas and area, a shallow water carbonate environment, shows across facies boundaries lies in the identification and a complex rugged bottom morphology characterized quantification of echinoid fragments (NEBELSICK, by N-S running topographic highs which are mani­ 1992). The object of the present study is the use of fested either as islands or submarine ridges (Fig. 1). fragment identification for a detailed comparison of The topography of the bay was assessed using echo the distribution of both regular and irregular echi- sounding along 55 transects with a compiled length noids with the facies, grain size parameters and en­ of 125.8 km. The shallow “Southwest channel” is vironmental factors of the Northern Bay of Safaga. bordered by the mainland and Gazirat Safaga Island. The knowledge gained should be useful in arriving at It reaches a width of 1 km and depths which deep­ a more complete reconstruction of ancient echinoid ens from 5 m in the south to 30 m in the north. biocoenoses from the available skeletal remains. The protected “West area” has a basinal character Two studies serve as a basis for this study: and reaches depths of 38 m in a flat muddy plain. the topography and bottom facies are presented in The “North area” is generally shallow with a mean ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien 8 Beitr. Palaont. Osterr., 17, Wien 1992

Table 1. Species list and mode of discovery of echinoids found in the Northern Bay of Safaga, Red Sea, Egypt; cumulative weight percentage of fragments (>2 mm) across all the samples; % of test fragments and spines within taxa. d * 2 8 a d £ 3 W) '3 8 .9 T3 W)a a ^ 2 a> T33 .2 O3 <4_ O Regular echinoids Cidaroida Eucidaris metularia (Lamarck) x X Phyllacanthus imperialis (Lamarck) X 20.58 10.80 89.20 Prionocidaris baculosa (Lamarck) X 1.58 27.88 72.12 Echinothurioida X 7.84 12.56 87.44 Asthenosoma varium Grube x Diadematoida 0 Diadema setosum (Leske) x Echinothrix calamaris (Pallas) x X 0.95 58.74 41.26 Temnopleuroida 0 Microcyphus rousseaui L. Agassiz x X X 0.48 100 0 Temnotrema sp. X 0.04 100 0 Nudechinus sp. X X 0.01 100 0 Tripneustes g rat ilia (Linnaeus) x X Echinoida X 2.48 98.21 1.79 Echinometra mathaei (de Blainville) x X X 10.40 16.66 83.34 Heterocentrotus mammillatus (Linnaeus) x X X 2.16 18.33 81.67 Parasalenia poehli Pfeffer X X 0.31 67.24 32.76 Irregular echinoids Clypeasteroida Clypeaster sp. 24.73 100 0 Clypeaster humilis (Leske) XXX Clypeaster fervens Koehler X Clypeaster reticulatus (Linnaeus) X Echinocyamus crispus Mazetti X X X 1.46 100 0 Fibularia ovulum Lamarck X X X 3.34 100 0 Laganum depressum L. Agassiz X X X 8.67 100 0 Echinodiscus auritus Leske X X Spatangoida X 1.32 100 0 Lovenia elongata (Gray) X X 0.31 100 0 Metalia sp. X 0 Schizasteridae 13.74 100 0 Diploporaster savignyi (Fourtau) X depth of 10 m and is bordered to the east by the which serves as the basis of coral reefs extending to Ras Abu Soma peninsula. The “East area” is sep­ the surface (e. g., Tubya Al-Kabir). arated from the “West area” by the Tubya Islands The Northern Bay of Safaga is characterized by a (Tubya Al-Hamra and Tubya Al-Bayda) and their large variability and rapid transition of facies within southward extensions. It reaches the greatest depths a relatively small area (ca. 7 x 10 km). Twelve bot­ of the study area and is divided into a northern basin tom facies were distinguished by PILLER &; PER- with depths between 40 and 55 m, and a southern VESLER (1989) as seen in Figures 19, 23 and 28. basin with depths between 40 and 50 m. It is sepa­ These represent the observed characteristics of the rated from the open sea by a broad submarine ridge sea-floor and are based exclusively on field map- ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien NEBELSICK, J. H., The Northern Bay of Safaga 9

Fig. 2. Location of sample points (Am = Aerial mast, H = “Safaga hotel”). ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien 10 Beitr. Palàont. Osterr., 17, Wien 1992

Fig. 3. Frequency distribution of regular echinoid frag­ Fig. 4. Frequency distribution of irregular echinoid ments (>2 mm). fragments (>2 mm). 2. M ethods The analyzed echinoid fragments (18 taxa) originate ping using a bathyscope to a depth of 20 meters from 67 standardized bulk sediment samples (Fig. and SCUBA-diving observations down to a maxi­ 2) taken by pushing a steel cylinder with a diame­ mum depth of 70 m. ter of 40 cm into the sediment and removing the top 20 cm with a metal scoop into a net with 1 mm mesh The investigation of the sedimentary facies width. The characteristics of the samples points are (PILLER MANSOUR, 1990) revealed a mixed shown in App. 1. Echinoid fragments larger than carbonate/terrigenous environment due to the high 2 mm were removed, identified and weighed to a pre­ concentration of non-carbonate minerals along the cision of O.OOlg. Large samples were splitted using a coastline. Of interest for the interpretation of echi­ modified sample splitter as described by KENNARD noid fragment distribution is the immediate neigh­ &; SMITH (1961). The weight percentages of the borhood of contrasting sedimentary environments, split samples were recalculated to the original sample especially that of “Coral carpet” and muddy sedi­ size. The frequencies of echinoid fragment presence ments. Eight sedimentary facies (see Fig. 20, 24 and in each samples are shown in App. 2. 29) were distinguished. These represent a synthe­ Echinoids were discovered as living specimens, sis of grain size, carbonate constituent, mineralogi- dead empty tests with and without preservation of cal and trace element characteristics of a total of 122 the apical system, and as diverse fragments of the samples collected throughout the study area. The test and spines (compare Tab. 1). The observed pres­ detailed documentation of grain size parameters (see ence of echinoids within the Northern Bay of Safaga Fig. 21, 25 and 30) is of special importance for the is compiled from numerous dives through the author analysis of echinoid distributions. and other members of the working group. ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien NEBELSICK, J. H., The Northern Bay of Safaga 11

Fig. 5. Frequency distribution of metularia Fig. 6. Frequency distribution of Prionocidaris bacu- fragments (>2 mm). losa fragments (>2 mm). Identification of echinoid fragments followed upon 7. shape, differentiation and distribution of tuber­ comparison to complete specimens collected in the cles; field (identification following MORTENSEN (1928— 1951), CLARK k ROWE (1971) and DOLLFUS k 8. shape, differentiation and distribution of ambu- ROMAN (1981)) as well as collections of Red Sea lacral pores; echinoids in the “Naturhistorisches Museum, Zool­ ogische Abteilung” in Vienna. There are numer­ 9. petals in Irregularia; ous characters allowing the identification of echinoid 10. “food grooves” of clypeasteroids; fragments as summarized in MORTENSEN (1928— 51), DURHAM ET AL. (1966) and SMITH (1979, 11. internal support system of clypeasteroids; 1980A, 1980B, 1980C, 1984) and documented in PI. 1 to 8. These include: 12. number and position of fascioles of spatangoids; 13. coloration patterns, typical for most regular 1. general test size and morphology; echinoids, especially the spines; and 2. stereom differentiation; 14. shape and fine structure (ridges, whorls, barbs 3. compound plate structure; and thorns) of spines. Most fragments could be assigned to the species 4. position and size of the peristome and periproct; level. Identification of Clypeaster was restricted to 5. development of the apical system; the generic level, that of schizasterids to the fam­ ily level although larger fragments of Diploporaster 6. size and number of genital pores; savignyi were encountered. ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien 12 Beitr. Palàont. Osterr., 17, Wien 1992

Fig. 7. Frequency distribution of Diadema, setosum Fig. 8. Frequency distribution of Tripneustes gratilla fragments (>2 mm). fragments (>2 mm). The relative distributions of the most important group method using arithmetic averages (UPGMA) echinoid taxa across the Northern Bay of Safaga are as the classification procedure: total echinoid pres­ shown in Figs. 3 to 16. The cumulative weight per­ ence (Fig. 17), regular echinoids only (Fig. 22), ir­ centage of fragments across all the samples as well as regular echinoids only (Fig. 26), and irregular echi­ percentage of test fragments and spines within the noids excluding Clypeaster sp. (Fig. 27). Samples taxa are shown in Tab. 1. in which the taxa do not include more than 1% of The Pearson’s product-moment correlation coef­ the total echinoid weight percentage were excluded ficient r, measuring the linear relationship between from the later three analyses. Interesting results are two variables, is used to correlate between absolute given by the cluster analysis of total, regular and ir­ echinoid weights (Tab. 2), grain size parameters as regular echinoids without Clypeaster sp. Statistical well as depth (Tab. 5). parameters for these cluster analyses are presented Cluster analysis is a multivariate statistical tech­ in App. 3, 6 and 7 nique which can be used to identify a smaller num­ The distribution of the resulting clusters with re­ ber of groups such that elements residing in a par­ spect to bottom facies, sedimentary facies and mean ticular group are more similar to each other than grain size are shown in Figs. 19-21, 23-25, and 28-30. to elements belonging to other groups (DILLON k The facies and mean grain size distributions are sim­ GOLDSTEIN, 1984). The relationships of the sam­ plified replications of the maps published in PILLER ples are displayed in dendrograms whereby the clos­ k PERVESLER (1989) and PILLER k MANSOUR est relationships are shown between objects nearest (1990). It is important to note that these maps rep­ together. Four hierarchical Q-mode cluster analy­ resent a generalization of facies and grain size distri­ ses were calculated using the the cosine coefficient butions. as the similarity index and the unweighted pair- A Q-mode principal components analysis was con- ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien NEBELSICK, J. H., The Northern Bay of Safaga 13

Fig. 9. Frequency distribution of Echinometra. ma.tha.ei Fig. 10. Frequency distribution of Heterocentrotus fragments (>2 mm). mammillatus fragments (>2 mm).

Comparison to grain size parameters ducted on the total echinoid fragment material of 67 The correlation to bottom facies (Tab. 3) were made samples. This is a method for reducing the overall following Tab. 2 in PILLER k MANSOUR (1990); complexity of multivariate data by taking advantage the position of the samples in bottom facies map and of inherent inter-dependencies (JORESKOG et al., selected profiles across the Northern Bay of Safaga 1976; SCHUBÔ k UEHLINGER, 1986) by extract­ in PILLER k PERVESLER (1989); the description ing factors which are ranked according to the extent of bottom characteristics during sample taking (pers. to which each factor accounts for the variance ob­ comm. R. Golebiowski) as well as field observations. served in the data. Rotation by the Varimax rota­ The direct comparison between echinoid presence tion technique was conducted in order to enhance the and grain size parameters, i. e. sedimentary facies, important contributing loadings and to diminish the followed solely upon the correlation of bulk sediment loadings on non-significantly contributing variables. samples and sediment samples taken for grain size The factor scores estimate the contribution of the analysis (see PILLER k MANSOUR (1990) for sam­ factors to each original observation (the samples). pling methods) originating from the same location. The factor loading of the individual variables (the An assignment to sedimentary facies (Tab. 4) was components) are weighted with respect to the con­ possible for 39 out of 67 cases (= 58% of the sam­ tribution of that variable to the factor. The factor ples). The direct correlation of echinoid presence to loadings are given in App. 4; the factor scores and grain size fractions and parameters (mean grain size, percentage of variance are shown in App. 5; factor and sorting) in 45 out of 67 cases (= 67% of the loading plots are shown in Fig. 18. All multivariate samples) (see Tab. 5). The distribution of echinoid statistics were computed on the mainframe SPSSx fragment weights within discrete mean grain size val­ statistical package at the University of Vienna. ues are shown in App. 9. The sediment description ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien 14 Beitr. Paläont. Osterr., 17, Wien 1992

Fig. 11. Frequency distribution of Clypeaster sp. frag- Fig. 12. Frequency distribution of Echinocyamus cris- ments (>2 mm). pus fragments (>2 mm). (App. 8) and grain size data originates from PILLER grain size and sorting classes are shown in Figs. 36 k MANSOUR (1990) as well as from unpublished and 37 raw data used in this analysis of sedimentary facies. A compilation of the mode of life, sedimentological The average grain diameter is characterized by the parameters of the sediments in which the fragments graphic mean (Mz ) (FOLK k WARD, 1957); the are found, and the facies restrictions of the most im­ degree of sorting (2. mom.) was calculated using portant echinoids in the study area is given in Tab. moment methods (FRIEDMANN, 1962); the inclu­ 6. sive graphic skewness was calulated; kurtosis is ex­ pressed again by moment methods (4. mom.). The 3. Results terminology of the sediments followed the triangular diagram of FÜCHTBAUER (1959) and MÜLLER 3.1. Distribution of echinoids and fragments (1961). The average values of grain size mean and The descriptions of the characters used in indentify- sorting of the correlated samples were calculated for ing fragments are culled from MORTENSEN (1928— each of the clusters of the diverse cluster analyses 1951), DURHAM et al. (1966), CLARK k ROW (Apps. 3, 6, and 7). (1971) and DOLLFUSS k ROMAN, 1981. The average relative percentages of echinoids within discrete classes are shown to mean grain size values (Fig. 31), sorting (Fig. 32), skewness (Fig. 33), 3.1.1. Regular echinoids kurtosis (Fig. 34) and depths (Fig. 35). Statistical Regular echinoids, which are epibenthic, oppor­ parameters of echinoid presence within these discrete tunistic omnivores, comprise 46,83% total fragment classes are shown in Apps. 9-12. The average abso­ weights within the study area. Their distribution lute weights of the most important taxa within mean (Fig. 3) is restricted primarily to sediments associ- ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien NEBELSICK, J. H., The Northern Bay of Safaga 15

Fig. 13. Frequency distribution of Fibularia ovulum Fig. 14. Frequency distribution of La.ga.num depressum fragments (>2 mm). fragments (>2 mm). ated with hard substrates including the coral reef shaft terminating in a crown with a central promi­ and coral carpet bottom facies. Moderate percent­ nence (PI. 1, Figs. 1, 5, 6). Low rounded warts are ages are found in sands associated with coral patches disposed in regular, longitudinal series. and . They are most common in the cor algal Taphonomy: (plates = 10.80%; spines = 89.20%). sedimentary facies. Spines of living specimens are commonly incrusted by a number of diverse organisms including coralline Eucidaris metularia algae, foraminifers, bryozoans, and bivalves (PI. 1, (20.58% of total fragment weights) Fig. 6). Clean as well as incrusted complete, empty Observed distribution and mode of life: Found test are present (PI. 1, Fig. 2). Test fragment show living on a variety of hard substrates, often in large mostly interplate fracturing (PI. 1, Fig. 3). numbers between the branches of corals. Fragment distribution (Fig. 5): Found in mod­ Identification: Small cidaroids (< 3 cm); with dis­ erately sorted, coarse sands and gravels in a wide tinctly sinuate ambulacra (PI. 1, Fig. 2, 3) with non­ distribution of substrates associated with hard sub­ conjugate pores separated by a rounded prominence; strates including coral reef, coral carpet and sand primary tubercles with smooth glassy knobs on the with coral patches bottom facies and coralgal sedi­ admedian side of the boss and partly also of the mentary facies. mamelon (PI. 1, Fig. 4). Interambulacra have non-crenulate, perforated tu­ Phyllacanthus imperialis bercles with non-sunken areoles (PI. 1, Fig. 4), scrobicular tubercles with semi-elliptical boss and (1.58% of total fragment weights) mamelon prolonged toward the primary tubercle and Living specimens were not observed in the study cylindrical primary spines with abruptly truncated area. ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien 16 Beitr. Palaont. Osterr., 17, Wien 1992

Fig. 15. Frequency distribution of Echinodiscus auritus Fig. 16. Frequency distribution of Schizasterid frag­ fragments (>2 mm). ments (>2 mm). Identification: Large cidaroid with widely exert oc­ Prionocidaris baculosa ulars in the apical system. Sinuate ambulacra with (7.58 % of total fragment weights) conjugate ambulacral pores have an interporiferous zone about the same width of the pore zone. The Living specimens were not observed in the study interambulacra show well separated, sunken areoles area. with a prominent, non-crenulate, primary tubercle Identification: Large cidaroid with insert oculars and a large boss (PI. 1, Fig. 7). Prominent semilu­ in the apical system. The conjugate ambulacral nar scrobicular tubercles, with a distinct elevation on pores have an interporiferous zone about twice the the side towards the areole, are larger than the sec­ width of the pore zone. Non-crenulate primary tu­ ondary tubercles. The median area is very narrow. bercles of the interambulacra show well separated as The large, robust, fusiform primary spines show dis­ well as confluent areoles (PI. 2, Fig. 1). tinct fine granules arranged in 16-20 regular longi­ The median area can reach a width greater than tudinal series (PI. 1, Fig. 8). that of the areole. The cylindrical or tapering pri­ Taphonomy: (plates = 27.88%; spines = 72.12%). mary spine have a spotted collar, a longitudinal series Aggregated spines, showing a wide variety of preser­ of thorns arranged in distinct whorls and a terminal vation, were found in sand pockets within the reef. crown (PI. 2, Figs. 2-5). Fragment distribution: Most common in moder­ Taphonomy: (plates = 12.56%; spines = 87.44%). ately sorted, coarse sands in the coral reef and sand Mostly found as single large interambulacral plates with coral carpet bottom facies and in the coralgal often with articulated ambulacral plates (PL 2, Fig. sedimentary facies. 1). The spines show a wide variation of preservation often being broken (PI. 2, Fig. 4, 5) and incrusted. Fragment distribution (Fig. 6): Wide range of distribution in moderately sorted coarse sands and ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien NEBELSICK, J. H., The Northern Bay of Safaga 17

OBpUOJSEZIipS

o ON VJüSuop ÜWdAOJ o m © o ■

O l On|On o 00 VO snjunn snosipoutxpj o o 1 00 (N) ooi umssauddp tununSoj r-o r-o H

© o o\ © O m r - VO tunjtiAO D U D jnqij © t s o 1 •

o c s o m v o sndsijo smuüfooumj% © 0 0 o T f T f v o © © o o o 1 1 1

© r-~ T f t s (N t-~ © O n o i n O n O m •ds J9}^D9di(jJ o m c s © © o o 1

m m c s c n r o 0 0 VO t - T f m m m stijuuiiuuiütu snjoututtOJdjdH »■H o © o I o I o I I I I I

O m m ON cs © O CN © © ON cs VO Tf Tf Tf pmiwut vajziiiouttjDg © © o 1 1 1 1 1

O vo © ON m o (N © m © o Tf o r-~ vo m Tf vjjijvj8 S9jsn d u d u £ © m o o O © 1 1 1 1 1 •

© Tf V) VO © On On 00 ON 00 o o Tf jm cs © cn ON o CN XUnSOldS ÜUldpDtQ © © N fH Tf © © 1 1 1

O © ON VO Tf Tf m o t '- Tf VO ON © m (N Tf fn m 00 Tf cn o m m vsojnovq suvppououj © T f O o o o O o O o O o 1 1 1 1 1 1

o VO

© oo VO C-l Tf NO m VO 00 Tf Tf r - VO c s vuvimdtu suvppng © IT) O n © Tf o m m vo Tf in n Tf ON

© m (S T f o o © o © © bold and underlined type = level. significance 99% 1 1 1 • 1 1 Table Table 2. Matrix of Pearsons r correlationof absolute coefficients echinoid fragment weights (n = 67), bold type = 95%, ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien 18 Beitr. Palàont. Oster., 17, Wien 1992

clusters samples cosine coefficient 1i -----1 .9____ i___ .8 i .7____ .6i___ .5I____ .4i____ .3i___ .2i____ .1i B4/5 B5/3 B15/2 B7/1 A1 /3 A10/1 A. Schizesteridae B 17/1 B3/5 3 - B5/9 D5/1 B18/1B5/4 B. Laganum B3/4 depressum Cl /5 I- A4/1 C6/3 A1-2/2 C1/1 C8/1 — 1— C. Eucidaris D4/1B5/1 meiularia B15/1 z h —I A14/2 Cl /6

C8/3 LU A1A13/1 /2 C4/2 3 C3/1 Cl 2/3 A11/2 B5/2 A14/4 B9/1 B14/1 B1 1/1 B17/2 C2/1 D. Clypeaster sp. C8/2 C1 /3 Cl /4 B12/2 B20/1 C6/1 Cl /2 C7/1 A1 /IB D2/2 B5/8 Cl 0/2 A5/1 A5/3 E. Fibularia A5/2 ovulum D2/1 A1-2/1 B5/10 B2/2 B3/3 B3/2 F. Echinometra B5/6 mathaei A14/3 B4/2 B5/5 A1 /5 G. Echinodiscus A4/2 auritus A1 /4 H. Tripneustes B5/7 gratilla

Fig. 17. Dendrogram of a hierarchical Q-mode UPGMA cluster analysis of echinoid fragment weights. Clusters separated at a cosine coefficient of 0.5 (N = 67). ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien NEBELSICK, J. H., The Northern Bay of Safaga 19

factor 1 factor 2 clu ste r • A ■ C A E + G o □ CD D A F * H

Fig. 18. Principal components analysis: varimax rotated factor plots of total echinoid fragment weights. Samples are labelled according to Q-mode cluster analysis results (see Fig. 17). gravels of the coral carpet and sand with coral coral reefs and coral carpets. patches bottom facies and the coralgal sedimentary Identification: Ambulacra, which are conspic­ facies. It is also present, as the most common regu­ uously widened orally, contain very narrow pore lar echinoid, in the mud bottom facies with a corre­ zones forming nearly a straight line. Trigemi­ sponding high presence in the mud, molluscan, and nate compound plates have conspicuous, crenulated, Operculina sedimentary facies. perforated, primary tubercles with very small sec­ ondary tubercles. Large, interambulacral tubercles (PI. 2, Fig. 6) are well separated from one another Diadema setosum with a naked median space occuring adapically (PI. (0.95% of total fragment weights) 2, Fig. 7). The very long (> 20 cm), slender, hollow, Observed distribution and mode of life: Com­ cylindrical spines are conspicuously verticillate (PI. mon in groups of up to 20 individuals of different 2, Fig. 8, 9). sizes at the base of coral patches. They were also Taphonomy: (plates = 58.74%; spines = 41.26%). observed on the reef flat as well as between corals in Never found as complete empty test. Fragments ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien 20 Beitr. Palaont. Osterr., 17, Wien 1992

Fig. 19. Map of the bottom facies of the Northern Bay of Safaga, Red Sea, Egypt, modified after Piller &; Pervesler (1989). Analyzed samples are labeled according to cluster analysis of total echinoid fragments (see Fig. 17). ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien NEBELSICK, J. H., The Northern Bay of Safaga 21

A Sample points with cluster assignment

xxx coralgal facies mud facies molluscan facies Operculina facies soritid facies terrigenous facies compound grain facies Halimeda facies

Fig. 20. Map of the sedimentary facies of the Northern Bay of Safaga, Red Sea, Egypt, modified after Piller Ac Mansour (1990). Analyzed samples are labeled according to cluster analysis of total echinoid fragments (see Fig. 17). ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien 22 Beitr. Palaont. Osterr., 17, Wien 1992

Fig. 21. Map of the mean grain size distribution of the Northern Bay of Safaga, Red Sea, Egypt, modified after Piller Sz Mansour (1990). Analyzed samples are labeled according to cluster analysis of total echinoid fragments (see Fig. 17). ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien NEBELSICK, J. H., The Northern Bay of Safaga 23 present as isolated plates and mostly short segments fragments often show intraplate fracture (PI. 4, Fig. (< 1 cm) of broken spines (PI. 2, Fig. 8, 9). 5) . Broken as well as regenerated spines are common Fragment distribution (Fig. 7): Widely dis­ (PI. 4, Fig. 7,8)._ tributed; most frequent in moderately sorted, Fragment distribution (Fig. 9): Most common in medium sands in the sand with coral patches bot­ more exposed shallow waters in moderately sorted, tom facies and terrigenous sedimentary facies. medium to coarse sands of the sand bottom facies and terrigenous sedimentary facies. Tripneustes gratilla (2.48% of total fragment weights) Heterocentrotus mammillatus Observed distribution and mode of life: The (2.16% of total fragment weights) variegated test of living specimens show a wide color Observed distribution and mode of life: Very variation. They are common in shallow water, es­ conspicuous echinoid found typically wedged be­ pecially within seagrass meadows of the “Southwest tween coral heads on the reef edge in very shallow channel”, where the sea-urchins covered themselves water. Other living specimens were observed within with detrital material. Specimens were also common coral carpets. on the shallow reef flat of Tubya Al-Bayda. Identification: Large, massive elongated test (PL Identification: Test with trigeminate ambulacral 5, Fig. 1) with large polyporous ambulacral plates plates with primary tubercles every 3 to 4 plates (PI. with very large, imperforate, non-crenulated primary 3, Fig. 4). Broad pore-zones have pore pairs in hori­ tubercles, small secondary tubercles and numerous zontal arcs forming three distinct vertical series with pore-pairs (PI. 5, Fig. 2). Massive, basally cylindri­ the outer and inner ones regularly arranged and the cal, distally flattened or pinched, finely striated pri­ median series more or less irregular (PI. 3, Fig. 3). mary spines (PL 5, Fig. 3, 4). Numerous secondary Conspicuous naked area in the ambulacra and in­ spines form a dense cover of the test (PI. 5, Fig. 5, terambulacra (PI. 3, Fig. 1, 2). There is a sparse 6) . coverage of small spines. Taphonomy: (plates = 18.33%; spines = 81.67). Taphonomy: (plates = 98.21%, spines = 1.79%). Complete empty test were never observed although Complete empty test, with and without a preserved nests of the large spines were found in sand patches apical system, were found in seagrass areas. These within the reef (PL 5, Fig. 4). Test fragments show were also observed transported either onto the beach common intraplate fracturing (PL 5, Fig. 2). Larger or across the reef flat down the reef face into deeper fragments of spines dominate the samples material water. Fragments mostly show interplate fracturing along with small secondary spines. (PI. 3, Fig. 3, 4).^ Fragment distribution (Fig. 10): Fragments are Fragment distribution (Fig. 8): Fragments domi­ largely restricted to moderately sorted, medium to nate the regular echinoid fauna in the seagrass bot­ coarse sands of the coral reef and coral carpet bottom tom facies and corresponding Soritid sedimentary fa­ facies as well as coralgal sedimentary facies. cies. Subordinate regular echinoids Echinometra mathaei Rare examples of the echinothuroid Asthenosoma (10.4% of total fragment weights) varium were observed in deeper waters of the study Observed distribution and mode of life: Liv­ areas (> 30 m) within the reef as well as on muddy ing specimens were hidden beneath stones and coarse bottoms. It has a large, low, hemispherical, very material along the coast of the “Southwest channel” flexible test with imbricating plates. Fragments of They were also observed on the reef flat of Tubya the test were not discovered in the sample material. Al-Bayda. Isolated examples of Echinothrix calamaris were ob­ Identification: Distinctly elongate test (PI. 4, Fig. served at the base of coral patches as well as on the 1, 2, 4) with polyporous ambulacra containing 4 pore reef flat. Neither fragments of the primary spines pairs to each arc as well as imperforate non-crenulate with a large cavity and an external transverse series primary ambulacral tubercles (PI. 4, Fig. 2-6). In­ of thorns, nor larger diadematoid plates which could terambulacra have a vertical series of primary and be assigned to this genera were found within the an­ secondary tubercles. Horizontal series of 5 tubercles alyzed sample material. to each plate occur in the ambital region. Acute, Single isolated living specimens as well as complete finely striated spines taper regularly towards the tip tests of the temnopleuroid Microcyphus rousseaui (PL 4, Fig. 7). were observed within coral patches in shallow wa­ Taphonomy: (plates = 16.66%; spines = 83.34%). ter as well as in sand patches within reefs. They are Empty tests were collected with and without preser­ easily recognizable through the naked areas of the vation of the apical system (PI. 4, Fig. 2, 4). Test Interambulacra (PI. 3, Fig. 5, 6). ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien 24 Beitr. Palàont. Osterr., 17, Wien 1992

clusters samples cosine coefficient .7 .6 .4 .3

C1/2 C7/1 B12/2A4/1 B5/10 D5/1 A5/1 B17/2 A. Prionocidaris B 17/1 B20/1 baculosa B5/4 C6/3 B 15/1 A1-2/2 A1-2/1 B5/8 B9/1 ClA1/3 /I C8/1 A13/1 C8/3 C3/1 A14/2 B. Eucidaris B14/1 Cl /6 metularia Cl /5 Cl 2/3 B5/1 D4/1 B5/2 A14/4 D2/2 A1 /IB A4/2 B5/5 B5/6 C. Echinometra A1 /5 mathaei B3/3 B4/2 B2/2 B3/2 A10A14/3 /1 A1C2/1 1 /2 D. Tripneustes C8/2 gretilla D2/1C4/2 A1 /2 B5/7 Cl /4 E. Diadema setosum A1 /4

Fig. 22. Dendogram of a hierarchical Q-mode UPGMA cluster analysis of regular echinoid fragment weights. Clusters separated at a cosine coefficient of 0.6 (N = 55). Living, empty tests and fragments of the small 3.1.2. Irregular echinoids hemispherical Nudechinus sp. were very rarely ob­ The irregular echinoids of the study area are bur­ served in the sand with seagrass bottom facies (PI. rowing deposit feeders and comprise 53.17% of the 3, Fig. 8). The same is true for fragments of Tem- total fragment weights. No spine material of irregu­ notrema sp. which has a small low hemispherical lar echinoids were found in the sample material due test characterized by conspicuous deep pits along to their small size. Irregular echinoids show a wide the horizontal interambulacral sutures (PI. 3, Fig. 7). distribution (Fig. 4) in all bottom and sedimentary The small Parasalenia poehli is recognizable through facies. Although most irregular echinoid taxa are its oblong test and distinctly banded primary spines present in significant amounts, only few fragments half as long as the test (PI. 5, Fig. 7) and very dense of the large spatangoid Metalia sp. were discovered coverage of large tubercles (PI. 5, Fig. 8). eastwards of Tubya al Kebir in 25 meters depth. ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien NEBELSICK, J. H., The Northern Bay of Safaga 25

Fig' 23. Map of the bottom facies of the Northern Bay of Safaga, Red Sea, Egypt, modified after Piller &; Pervesler (1989). Analyzed samples are labeled according to cluster analysis of total echinoid fragments (see Fig. 22). ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien 26 Beitr. Palaont. Osterr., 17, Wien 1992

A Semple points with cluster assignment ■ < 1 % of total data

XXX coralgal facies mud facies molluscan facies Operculina facies soritid facies terrigenous facies compound grain facies Halimeda facies

Fig. 24. Map of the sedimentary facies of the Northern Bay of Safaga, Red Sea, Egypt, modified after Piller & Mansour (1990). Analyzed samples are labeled according to cluster analysis of regular echinoid fragments (see Fig. 22). ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien NEBELSICK, J. H., The Northern Bay of Safaga ... 27

Fig- 25. Map of the mean grain size distribution of the Northern Bay of Safaga, Red Sea, Egypt, modified after Piller & Mansour (1990). Analyzed samples are labeled according to cluster analysis of regular echinoid fragments (see Fig. 22). ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien 28 Beitr. Paläont. Osten., 17, Wien 1992 Clypeaster sp. incrustation and fracturing. Large fragments are also (24.73% of total fragment weights) present. Fragment distribution Observed distribution and mode of life: (Fig. 12): Restricted dis­ Clypeaster humilis (PI. 6, Fig. 1, 2) was commonly tribution to poorly sorted, fine sands in the sand with found throughout the study area, in shallow coarse seagrass bottom facies and mollusc sedimentary fa­ sands, in small sand patches within seagrass mead­ cies. ows, and within the thin sand veeners on reef flats. Shallowly buried living specimens were discovered ei­ Fibuiaria ovulum ther completely or just barely covered with sediment (3.34% of total fragment weights) leaving a clear burrowing trace. Living specimens were found at a density of 1.5 indivuals m-2 in shal­ Observed distribution and mode of life: Found low depth on the western bank and 2 individuals living in samples from shallow water, coarse to very m-2 on the eastern shore of the “Southwest chan­ coarse sands. nel” Three specimens of Clypeaster fervens were Identification: Very small (< 1 cm), high, globular discovered buried in 1 to 3 cm sediment depth in 52 m test, with no internal supports, and petals with small depth in the southern basin of the “Eastern area” ambulacral pores (PI. 7, Fig. 4-6). Only dead tests of Clypeaster reticulatus were found Taphonomy: Most often found as complete speci­ in shallow depths to the west of Tubya Al-Bayda and mens, very often with signs of . Larger frag­ in deeper muddy sands. ments not common. Empty tests found transported Identification: Clypeaster humilis is characterized to the eastern shore of the “Southwest channel” by flat oral side, closed frontal ambulacrum and small Fragment distribution (Fig. 13): Most common petals (PI. 6, Fig. 1, 2). Clypeaster fervens is char­ in shallow, moderately sorted, fine to coarse sands in acterized by a large petaloid area and a distally open the sand with seagrass bottom facies and terrigenous frontal ambulacrum (PI. 6, Fig. 3). Only dead tests sedimentary facies. of Clypeaster reticulatus with a thick and rounded edge were found (PI. 6, Fig. 4). A species distinction Laganum depressum of fragmented material was not feasible. Fragments of the genus are recognizable through the test size (8.67% of total fragment weights) and thickness, tubercle size and density, the pres­ Observed distribution and mode of life: ence and morphology of internal supports and the Found living very shallowly buried in silty sands of morphology of ambulacral pores in the petals (PI. 6, the basinal “East” and “West areas” Fig. 5-8). Identification: The flattened pentagonal or ellip­ Taphonomy: Complete dead tests and larger frag­ tical test has a characteristic madreporite pore sit­ ments of Clypeaster humulis were often discovered uated in a sinuous groove. The petals are well de­ within as well as on the sediment surface. Large veloped (PI. 7, Fig. 7, 9) as are the internal supports. variations occur in the nature of the fragments with The periproct is close to the posterior margin. The the presence of both inter- and intraplate fracturing total length of the petaloid area is more than 2/3 (PI. 6, Fig. 5-8). _ than that of the test length. The margin of the test Fragment distribution (Fig. 11): The wide distri­ is thickened. bution, with a presence in almost all examined sedi­ Taphonomy: Dead tests sometimes littered the sed­ ment samples, most probable represents a combina­ iment surface. Damaged test as well as larger, often tion of distinct species distributions. incrusted fragments are common (PI. 7, Fig. 9, 10). Fragment distribution (Fig. 14): Found in a wide variety of sediments ranging from poorly sorted Echinocyamus crispus medium sands from the edge of muddy basins adja­ (1.46% of. total fragment weights) cent to coral carpets as well as within the basins in Observed distribution and mode of life: Found the muddy sand bottom facies and molluscan sedi­ living in samples associated with deep seagrass mentary facies. patches of Halophila from muddy sands in the north­ ern and southern basin of the “East area” Echinodiscus auritus Identification: Very small (< 1 cm), flattened low test with radiating internal supports and petals (1.32% of total fragment weights) which do not reach the ambitus (PI. 7, Fig. 1-3). The Observed distribution and mode of life: Liv­ center of test is higher than the margin; the periproct ing adult and juvenile specimens were conspicuously is midway between the margin and mouth. common only in the “Southwest channel” They oc­ Taphonomy: Preservation ranges from completely cur just buried under the sediment surface being dis­ clean examples to those showing signs of predation, closed by a characteristic outline. ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien NEBELSICK, J. H., The Northern Bay of Safaga 29

clusters samples cosine coefficient 1i ___ i .9___ i .8__ ,_i .7___ .6i____i .5___ .4i___ .3i____i .2___ .1i

A. Clypeaster sp.

B. Fibularia ovulum

£ Laganum depressum

D. Schizasteridae

E Echinodiscus auritus

Fig- 26. Dendrogram of a hierarchical Q-mode UPGMA cluster analysis of irregular echinoid fragment weights. Clusters separated at a cosine coefficient of 0.75 (N=66). ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien 30 Beitr. Paláont. Osterr., 17, Wien 1992 Identification: Large flattened sand dollar with 3.2. Correlation of echinoids two elongate, distally open lunules situated in the posterior paired ambulacra (PI. 8, Fig. 1, 2). Oral The correlation coefficients of echinoid fragment side shows highly differentiated tuberculation and weights to one another are shown in Tab. 2. Reg­ polyfurcating food grooves (PI. 8, Fig. 3, 4). A ular echinoids show noticably stronger positive cor­ very dense internal support and microcanal system relation to one another than the irregular echinoids. is present. The only significant positive correlation between ir­ Taphonomy: Complete denuded tests, often show­ regular and regular echinoids is between Diadema ing signs of predation, and fragments (PI. 8, Fig. 4) setosum and Fibularia ovulum. Highly significant were common on as well as within the sediment. correlations among irregular echinoids are found be­ Fragment distribution (Fig. 15): Restricted to tween Laganum depression and schizasterids as well the “Southwest channel” in moderate to very poorly as between Echinodiscus auritus and Lovenia elon­ sorted, fine sands in the sand with seagrass and sand gata. bottom facies and the terrigenous sedimentary facies. 3.3. Multivariate statistical analysis Lovenia elongata (0.31% of total fragment weights) 3.3.1. Analysis of all echinoid fragment mate­ rial Observed distribution and mode of life: Dis­ covered buried in depths of 5 to 10 cm in shallow All 67 samples were included in the analysis which re­ sands of the “Southwest channel” in 1 m water depth. sulted in 8 clusters separated at cosine correlation of Identification: The test has a subanal and inner 0.5 (Fig. 17). Cluster A dominated by schizasterid fasciole and a deep funnel-like concavity at the pos­ echinoids with a subsidiary presence of Clypeaster terior end of the test. The paired ambulacra form sp. and Laganum depressum (see App. 3) is re­ conspicuous petals. Primary tubercles with deeply stricted to the basins of the “East area” the south­ sunken areoles are found recessed into prominent ern basin of the “West area” as well as to a sin­ camellae (PI. 8, Fig. 5, 6). gle sample restricted to the “Southwest channel” Taphonomy: No complete dead test were recov­ The distribution corresponds well to the mud and ered. The fragments are largely restricted to small muddy sand bottom facies (Fig. 19) as well as to the fragments with single deep recessed cammellae (PI. mud sedimentary facies with a few samples in the 8, Fig. 6). molluscan and Operculina sedimentary facies (Fig. Fragment distribution: Most common in very 20). The distribution corresponds to poorly to extra poorly sorted fine sands of the sand bottom facies poorly sorted siltsands to clayey siltsands (Fig 21). and soritid and terrigenous sedimentary facies. The second cluster (B), dominated by L. depres­ sum, is restricted to two samples, one in sandy mud and one in 57 meters depth in sand with macroids. Schizasteridae Eucidaris metularia dominates cluster C which con­ (13.74% of total fragment weights) sists of samples from moderately to poorly sorted Living specimens were not observed in the study sands associated with coral reefs, coral carpets, sands area. Schizasteridae are known to burrow deeply in with coral patches, and hardgrounds from a wide the sediment. range of depths distributed throughout the bay (Fig. Identification: Characterized by the presence of 19). The most commonly associated sedimentary a peripetalous and latero-anal fasciole; deeply de­ facies is the coralgal facies (Fig. 20). This cluster pressed frontal ambulacrum and sunken posterior also contains a high proportion of Prionocidaris bac- petals distinctly shorter than the sunken anterior ulosa as well as Clypeaster fragments. Cluster D, the pair. The petals abut against the peripetalous fas­ largest cluster, is dominated by Clypeaster sp. and ciole (PI. 8, Fig. 7, 8). The generic identification of originates from a wide variety of depths and sub­ most schizasterid fragments was not possible. Frag­ strates throughout the bay, often from sediments as­ ments of DipJoporaster savgnyi were recovered with sociated with seagrass occurrence. It is common in characteristic pore pairs of the frontal ambulacra zig­ the soritid and molluscan sedimentary facies. Fibu­ zagging in irregular double series. laria ovulum is the characteristic taxon of Cluster Taphonomy: The very thin test were most cer­ E, occurring in shallow depths in protected position tainly broken during sample taking and transport. on the western shore of the “West area” and along Fragment distribution (Fig. 16): Fragments to­ the coast of the “Southwest channel” Echinome- tally dominate the deeper basinal areas. They are tra mathaei is the dominant taxon within Cluster very common in extra to very poorly sorted, very F which consists again of shallow water samples in fine sands and muds of the mud bottom and sedi­ exposed moderately sorted sands around the south­ mentary facies. ern tip of Tubya Al-Bayda and on the western shore ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien NEBELSICK, J. H., The Northern Bay of Safaga 31

clusters samples cosine coefficient 1i ---- 1 .9___ | .8___ i____i____i .7 .6 .5___ .4i___ .3i____i____i .2 .1

D2/1 D2/2 A5/3 B5/6 C4/2 A5/2 B3/3 B5/5 A5/1 A. Fibularia C8/1 ovulum B5/10 A14/2 B3/2 A1/1B B4/2 B5/7 B5/8 A1-2/1 C3/1 A14/3 C8/3 B. Echinodiscus A1 /5 = K auritus A1A4/2 /4 A4/I A14/4 B15/1 Cl /5 C. Leganum A13 /1 depressum B14/1 B5/2 B18/1 A11/2 B3/4 D4/1 B9/1 Cl /2 C2/1 A1 /3 B4/5 B5/3 B7/1 B15/2 D. Schizesteridae B17/2 A1 /2 B3/5 B1 1/1 A10/1B17/1 B5/4 A1-2/2 B5/9 D5/1 C6/1 3 -1 C8/2 Cl 2/3 3 - E. Echinocyamus C1/4 C10/2 3 crispus B12/2 B20/1 IH - Cl /3

Fig. 27. Dendrogram of a hierarchical Q-mode UPGMA cluster analysis of irregular echinoid without Clypeaster sp. fragment weights. Clusters separated at a cosine coefficient of 0.8 (N = 61). ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien 32 Beitr. Palaont. Osterr., 17, Wien 1992 of the “West area” The last cluster (H) repre­ ing from a seagrass meadow and shows an unusually sents a single sample with an accumulation of trans­ high proportion of Diadema setosum. ported fragments of Tripneustes gratilla on the shore of Tubya Al-Bayda Island. Principal components analysis reveales 4 factor ac­ 3.3.3. Analysis of irregular echinoids counting for 78.7 % of the variance. The factor scores Two cluster analyses were conducted with irregular shown in App. 5 shows that Clypeaster sp. fragments echinoids; one including the genus Clypeaster (Fig. are responsible for the first factor which accounts 26) and one without (Fig. 27). The dominance of for 38.7% of the variance; schizasterids for the sec­ Clypeaster as seen in the results of the principal ond accounting for 17.9% of the variance; Eucidaris components analysis (App. 5) and the lack of species metularia for the third with 11.6% of the variance; distinction of the fragment material within this gen­ and Echinometra mathaei for the fourth accounting era leads to a masking of distribution patterns as re­ for 10.5% of the variance. The factor loading plots vealed by other irregular echinoids. The sample dis­ (Fig. 18) show that the samples belonging to the in­ tribution within the clusters (5 clusters distinguished dividual clusters are mostly well separated from one at a cosine coefficient of 0.75) reflects to a large ex­ another, thus supporting the use of cluster analysis tent those of the total echinoid material, with those as a sample grouping method. The distinction of the samples belonging to the Eucidaris metularia cluster second factor (Schizasteridae) and the fourth factor of the total echinoid analysis belonging now to the (Echinometra mathaei) is especially clear which is Clypeaster cluster (A) and those of the Echinome­ not surprising due to the widely differing habitats in tra mathaei cluster belonging to a large extent to which these taxa are found. the Fibularia ovulum cluster (B). The distribution and characteristics of the Cluster C (Laganum de- 3.3.2. Analysis of regular echinoids pressum), D (Schizasteridae) and E (Echinodiscus auritus) are very similar, if not exactly those shown Five clusters were separated at a cosine coefficient of by the total echinoid clusters (see above). 0.6 in the cluster analysis of regular echinoids (Fig. 22) which was conducted on 53 samples. The reg­ ular echinoids from 14 samples either lack totally 3.3.4. Analysis of irregular echinoids without or contain less than 1% of the total echinoid frag­ Clypeaster sp. ment material. The first cluster (A) is dominated Far more interesting results are shown by the clus­ by Prionocidaris baculosa (see App. 6). It is found ter analysis of irregular echinoids without Clypeaster in samples with a relatively low percentage of regular sp. with 5 clusters separated at a cosine coefficient echinoids, often in deep, poorly sorted siltsands (Fig. of 0.8. The analysis was conducted on 61 samples 25) of the molluscan, mud and Operculina sedimen­ (Fig. 27) as 6 samples contain Clypeaster sp. as the tary facies (Fig. 24). This is reflected in the fact that sole or totally dominant representative of the irreg­ the samples included have the greatest mean depth ular echinoid taxa. The clusters show a close cor­ of the clusters. This cluster, however, also includes relation to bottom (Fig. 28) and sedimentary facies samples of the soritid sedimentary facies in shallow (Fig. 29) as well as to the mean grain size (Fig. 30). waters of the “West” and “North” areas. The sam­ Cluster A is distinguished by Fibularia ovulum (see ples of the Eucidaris metularia cluster (B) originate App. 7) and consists of samples from moderately to from a wide variety of depths from sands within poorly sorted sands in shallow waters. These are in­ or adjacent to coral carpets or in sands with coral cluded within the coralgal facies in exposed region patches with corresponding poorly sorted sands. It around the Tubya Islands and the soritid sedimen­ has a relatively high percentage of regular echinoids tary facies along the western coastline of the bay. and corresponds to the E. metularia cluster of the Echinodiscus auritus dominates cluster B which is total echinoid samples material. Echinometra math­ identical to cluster G of the total echinoid analysis aei dominates the cluster C consisting of samples and is restricted to a small area of the “Southwest restricted to very shallow, near shore, moderately channel” Cluster C is dominated by Laganum de- sorted sands of the terrigenous and coralgal sedimen­ pressum and is found in very poorly to moderately tary facies (Fig. 24). It also contains a relatively high sorted sand and siltsands. The deep average depth percentage of regular echinoids and corresponds to a of the included samples combined with the relatively large extent to the samples included within the E. coarse average mean grain size (App. 7) reflects the mathaei cluster of the total echinoid samples mate­ inclusion of samples distributed at the edge of the rial. Tripneustes gratilla dominates a cluster of sam­ deeper muddy basins near coral carpet. Schizasterid ples (cluster D) originating from shallow to mod­ fragments (cluster D) dominate extremely to very erate depths. It is often associated with seagrass poorly sorted siltsands and are restricted to the deep occurrence corresponding to the soritid sedimentary muds of the “West area” the southern basin of the facies. Cluster E consist of a single sample originat­ “East area” as well as samples from the middle of ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien NEBELSICK, J. H., The Northern Bay of Safaga 33

Fig. 28. Map of the bottom facies of the Northern Bay of Safaga, Red Sea, Egypt, modified after Piller Pervesler (1989). Analyzed samples are labeled according to cluster analysis of irregular echinoid without Clype&ster sp. fragment weights (see Fig. 27). ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien 34 Beitr. Palaont. Osterr., 17, Wien 1992

Fig. 29. Map of the sedimentary facies of the Northern Bay of Safaga, Red Sea, Egypt, modified after Piller &; Mansour (1990). Analyzed samples are labeled according to cluster analysis of irregular echinoid without Clypeaster sp. fragment weights (see Fig. 27). ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien NEBELSICK, J. H., The Northern Bay of Safaga ... 35

Correlation of mean grain size and cluster analysis of irregular echinoids without Clypesster sp. A Sample points with cluster assignment ■ < 1 % of total data < 1 $ = > 0.5 mm 1- 2 $ = 0.5 - 0.25 mm 2- 3$ = 0.25 - 0.125 mm 3- 6$ = 0.125-0.0016 mm > 6 $ = < 0.00 1 6 mm Fig. 30. Map of the mean grain size distribution of the Northern Bay of Safaga, Red Sea, Egypt, modified after Piller k Mansour (1990). Analyzed samples are labeled according to cluster analysis of irregular echinoid without Clypeaster sp. fragment weights (see Fig. 27). ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien 36 Beitr. Paláont. Osterr., 17, Wien 1992 the “Southwest channel” It corresponds closely to Tripneustes gratilla reaches its highest percentual the distribution of the mud and muddy sand bot­ presence. The ‘Terrigenous’ facies contains a com­ tom facies as well as the mud and Operculina sedi­ pletely different composition of dominant echinoids mentary facies. Echinocyamus crispus dominates the with F. ovulum and Echinometra mathaei showing last cluster (E) and includes samples with an average the highest values along with Echinodiscus auritus depth of 36.5 meters with a well defined distribution and Clypeaster sp. The ‘Compound grain’ facies to poorly sorted siltsands of the “East area” contain only one corresponding sample. 3.4. Comparison of echinoid fragments 3.5. Correlation to grain size fractions, to bottom and sedimentary facies sedimentary parameters and depth The distribution of echinoid fragments within bot­ The direct correlation to grain size fractions and pa­ tom facies is shown in Tab. 3. ‘Coral carpet’ is rameters (Tab. 5) shows that, among the regular the only bottom facies with a clear dominance of echinoids, the cidaroids (Eucidaris metularia, Phylla- regular echinoids with Eucidaris metularia, Priono- canthus imperialis and Prionocidaris baculosa), Het- cidaris baculosa and Echinometra mathaei. The erocentrotus mammillatus and Echinometra mathaei irregular echinoid CJypeaster sp. is subordinate. In are generally correlated to gravel and coarser sand the ‘Sand with coral patches’ facies, both regular fractions. All the regulars show a negative correla­ and irregular echinoids are present to a similar ex­ tion to mean grain size. tent. The dominant regulars are the cidaroids P. bac­ The irregular sea-urchin Clypeaster sp. is not sig­ ulosa and E. metularia. Clypeaster sp. is again the nificantly correlated to any of the analysed sediment most common irregular echinoid with a subordinate parameters. Echinocyamus crispus is significantly presence of Fibularia ovulum. Clypeaster sp. is the positively correlated to fine sands. Fibularia ovu­ dominate irregular, E. mathaei the dominate regular lum is highly negatively correlated to the silt and echinoid in in the ‘Sand’ facies along with E. metu­ clay fraction as well as to mean grain size and sort­ laria. Clypeaster sp. and F. ovulum dominate the ing. The schizasterids show highly significant nega­ ‘Sand with seagrass’ bottom facies where the regu­ tive correlations to most sand fractions. This taxon, lar echinoids E. mathaei and Tripneustes gratilla are along with Laganum depressum, is very highly sig­ present in subordinate amounts. F. ovulum accom­ nificantly correlated to the silt and clay fractions as pany Clypeaster sp. among the irregular echinoids well as to the mean grain size and sorting. in the ‘Seagrass’ bottom facies. The most prevalent The changes of the relative percentage of echinoid regular echinoids in this facies is T. gratilla. Regu­ fragments within discrete mean grain size classes are lar echinoids are rare in the ‘Muddy sand’ facies, shown in Fig. 31 (see App. 9). Sediments with a where schizasterids are almost as common as Clype­ mean grain size of > 1 Phi (gravelly sands) are domi­ aster sp.; L. depressum is a subordinate constituent nated by Eucidaris metularia, Prionocidaris baculosa in this facies. The ‘Mud’ facies is totally dominated and Clypeaster sp. Those sediments with a mean by the schizasterids; L. depressum and Clypeaster grainsize between 1 and 2 Phi (mostly classified as are subordinate. Samples from the ‘Coral reef’, sands in the gravel-sand-mud ternary diagrams) are ‘Rock bottom’, ‘Sand with macroids’, ‘Inter­ characterized again by Clypeaster sp. and E. metu­ tidal flat ’, and ‘Mangrove’ bottom facies include laria with Echinometra mathaei and Diadema se- only a single or no correlated samples. The sample tosum reaching their strongest presence. The finer in the coral reef bottom facies contains the expected fractions show the decreasing presence of regular dominance of regular echinoids with a wide range of echinoids and the corresponding increasing presence different species. of irregular echinoids, especially schizasterids and The distribution of echinoid fragments within sed­ Laganum depressum which dominate in clayey silt- imentary facies is shown in Tab. 4. The ‘Coral- sands. Echinodiscus auritus, Fibularia ovulum and gal’ facies contains high amounts of Clypeaster sp., Echinocyamus crispus fragments are most common Eucidaris metiilaria, Prionocidaris baculosa, and La- in silty sands with a mean between 2 and 3 Phi. ganum depressum. The ‘Mud’ sedimentary facies These relationships are also reflected in the compar­ contains the expected dominance of schizasterids, ison of average absolute echinoid fragment weights with lesser amounts of Clypeaster sp. and L. depres­ within these discrete mean grain size classes as seen sum. Clypeaster sp. again characterizes the ‘Mol- in Fig. 36. Similar trends are shown for sorting (Figs. luscan’ facies with lesser amounts of schizasterids 32 and 37; see App. 10) and skewness (Fig. 33; see and L. depressum. Clypeaster sp. and schizasterids App. 11). The trends for kurtosis (Fig. 34; see App. are the most common echinoids in the ‘Operculina’ 12) are, however, not so clear. facies. Clypeaster sp. and F. ovulum dominate the Correlation to depth was calculated for all 67 sam­ ‘Soritid’ facies. E. metularia is relatively common; ples (Tab. 5). Negative correlations are shown by ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien NEBELSICK, J. H., The Northern Bay of Safaga 37

SSjduiBS UI no o CS Os cn 00 VO Tt Tf cn m Tt in 00 CS r-* o r-* o o m VO o\ vo o C"; Os q 8 tT in q q q q q q q 00 q q q 00 r - q 8 00 3 in 8

vo O o 00 o vo m cs Os VO VO r - 00 VO cs 00 in o VO cs aBpugjSFZiqos q in 8 q 8 8 cs q 8 8 00 q 8 m r - q 8 q q Tt in S q m q 8 ■vt vn 8 d rn cs d in Tt in d in 00 Os d d d in cs »n cs Tt 00* d d d d a m cs r - r - 3 Tfr 8

t* r*- cs 00 cn 00 m Os cs o cs o VJD^UOp DIU9AO'] 8 8 8 8 m in 8 q o o 8 O q vo 8 q 00 q o q 8 8 8 8 8 8 8 8 8 8 8 o d d d o d d d d d d cs cs d c s d d d d d d d d d d d d d d d d c s

m 00 cs VO Os o Os VO o VO r - sniuno snastpoutqag 8 8 8 8 o q 8 c s rn 8 8 Tt 8 q Tf q 8 m 8 8 8 8 8 8 8 8 8 8 8 8 d d d d d d d d cn d d d cn Os oo' d d d d d d d d d d d d d Z3 Tt 4

o Os m r*- Os in m o o 00 Os in m in o m in Os o mnssdJtdap tunuoSoj on in 8 cn m Os 8 5 Os 5 8 q q 00 o q m q 8 Tt in q o Tt in 8 q 8 & 8 8 cs d VO d d d cs t> cn o vo d cn cn d in rn d vd d Tj- d in d m o o cn cs - CS r - m VO

o 00 o Tfr in Os r^* Os m 00 m Os Tt VO cs m o r - tunjnAO DUDjnqij 00 © 8 q 8 8 8 q q q 8 q m q 8 q q q 8 q q 8 o o 8 q q 8 8 q d d CS VO 00 d VO 00 d vd cn d Os Tt Os d rn rn d Tt d d d d d d cs 00 (S cs CS in in vo

00 VO o Os 00 Tf 00 Os VO Os o r - o o o o sndstUD snumfbomxpj 00 q 8 00 8 8 8 o 8 8 8 q q 8 q m 8 q 00 q 8 m o 8 o 8 q 8 8 q d d d d d d CS Tt d cn cn 00 d rn d d d rn d cs d d d d d d d d cs

cn m cs o r - in Tt Tt Tt Tf 00 O m o cs Tt r - >/-) Tt o CS 00 m •ds jajmadi(]j IQ CS in 8 cn m cs q 00 CS q q q 8 q Tf q 8 q q ■'t in o 8 in cs o q q Os cn in Os cs so 00 00 in cs d d cn Os 00 d d rn d vo d rn oo m CS cs c - cn cs r - Tf cs VO 5 cn Os m cs Os Tf m

m o cn cn VO vo cn 00 - 00 vo cn m vo in VO cs o spiouiqDa JBjnSai jaipo cn VO 8 in in q 8 r - 8 q o s 8 Tf 8 Tt cs 8 vo 8 8 m 00 8 8 o d d d cs rn d 00 o d d cs d d d d d d d d d d d d d d d cs d d d

e'­ o in r - r - r - 00 cs in 7jiwuwiu smojjuaaojaj3}{ - en 8 q cs in 8 q q 8 q 8 8 8 8 8 8 Tt 8 8 8 8 8 8 8 8 q 8 3 8 cs cs d in d d d cs Tf d cs O o d d d d d d d d d d d d d d in d d d

cs SO in m cs m Tf r - r-* T* Tt m m Os o 00 Q ON pvqimu üJiaiuotnifjg q 8 in 8 Os 8 cn q 8 Os q q 8 q Tt 8 q in q 8 00 o 8 8 8 q © un 8 cs 00 d d in d rn Tt 00 d VO oo' so' d rn Tf d d cs d d in d d d d vo d vo d CS cs cs r^ Tt m cs

00 Os m o in 00 r - 00 VO o m cn 00 in VO n m © On o vjjiídjS S9isnaudu£ m VO 8 q r - Tt 8 00 q 8 q q 8 q 8 8 00 q cn 8 q o 3 8 s © NO o d d d d d d cs d 00 VO cn d Os d d rn Os d rn d d d d 00* © Tt d Tt m NO

m

Os o Os m cs o Os 00 o 00 C-* 00 o m in 00 00 in o o vsojnavq suoppououj q Tt rn q o q 8 q CS 8 q q 00 8 q Tt q 8 00 8 cs 00 8 8 00 2 8 o 00 00 in cn d cs cs d d Os d Tf Tt vd d cs Tf d rn cs d cs —' d d t* 8 cs VO cs

VO 00 Os Ti­ vo Tj- o o o o Os o o o O m o 00 o Q in o stjDuadwi snqjUDJDjjiCqj 5 m 8 8 8 q cs 00 8 a\ cs VO 8 q in q o q o q o O o o o o q o m o d d d

f - 00 CS CS m m 00 cs cs o cs 00 in cn m VO Tt 00 r - oo m tí- m vuDjmaiu suvppng s q in q CS q 8 00 Tt q 8 q r r q 8 q q q 8 q m m 8 q VO q 8 q q in q 8 vo Os Os r^* d 00 o i> d cn in d Tt vd ro d rn CS r^’ d vo* d d Tt d (S d 5 CS c - cs r - so Tt cs Tf CS X m a x m in m a x m in m in m in m a x m in m a x m in s CO a CA í a CA a (A a CA a CA I e (A m in m a x

sajduiBs jo ioquinu VO r - cn Os Os m VO - -

mo»oaS 3 I0 B J Coral carpet S a n d w i t h S a n d S a n d w i ts h e a g r a s s coral patches S e a g r a s s M u d d y s a n d M u d C o r a l r eRock e f bottom M a n g r o v e Intertidal flat

Table 3. Statistical parameters of echnoid fragment weight frequencies within bottom facies (n — 67). ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien 38 Beitr. Palaont. Osterr., 17, Wien 1992 most regular echinoids (highly significant for Echi- West Pacific region. These have dealt to a large ex­ nometra mathaei) as well as the irregular echinoids tent with the general distribution of mostly regular Fibularia ovulum (highly significant), Lovenia elon- echinoids (JAMES k PEARSE, 1969; EBERT, 1971; gata and Echinodiscus auritus. Positive correlations FISHELSON, 1971; HERRING, 1972; HUGHES are shown by the rest of the irregular echinoids. The CLARKE k KEIJ, 1973; MERGNER k SCHUH- comparison of mean relative percentages of fragment MACHER, 1974; TORTONESE, 1977; SLOAN ET weights (Fig. 31) and average absolute weights (Fig. AL., 1979; CAMPBELL, 1987; CAMPBELL k 35) of the individual echinoid taxa between depth MORRISON, 1988; DE BEER, 1990); Specific stud­ categories shows the reduction of Echinometra ma­ ies on regular echinoids include those on Tripneustes thaei, Fibularia ovulum and Echinodiscus auritus gratilla (DAFNI k EREZ, 1982; DAFNI k TO­ with depth. BOL, 1986); Hetero cen trot us mammillat us (DOTAN k FISHELSON 1985; DOTAN, 1990A, 1990B); and Echinometra mathaei (PEARSE, 1969; KHAMALA, 4. Discussion 1971; RUSSO 1977). The presence of Prionocidaris 4.1. Taphonomic bias baculosa fragments in deeper soft sediments is in­ teresting as other authors including FISHELSON The presence and distribution of echinoid fragments (1971), MERGNER k SCHUHMACHER (1974) and as shown in this study is a function of living echinoid SLOAN et al. (1979) show a restriction of this distribution, differential taphonomic processes on the species to shallow rocky substrates and to the reef diverse taxa and size restriction (> 2 mm) imposed edge and reef slope. by the analytic method. Although the methodol­ ogy suffers from taphonomic mechanisms (including Irregular echinoids of the Red Sea have re­ transport) as well as the differential preservation po­ ceived less attention. The wide distribution of tential of different echinoid taxa, advantages are seen Clypeaster in the Red Sea ranging from subtidal in the time averaged accumulation of fragments of calcareous-muddy sediments ( Clypeaster humulis) to these notoriously patchy distributed faunal elements deeper muddy bottoms ( Clypeaster reticulatus and (NEBELSICK 1992). Clypeaster rarispinus) is reported by FISHELSON An example for taphonomic bias is given by Di- (1971). A number of investigations have shown that adema setosum, which belongs to the most com­ sympatric species of Clypeaster occupy widely differ­ mon and distinct members of the epifaunal echinoid ent habitats including KIER k GRANT (1965) and fauna in the study area. This species contributes KIER (1975) for the recent Caribbean, and BOG- only insignificantly to fragments weights within the GILD k ROSE (1984) for the Tertiary of Malta. samples material. This is due to the fact that Di- SLOAN et al. (1979) report the presence of adema is taphonomically very unstable with its flex­ Echinocyamus crispus in sand and coarse gravels ible test and very fragile spines (compare GREEN- along seagrass beds of Aldabra in the Indian Ocean. STEIN, 1990). The distribution of fragments across This is similar to the reported description of the the study area can, nonetheless, still be followed species Echinocyamus pusillus from the North At­ within the study area as seen in Fig. 7 and corre­ lantic and Mediterranean which has been studied in lated to the observed presence of living specimens to great detail (GHIOLD, 1982A, 1982B; TELFORD et hard substrates. Fragment recognition and quantifi­ al., 1983; TELFORD, 1985). These descriptions dif­ cation can counter the taphonomic instability of echi­ fer widely from the habitat of E. crispus as found noid taxa, especially that of regular echinoids which in the study area. BOGGILD k ROSE (1984) have show an apparent underrepresentation in the fossil shown that different species of the genus occupy very record (KIER, 1977A; KIDWELL k BAUMILLER, wide habitats in the Mid-Tertiary of Malta. 1990). The fragments of regular echinoids in the Fibularia ovulum has been reported from medium Northern Bay of Safaga are in fact as common as coarse sands from the northern Great Barrier Reef those of irregular echinoids as far as weight percent­ (GIBBS et al., 1976), and from sands and coarse age is concerned (Tab. 1). The investigation of the gravels along with seagrass occurrence in Aldabra large amount of echinoid fragment material neces­ (SLOAN ET AL., 1979). The common occurrence of sary for quantitative statistical analysis thus actually Laganum depressum in muddy sands is reported in increases the chance of discovering rare or inconspic­ the Red Sea by FISHELSON (1971) and GIBBS et uous echinoids. al. (1976) from the Great Barrier Reef. The depicted mass occurrence of L. depressum in Pliocene sedi­ ments from the region of Ras Mahar along the east­ 4.2. Taxon distributions ern coast of the Red Sea in DOLLFUS k ROMAN The qualitative assessments of the modes of life (1981) looks similar to the situation as observed and distributions of living echinoids closely resem­ in the deeper silty sands of the study area. The bles published data of echinoids from the the Indo- occurrence of Echinodiscus auritus in shallow near ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien NEBELSICK, J. H., The Northern Bay of Safaga 39

f - cn q 00 VO o cn Ov cn o vs o o vs cn cs vs m cn s^iduies in cs q 00 8 00 8 q q VO 8 O q q q t"- cn Tf 00 q q 00 8 q spiouiips JBjnSajJT % ov 00 Ov 00 d vo s d Ov cn Ov oo VO d CN cn t ' OV d cn vs cn Ov ov oo 8 oo cs cs 8 00 C'­ OV cs Tt OV vo cs Tt 8 cn

o cn Ov cs VO Ov cn t" o cs o o en t'­ cn cs vo t-' 3BpU3JSUZITlOS vs vo 8 VS vo CN VO q q q VO 8 vo cn q es q q 8 CS 8 8 8 8 Tt vs 00 d d cs Tt d cn vo c~- Ov d v i d d d d d a 5 en ov cs cs t ' cn cn vs os CO cn 00 00 cs Tt VO cn DJvSuOJ9 ÜW3A.OJ 8 8 8 8 8 8 8 8 © © 8 o 8 8 8 8 q 8 q cn 8 q 8 II d d d d d d d d d d d d d d d d cs d cs w* d cs d cs 00 CN cn Tt C'­ sntutiD snosipouiifjg 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 q in 8 cs NO 00 8 en 8 © d d d d d d d d d d d d d d d S' cn d 00 VO d d cn a 4

CS OV p- C" cn cn vs vs tunsssudap umuoSoq cn o 8 oo q q 8 q q 8 Tt 8 8 8 8 Î? s 8 Tf 8 8 8 8 8 cn d cn cn VO d oo vs in d d d d d Tf d iH d d d d d cs vo W cn 5 i-H Tt 00 cs 00 Tt CN 00 00 Tt t" cs tunjmo DUDjnqtj VO vs 8 q 8 8 CS t'- 8 8 8 8 8 cn cs 8 q Tt 8 ON q q r4 cn d Ov d d d d d d d CN d d d d TI­ d d Ov Ti­ d cn oo ov cs vs en cn VO

ON 00 r~ Ov cn cn VO 00 CS cs vo sndstjo smuvfooutqog Tt 8 q a q 8 CS cn 8 C^ 8 8 8 8 CS vo 8 q 8 8 8 8 o d d cn T—< cs d d VS 00 d cn d d d d d d d d d d d d CN ON cs o Tt VO cs cs vs t- o Tt cs o 00 t~- Tt VO cs o cs cs cn 00 •ds J9JSD9di(]J q 00 v> cn CN cs CN q q cs VS q cn q cn q 8 q cn VO VO VS CS 00 d CS VO On VS Ov d cn 00 cn vs vs d cn cn cs c- cn cn 00 S cs r - V» Tt 8 OV vs cs cs Ov cn CS in OV CS C" VO Ov Ov o

VS r - o ov CS OV STUOJllUitUDlU SntOJJU330J3t3fJ 00 V) 8 q 8 8 8 8 8 8 8 8 8 8 8 8 8 Tt 8 8 8 8 q d cs d oo d d d d d d d d d d d d d d d d d d d d Tt

cn 00 vo cn o OV Ov cs cs o t-' Tt cn q 8 8 8 8 8 cn VO 8 vs 8 8 8 8 q q 8 cn q 8 q 13Dl{JVm VJi3lUOUtip3 d vs' d d d d d d d d d d d cs cs d vo’ cs o> d Ti­ vs cs en a

cn o o VO 00 o vs t-~ cn Tt Tt r- VO ov vo Ov 00 C' vjpivuS ssjsnsudux ■*t q 8 vs 00 in 8 cs 00 8 00 VO 8 q cn q 8 q Tt 8 q ?—» CS d vo' d 00 d Ov cn 00 d cn VS d t^ vs d cn cs cs d Tt cs a cn 00 Ov m C' CN o s vs Tt o Tt vs cn cs o vo umsoids DIUSpVlQ vs Ov 8 q cn q q cn 8 s 8 8 8 8 00 q 8 00 q q 8 q d d d cs d d d d d d d d d d d d d d CS cs cn d VO

o CS o Ov 00 Ov O CN cs Tt VO 00 r-~ VS VO o Ov vsojmvq suvppououj q Tt o q q Tf 8 q q 8 q cn CS 8 Tt q 8 q 8 8 o 8 q c-i C' d VS cs cn d vo On d cs oo cn ti­ cn d 00 d d d d Tt vo

VO Tt Tt cs Tt 00 cs Ov sqousdmj snqjuDJVjjiCqj CO 8 q o o 8 o 8 8 8 8 8 8 8 8 vs Ov 8 q 8 8 8 8 8 cn d Ov d d d d d d d d d d d d d d d cs d d d d d

VO

* g K g g X g a g d § a M '§ a a w E a a w B 1 a V) B 1 a U3 a § a CO a I Table 4. Statistical parameters echinoid fragmentof weight frequencies within sedimentary facies (: S9[duies jo jaquinu cn

m d d T3 eg o d Wh c 9 00 D O S9I0BJ 00 T3 •e d& XjBJU9UIip9S g t o I « o ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien

40 Beitr. Palâont. Ôsterr., 17, Wien 1992

oo %

£uc) dans me tu J aria Fi Puiaria ovulum FrionociParis daculosa L aganum depressum m Tripneustes gratWa EcPinodiscus auritus H | } Il EcPinometra mathaei | Schizasteridae E/ypeaster sp. other echinoids Echinocyamus crispas Fig. 31. Frequency distribution of echinoid fragment weights following discrete mean grain size classes (n = 45). shore sediments has also been reported by POR k show distinctly varying morphologies, feeding strate­ LERNER-SEGGEV (1966) and FISHELSON (1971) gies, and burrowing depths. This is exemplified by in the Red Sea. the Clypeasteroid Echinodiscus auritus (a very shal­ The investigations of LAWRENCE k FERBER, low burrower) and the spatangoid Loveni a elongata 1971, FERBER k LAWRENCE 1976 and FERBER (deeper burrowers) in near-shore terrigenous sands. 1976 on Lovenia elongata seem to be the only de­ A further example is given by the co-occurrence of tailed studies on the distribution and sediment dé­ the very shallow burrowing Clypeasteroid Laganum pendance of an irregular echinoid from the Red Sea. depressum and the deeply burrowing schizasterids in The results reached in these studies, especially those muddy sands. concerning the substrate preference of this species, closely correspond to the observed distribution of The are a number of factors which control the Loveni a elongata in the study area. There are no distribution of echinoid taxa including temperature, descriptions of schizasterid distributions in the Red salinity, substrate characteristics, water movement, Sea. The adaptation and restriction of schizasterids predation, nutrients, behavior, depth and “chance” with a deep sunken anterior ambulacrum (as seen in (KIER and GRANT, 1965; EBERT, 1971; SMITH Diploporaster savignyi) to finer sediments are well 1984). The nature of the substrate has been ar­ known from the Tertiary and Recent (MCNAMARA gued to be the most important controlling factor k PHILLIP, 1980; SMITH, 1984). of local echinoid distribution (SMITH 1984). This has been substantiated by studies on both recent (KIER k GRANT, 1965; LAWRENCE k FER­ 4.3. Distribution of taxa with respect BER, 1971; ERNST ET AL., 1973; FERBER k to environmental parameters LAWRENCE, 1976; SMITH, 1979; HAROLD k TELFORD, 1982) and fossil echinoids (ERNST, The diversity of regular echinoids on hard substrates 1970; ERNST k SEIBERTZ, 1977; CHALLIS, 1979; is greater than that of irregular echinoid within spe­ BOGGILD k ROSE, 1984; ROSE 1984; CARTER, cific sediment types. This is reflected in the fact that 1987, NERAUDEAU 1991) from a variety of habi­ highly positive correlations between regular echi­ tats. The correspondence between echinoid fragment noids are common, whereby those between irregu­ distribution and the substrate is well documented for lar echinoids are not. When two irregular echinoids the Northern Bay of Safaga through their distribu­ do strongly correlate positively to one another, they tion with respect to bottom facies (Figs. 19, 23 and ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien NEBELSICK, J. H., The Northern Bay of Safaga 41 28), sedimentary facies (Figs. 20, 24 and 29) and size which is more convincing than that to depth. mean grain size (Figs. 21, 25, and 30); direct cor­ This is due to the fact that a number of deeper sam­ relation statistics (Tab. 5); and the comparison to ples also originate from hard substrates with coarse sedimentary parameters (Fig. 31-37). mean grain sizes. Substrate dependencies can be inferred for all of investigated irregular echinoid taxa except for Interpreting the strength of hydrodynamic influ­ Clypeaster sp. (see Tab. 5, Apps. 9-12). Schiza- ence from sedimentological parameters is difficult in sterids, which are well adapted for deep burial in the biogenic sediments of the study area as they are finer-grained sediments (MCNAMARA k PHILIP, dictated to a large extent by the nature of the par­ 1980; SMITH 1984), are preferentially found in very ticulate contributing components. Nevertheless, dif­ positively skewed, very poorly sorted silts and clays. ferences in hydrodynamic energy may be responsi­ This is shown not only by the highly significant posi­ ble for the variation of echinoid fragment presence in tive correlation to silts and clays and negative corre­ the examined shallow water sediments. Echinodiscus lations to coarser sediments (Tab. 5), but also by the auritus is found along with Lovenia elongata in the distribution of the schizasterids in the cluster analy­ finest and most poorly sorted nearshore sediments in ses (Figs. 21 and 30). Although Laganum depression the “protected” “Southwest channel” Echinometra shows an increased presence in positively skewed, mathaei is most common in shallow well sorted sedi­ very poorly sorted, finer grained sediments, their ments in more “exposed” sites than Fiblaria ovulum fragments are also present in coarser grained sedi­ which also shows a highly significant negative cor­ ments near coral carpets bordering muddy basins. relation to depth (Tab. 5). The restriction of the The remains of Echinodiscus auritus, of Lovenia fragments of these species to shallow water is again elongata are found in negatively skewed, moderate seen to reflect factors related to depth and not to to poorly sorted, fine sands. The results concerning depth as a factor itself. L. elongata corresponds closely to the detailed inves­ tigations of LAWRENCE k FERBER (1971), FER- Another very important factor controlling echi­ BER k LAWRENCE (1976) and FERBER (1976). noid distributions is nutrient supply. Thus regular Echinocyamus crispus is restricted to symmetrically echinoids, which are opportunistic omnivores (see skewed, poorly sorted, fine sands. The significant DE RIDDER k LAWRENCE (1982)) are largely re­ negative correlation of Fibularia ovulum fragments stricted to hard substrates as especially the mem­ to the silt grain size fraction and to sorting reflects bers of the cidaroids, diadematoids and echinoida their distribution in symmetrically skewed, better (see Tab. 1) feed by rasping the surface of corals sorted, coarser sediments. The fact that Clypeaster and rocks for incrusting organims. The dominance sp. fragments are common in all sediment grain sizes of Tripneustes gratilla in the seagrass bottom facies may reflect the fact that a species distinction was not and Soritid sedimentary facies is seen to directly re­ feasible. flect the preference of this species to this food sourse. Many of the regular echinoids, especially Euci- This relationship is also reflected in the fact that the daris metularia show a highly positive correlation to fragments of this species are most common in silty coarse grain size fractions and corresponding nega­ sands, which dominate in seagrass meadows. This tive correlation to mean grain size. They are pref­ again is seen as being an apparent dependency to erentially found in negatively skewed, moderately sedimentary parameters. sorted, coarse sands and gravels. The sedimentary parameters of the substrate are, however, not con­ The irregular echinoids of the study area are de­ sidered to control the presence of these members posit feeders and highly adapted to the sediments in of the epifauna. They rather inhabit environments which they live. They feed on organic material in­ (coral reef, coral carpet) with organisms shedding cluding small infaunal organisms within the sediment large constituent sedimentary particles (for example as deduced by investigations of gut content (see DE coral fragments or massive cidaroid spines) into the RIDDER k LAWRENCE, 1982). The restriction of surrounding sediments. most irregular echinoid taxa to sediments with spe­ The close correlation of echinoid distribution to cific grain size characteristics including mean grain bathymetry within the study area is seen to reflect size, sorting and skewness (see Figs. 31-33, 36 and an indirect relationship as noted by EBERT (1971), 37) may thus reflect the distribution of their food BOGGILD k ROSE (1984) and SMITH (1984). The supply. There may be a correlation between the restriction of the muds containing schizasterids to deeper occurrences (especially in the northern basin deeper depths is related to the rugged topography of the “East area”) of Clypeaster sp. and Echinocya­ of the bay with isolated basins acting as sediment mus crispus with the seagrass Halophila stipulacea traps. This is suggested by the comparison of abso­ which was observed to depths of 50 m (PILLER k lute fragments weights of schizasterids to mean grain PERVESLER 1989). ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien 42 Beitr. Palàont. Ôsterr., 17, Wien 1992

o 00 cn ^H CO r- o Ov O Ov f- vo CS Tf r~~ vo SBpugjstrznps VO cn 00 ■VT 00 o co ^H vn C" cn vo o cs oo Ov cn cs cs cs co m S’ S’ cn o vo 00 vo in CO cs 1 CO 1 1 1 1 i 1 1 i t , , VO Ov cs cs Ov t-~ vo VO Tf in vo cn vo s* D}o8uop D1U3AO'] ON cn cs cn cs o l-H S' 1-H o OV o VO ^H Tt cs 00 r~- o o o o o o O o o o O o O o o o o 1 1 1 1 1 1 1 1 1 t , 00 o cs VO S' cs 00 vo (N vo C- C" cs S" snjuriD svosipoutqo^ 00 S“ S' S* o 1-H o o cs cs 00 1-H r- l-H cs cs 00 vo O o o o o o o o o o o O o O o o 1 1 1 1 1 1 1 1 1 1 , S' »o m OV Ov 00 s- Ov oo rH 00 CO o » 00 CO wnsssudsp wtwdSd'j o Tt" Ov cn S' 1-H CS 1—H S cn vo cs VO CS cn o y~~* cs cs cs cs CS cs o cn vo CO Tf CO CO 1 1 1 1 1 1 , cn o in t- cn cn cn o Ov o ■’T VO VO CS VO OV cs lunjTMO DUDinqij cs o cn cn vo S' C" m cn cn CS 00 cs cs in 1-H ^H o o o cs cs cs cs o CO CS cs CO CO o Tf 1 1 1 1 1 1 1

cn 00 CS cn vo vo VO QO VO cs cn cs cs vo in vn sndsijo snuivfoomipti *n cn (N cn t- ^H r- 00 vo o 00 VO cs VO 1-H o ov o o cs m o o O o o o o cs 1 i 1 1 1 1 1 1 1 1 1 , 00 VO 00 00 o 00 o OO VO cs 00 o 1-H Ov o r- ^H S' vo in cs cs o cs 1-H vo o t" cn Ov *ds J3fSDdd£i3 O o o o cs ,"H o CO 1 1 1 1 1 1 1 1 1 1 1 , o S' Ov cs m o Ov r- o cs SnWJllWWVUl Snj0JJU330J3J3f{ o o o Ov cs t" 00 Ov oo 00 o Tf C" cs vo 1-H OV o * CS cn cs CS o o cs CS cs cs o I 1 1 1 , , VO S' vn CS cs cn cs Ov o vo Ov cs o s- 00 pvqivui vjjsiuouiqog in cn cn (S vo 00 VO r- vo 00 cn

00 o CMvo VO cs cn , t m o cn vo c- vo r- VO r- 00 Ov CO cs t- 00 vo r~ CS r~ C-~ Ov o cs cs 00 osojnooq suvppououj *n S’ ml CO CO cs o o cs CS CO o cs o o O 1 1 1 1 1 1 i

o c- vo U-> 00 r-~ o S' cs vo cs r- , 00 o 00 cn cs cs c-~ o hH 00 Ov 00 *-H vo 00 VO cn r» cn iH ^H VO sijDUddiut snqjUDJDjiiCqj cs CO cs o o cs cs ^H ’"H o 1 1 1 1 1 1

(S vo J CO CS , cn cs r~- CS o Tf OV CS Ov cs cn cn ^H vo vo o OV c- VO vn VO o cs lH DUOJT1J31U suvppng r r co cs CO CO cs cs o o cs cs cn o o 1 1 1 1 1 /—N /—s /—1s y/—y s /—N/•—s >o Ov Ov o o o o o o o o

100 %

nsk sym psk vp3k (n = 1 0) (n = 12) (n=23) (n=7) (n=3) Fig. 32. Frequency distribution of echinoid fragment Fig. 33. Frequency distribution of echinoid fragment weights following discrete sorting classes (n = weights following discrete skewness classes (n 45); m = moderate, p — poor, vp = very poor, = 45); n sk = negatively skewed, sym = sym­ ep = extra poor (for legend see Fig. 31). metrical, p sk = positively skewed, vp sk = very positively skewed (legend = Fig. 31). 4.4. Relationship to facies distribu­ tions of the generalized facies distributions as published in PILLER k MANSOUR (1990). The correlation of The significance of individual sea-urchin taxa in total echinoid clusters to facies shows well the dis­ characterizing and delineating individual environ­ tinction of soft substrates, dominated by irregular ments within the study area will depend on the dis­ echinoids, and hard substrates, dominated by regu­ tribution and preservation of other biotic elements lar echinoids. This correlation, however, suffers from which await detailed study. Echinoids have been des­ the fact that Clypeaster sp. fragments, which are ignated as the characteristic species of benthic com­ the most common in the study area, show a rela­ munities within the Red Sea, for example the Gen a tively undifferentiated distribution. The correlation varia /Echinometra mathaei community of FISHEL- of regular echinoids clusters is convincing for the SON (1971). The application of these community de­ Eucidaris metularia cluster to sediments associated signations or the term “echinoid biofacies”, defined with hard substrates; Echinometra mathaei to near by BOGGILD k ROSE (1984) as being “character­ shore sands and Prionocidaris baculosato deeper soft ized by a distinctive echinoid assemblage, associated substrates. The fact that Tripneustes gratilla frag­ biota, and lithology” may be premature, especially ments are relatively rare and lighter than the massive in light of the fact that echinoids are not dominating spine material of Prionocidaria baculosa may explain biotic elements of the Northern Bay of Safaga. why seagrass areas are dominated by the remains of The bottom facies which describe the nature of the the large cidaroid. The best comparisons to facies sea-floor (PILLER k PERVESLER, 1989) include distributions is given by the clusters of irregular major environmental features such as the presence of echinoids without Clypeaster sp. with the broad seagrass, mangroves or reefs which may not be read­ distribution of Fibularía ovulum cluster to coarse ily recognizable as such within the coarse sediment shallow water sediments; the restricted presence of as seen in the nature and distribution of sedimentary the Echinodiscus auritus cluster to the “Southwest facies (PILLER k MANSOUR, 1990). It is thus of channel”; the distribution of schizasterids in basins interest to discuss the correspondence between echi­ containing deeper muds and muddy sands; the pres­ noids and bottom as well as sedimentary facies dis­ ence of the Laganum depressum cluster in coarser tributions, bearing in mind the fact that these facies sediments in marginal samples of these basins; and are, in part, delineated by those factors controlling the restriction of the Echinocyamus crispus to the sea-urchin distribution. northern basin of the “East area”. Although the correlation between echinoid clus­ The possibility for direct comparison of distribu­ ters and facies is generally good, there are no per­ tion and facies is given in Tabs. 3 and 4. There is a fect correspondences and some important differences more distinct predominance of single echinoid taxa between the different cluster analysis exist. It must within the individual bottom facies than within the again be stated that these maps are simplified version sedimentary facies. This is seen in the expected total ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien 44 Beitr. Paláont. Ósterr., 17, Wien 1992

(n=13) (n = i3) (n=11) (n=8) (n = 23) (n = 13) (n = 8) (n = 12) (n = 11) Fig. 34. Frequency distribution of echinoid fragment Fig. 35. Frequency distribution of echinoid fragment weights following discrete kurtosis classes (n weights following discrete classes of depth (n = 45): high values are platykurtic, low values = 67) (legend = Fig. 31). are leptokurtic (legend = Fig. 31). strate types and ultimately in the reconstruction of dominance of regular echinoids (especially Eucidaris ancient environments. metularia) in the coral carpet and coral reef bottom facies. The corresponding coralgal sedimentary fa­ cies contains far lower average percentage of regular 4.5. Applicability to palaeontology echinoid fragments with a relatively large percentage The investigated fragments lie above the “taphonom- of Clypeaster sp. and Laganum depression. Schiza- ically active zone” (PARSONS k BRETT, 1991) sterid fragments totally dominate the mud bottom meaning that taphonomic processes such as bio- facies, in the mud sedimentary facies, however, they turbation or fossil diagenesis will additionally in­ are far less common. The contribution of Clypeaster fluence the faunal representation. The predicted sp. fragments differs highly in the diverse bottom taphocoenosis as seen in the sample material may facies; in the sedimentary facies, however, they show thus differ from the long-term accumulations actu­ mostly uniform values. The seagrass bottom and ally recorded in the fossil record. The study area is, soritid sedimentary facies which show similar distri­ however, an area of active terrigenous and carbon­ butions have a comparable content of echinoid re­ ate sedimentation (PILLER k MANSOUR, 1990). mains. The only sedimentary facies which is seen Thus, although taphonomic processes may further to reflect echinoid distributions well is the terrige­ affect the nature of fragment representation, the nous facies, with its high proportion of Fibularia highly differentiated distribution of echinoid remains ovulum, Echinometra mathaei, Echinodiscus auritus, of this shallow water tropical environment has a good and Clypeaster sp. chance of being preserved and recognized. These differences reflect in part the wider distribu­ The use of echinoid fragments in paleontological tion of sedimentary facies. The differences between research is, of coarse, nothing new. This is es­ the mud bottom and sedimentary facies may reflect pecially true for regular echinoids which, having a the wider grain size limits in the analysis versus the poor preservation potential (KIER, 1977A), have of­ field observations. An important role may also be ten been described and identified on the basis of played by the fact that many of the variables (35 fragments alone (see TAUBER, 1951; KIER, 1977B; in all) used in the classification of samples into sedi­ ZARDINI, 1988). Regular echinoid fragments have mentary facies may have little affect on echinoid pres­ also been used to characterize biofacies as for ex­ ence. These include the distribution of other biogenic ample the spines, test fragments, and dissarticulated components (16), minerals (6) and the trace element plates of Prionocidaris, which dominates the macro­ Strontium (1). This, however, does not hold true for fauna along with bryozoans and large foraminifera grain size parameters (12), which as discussed above in foreslope wackestones of the Maltese Oligocene closely reflects echinoid distributions. These results (BOGGILD k ROSE, 1984). suggest that echinoid presence and distributions can There are obviously a number of problems in ap­ be used as an additional tool to sedimentary facies plying the methodology of echinoid fragment quan­ in helping to delineate the nature and extent of sub­ tification as used in the actuopalaeontolgical study ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien NEBELSICK, J. H., The Northern Bay of S afaga 45

species mode of life sorting grain size bottom sedimentary facies facies

Eucidaris metularia epibenthic moderate coarse sand- coral carpet, coralgal gravel sand w. coral patches Phyllacanthus imperialis epibenthic moderate coarse sand sand w. coral patches coralgal

Prionocidaris baculosa epibenthic various coarse sand - coral carpet coralgal, gravel sand w. coral patches Operculina Diadema setosum epibenthic moderate medium sand sand w. coral patches terrigenous

Tripneustes gratilla epibenthic very poor fine sand seagrass, soritid sand w. seagrass Echinometra mathaei epibenthic moderate medium - sand terrigenous coarse sand Heterocentrotus epibenthic moderate medium - coral carpet coralgal mamm Hiatus coarse sand Clypeaster sp. shallow various various various various burrowers Echinocyamus crispas shallow poor fine sand sand w. seagrass molluscan burrowers Fibularia ovulum shallow moderate fine - sand w. seagrass, terrigenous, burrowers coarse sand sand, seagrass soritid Laganum depressum shallow extra poor - mud - muddy sand, molluscan burrowers poor medium sand mud, coralgal Echinodiscus auritus shallow very poor - fine sand sand w. seagrass, terrigenous burrowers moderate sand Lo venia elongata deep very poor fine sand sand, soritid, burrowers sand w. seagrass terrigenous Schizasteridae deep extra - mud - mud, mud, Operculina, burrowers very poor very fine sand muddy sand molluscan Table 6. Compilation of mode of life, grain size and facies restrictions of most important taxa within the study area. presented in this paper to fossil examples. Charac­ 5. Conclusions ters such as coloration patterns, used to help dis­ tinguish fragments, will generally not be present in 1. Echinoids can be quantified using fragment fossils. Difficulties in distinguishing fragments of weights from standardized sediment samples. sympatric species will diminish the resolution of the The data can be subsequently analyzed using method. The lack of comparable complete fossil multivariate statistical techniques. The advan­ specimens may hamper fragment identifications as tages of this method lie in the fact that tapho- well as diminish the possibilities for functional mor­ nomically unstable elements, such as most reg­ phological analysis of test characters. Nonetheless, ular echinoids, can be recognized and included the quantification of echinoid fragments in sieved in the analysis, although they are rarely present non-consolidated sediments as well as on larger ex­ as complete well preserved skeletons. posed surfaces of consolidated rocks should lead 2. The distribution of fragments is similar to the to useful results in the reconstruction of echinoid qualitative distribution as observed in the study distributions. area and as described in published accounts for Red Sea and Indo-West Pacific echinoids. The distribution of living echinoids is the most im­ portant factor in determining fragment distribu­ tion, although the differential taphonomic path- ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien 46 Beitr. Palàont. Ôsterr., 17, Wien 1992

2g

Og

Fig. 36. Absolute weights of echinoid fragments within discrete classes of mean grain sizes (n — 45). ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien NEBELSICK, J. H., The Northern Bay of Safaga 47

5759575

Fig. 37. Absolute weights of echinoid fragments within discrete sorting classes (n = 45). ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien 48 Beitr. Paläont. Osten., 17, Wien 1992 ways of the diverse taxa and other factors such (Edt.), Red Sea., 215-232 (Pergamon Press), as the size restriction of the method will influ­ Oxford. ence the spectrum of fragment representation. 3. The distribution of echinoid taxa can be corre­ CAMPBELL, A. C. k MORRISON, M., 1988. The lated to a number of important controlling envi­ fauna of Dhofar (Southern Oman) ronmental factors such as substrate characteris­ excluding Holothuroids. — [In:] R. D. BURKE, tics, water movement and nutrient supply. The P. V MLADENOV, P. LAMBERT k R. L. distribution of irregular echinoids is especially PARSLEY (Edt.), Echinoderm Biology. 369- related to grain size parameters including mean 378, (Balkema), Rotterdam. grain size, sorting and skewness of the sediments in which they occur. These environmental con­ CARTER, B. D., 1987. Paleogene echinoids distri­ trols of echinoid distribution are also revealed butions in the Atlantic and Gulf Coastal Plains. by the close correlation to bottom and sediment — Palaios, 2:390-404, Tulsa. facies patterns. CHALLIS, G. R., 1979. Miocene echinoid biofacies 4. The methodology used in this actuapalaeonto- of the Maltese Islands. — Ann. Geol. Pays. logical study should be useful in arriving at a Hellen., Tome hors ser., 1:253-262, Athen. more complete tabulation of both regular and irregular echinoid presence in ancient sediments; CLARK, A. M. k ROWE, F W E., 1971. Mono­ in discerning the distribution and facies restric­ graph of Shallow-Water Indo-, West Pacific tions of these echinoids as well as helping in the . London, 238 pp., British Museum general recognition of the palaeoenvironment. (N.H.), London. 6. Acknowledgements DAFNI, J. k EREZ, J., 1982. Differential growth This study was supported by the projects P 5877 in Tripneustes gratilla (Echinoidea). — [In:] and P7507-Geo of the “Fonds zur Förderung der J. M. LAWRENCE (Edt.), Echinoderms: Pro­ wissenschaftlichen Forschung in Österreich” (project ceedings of the International Conference, Tampa leader Fritz F Steininger). I would like to Bay, 71-77, (Balkema), Rotterdam. thank Fritz F Steininger, Werner Piller, Reinhard Golebiowski, Peter Pervesler, Karl Kleemann, Pe­ DAFNI, J. k TOBOL, R., 1986. Population struc­ ter Dworschak (all University of Vienna), Christian ture patterns of a common echinoid (Tripneustes Rupp (Geologische Bundesanstalt, Vienna) and Ab­ gratilla elatensis). — Israel J. Zool., 34:191- bas Mansour (University of /Assiut, Egypt) 204, Jerusalem. for their field support; Erich Kritscher for help at the “Naturhistorisches Museum” in Vienna. Fritz DE BEER, M., 1990. Distribution patterns of reg­ F Steininger, Werner Piller and Johann Hoheneg- ular sea urchins (Echinodermata: Echinoidea) ger and Monika Nebelsick for critically reading across the Spermonde Shelf, SW Sulawesi (In­ the manuscript; Wolfgang Reichmann for the pho­ donesia). — [In:] C. DE RIDDER, X. DUBOIS, tographs. X., LAHAYE k M. JANGOUX (Edt.), Echin­ oderm Research., 165-169 (Balkema), Rotter­ 7. References dam. ABEL, O., 1935. Vorzeitliche Lebenspuren. — DE RIDDER, C. k LAWRENCE, J. M., 1982. 644pp. (Gustav Fischer Verlag), Jena. Food and feeding mechanisms: Echinoidea. — [In:] M. JANGOUX k J. M. LAWRENCE BOGGILD, G. R. k ROSE, E. P. F., 1984. Mid- (Edt.), Echinoderm Nutrition., 57-115 (A. A. Tertiary echinoid biofacies as palaeoenviron- Balkema), Rotterdam. mental indices. — Ann. Geol. pays Hellen., 32:57-67, Athen. DILLON, W R., k GOLDSTEIN, M., 1984. Multi­ BUCHANAN, J. B., 1966. The biology variate analysis, methods and applications: 587 of Echinocardium cordatum (Echinodermata: p. (John Wiley and Sons), New York. Spatangoida) from different habitats. — J. mar. DODD, J R. k STANTON, R. J., 1990. Paleoecol- biol. Ass. U. K., 46:97-114. ogy: concepts and applications, 502 pp., (2nd CAMPBELL, A. C., 1987. Echinoderms of the Red edt.) New York, (John Wiley k Sons), New Sea. — [In:] A. J. EDWARDS k S. M. HEAD York. ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien NEBELSICK, J. H., The Northern Bay of Safaga 49 DOLLFUS, R. k ROMAN, R., 1981. Les Echinides ERNST, G. k SEIBERTZ, E., 1977. Concepts de la Mer Rouge, Monographie zoologique et and Methods of Echinoid Biostratigraphy. — paleontologique. — Min. Univers. Com. Trav. [In:] E. G. KAUFFMAN k J. E. HAZEL Hist. Scient. Mem Sec. Sciences, 9:1-145, (Edt.), Concepts and methods of biostratigra­ Paris. phy. 541-563 (Dowden, Hutchinson k Ross Inc.), Stroudsberg, Pennsylvania. DONOVAN, S. K., 1991. The taphonomy of echino- derms: calcareous multielement skeletons in the FERBER, I., 1976. Functional morphology of Love- marine environment. — [In:] DONOVAN, S. K. nia elongata (Gray) (Echinoidea: Spatangoida). (edt.) The Processes of Fossilization 241-269 — Thalass. Jugoslav., 12:123-128. (Belhaven Press), London. FERBER, I. k LAWRENCE, J. M., 1976. Dis­ DOTAN, A., 1990A. Distribution of regular sea tribution, substratum preference and burrow­ urchins of coral reefs along the south-eastern ing behavior of Lovenia elongata (Gray) (Echin­ coast of the , Red Sea. — Is­ odermata: Spatangoida) in the Gulf of Elat rael J. Zool, 37:15-28, Jerusalem. (Aqaba). — Red Sea. J. exp. mar. Biol. Ecol., DOTAN, A., 1990B. Population structure of 22:207-225, Amsterdam. the echinoid Heterocentrotus mammiHatus (L.) FISHELSON, L., 1971. Ecology and distribution of along the littoral zone of south-east Sinai. — the benthic fauna in the shallow waters of the Coral reefs, 9:75-80, Berlin-Heidelberg. Red Sea. — Mar. Biology, 10:113-133, Berlin, DOTAN, A. k FISHELSON, L., 1985. Morphol­ Heidleberg, New York. ogy of spines of Heterocentrotus mammillatus (Echinodermata, Echinoidae) and its ecologi­ FOLK, R. L. k WARD, W C., 1957. Brazos River cal significance. — [In:] B. B. Keegan k bar: a study in the significance of grain size pa­ O. B. D. S. (Edt.), Echinodermata, 253-260 rameters. — J. Sedimentary Petrology, 27(1):3- (A. A. Balkema), Rotterdam. 26, Tulsa. DURHAM, J. W., FELL, H. B., FISCHER, A. G., FÜCHTBAUER, H., 1959. Zur Nomenklatur der KIER, P. M., MELVILLE, R. V., PAWSON, Sedimentgesteine. —Erdöl u. Kohle 12(8):605- D. L. k WAGNER, C. D., 1966. Echinoids. — 613, Hamburg. [In:] R. C. MOORE (Edt.), Treatise of Inverte­ GHIOLD, J., 1982a. Functional morphology of brate Paleontology, part S. 211-640 (University the Clypeasteroid echinoid Echinocyamus pusil- of Kansas Press and the Geological Society of lus. — [In:] J. M. Lawrence (Edt.), Echino- Kansas), Lawrence, Kansas. derms: Proceedings of the International Confer­ DWORSCHAK, P. C. k PERVESLER, R, 1988. ence, Tampa Bay. (Balkema), Rotterdam. Burrows of Callianassa bouvieri NOBILI 1904 from Safaga (Egypt, Red Sea) with some Re­ GHIOLD, J., 1982b. Observations on the Clypeas­ marks on the Biology of the Species. — Senck- teroid Echinocyamus pusillus (O. F Müller). — enbergiana marit., 20:1-17, Frankfurt/Main. J. Exp. Mar. Bio. Ecol., 61:57-74, Amsterdam. EBERT, T. A., 1971. A preliminary quantita­ GIBBS, P. E., CLARK, A. M. k CLARK, C. M., tive survey of the echinoid fauna of Kealakekua 1976. Echinoderms from northern region of the and Honaunau Bays, Hawaii. - Pacific Science, Great Barrier Reef. — Bull. Br. Mus. natur. 25:112-131, Honolulu. Hist. (Zool.), 30:101-144, London. ERNST, G., 1970. Faziesgebundenheit und GOLEBIOWSKI, R., 1990. Die Nördliche Bucht Okomorphologie bei irregulären Echiniden der von Safaga (Rotes Meer, Ägypten): ein ak- nordwestdeutschen Oberkreide. — Paläont. tuopaläontologisches Beispiel Molluskenassozia­ Zeitschr., 44:41-62, Stuttgart. tionen einzelner Bodenfaziesbereiche. — Nachr. Dt. Geol. Ges., 43:33-34, Hannover. ERNST, G, HAHNEL, W k SEIBERTZ, E., 1973. Aktuopaläontologie und Merkmalsvariabilität GREENSTEIN, B. J., 1989. Mass Mortality of bei mediterranen Echiniden und Rückschlüsse the West-Indian Echinoid Diadema antillarium auf die Ökologie und Artumgrenzung fossiler (Echinodermata: Echinoidea): A natural exper­ Formen. — Paläont. Zeitschr., 47:188-216, iment in Taphonomy. — Palaios, 4:487-492, Stuttgart. Tulsa. ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien 50 Beitr. Paläont. Osterr., 17, Wien 1992 GREENSTEIN, B. J., 1990. Taphonomic biasing roles of temperature, oxygen and decay thresh­ of subfossil echinoid populations adjacent to St. olds. — Paleobiology, 16: 247-271, Chicago. Croix, U. S. V I. — [In:] D. K. LARVE (Edt.), 12th International Carribean Congress. KIER, P M., 1975. The echinoids of Carrie Bow Cay, Belize. — Smithsonian Contrib. Zool., GREENSTEIN, B. J., 1991. An intergrated study 200:1-45, Washington. of echinoid Taphonomy: predictions for the fos­ sil record of four echinoid families. — Palaios, KIER, P. M., 1977A. The poor fossil record of the 6:519-540, Tulsa. regular echinoids. — Paleobiology, 3:168-174, Chicago. GREENSTEIN, B. J. k MEYER, D. L., 1990. Mass Mortality of the West-Indian Echinoid Di- KIER, P. M., 1977B. Triassic echinoids. - Smithson. adema antillarium adjacent to Andros island. Contribs. Paleobiol., 30:1-88, Washington. Bahamas: A natural experiment in Taphonomy. — [In:] J. MYLORIE k D. GERACE (Edt.), KIER, P. M. k GRANT, R. E., 1965. Echinoid Dis­ Symposium on the Geology of the Bahamas. tribution and Habits, Key Largo Coral Reef Pre­ 159-168. serve, Florida. — Smith. Misc. Coll., 149:68 p., Washington. HAROLD, A. S. k TELFORD, M., 1982. Substrate preference and distribution of the northern sand KLEEMANN, K., 1990A. Korallengesellschaften dollar, Echinarachnius parma (Lamarck). — bei Safaga in Mittelägypten am nördlichen [In:] J. M. LAWRENCE (Edt.), Echinoderms: Roten Meer. — Nachr. Dt. Geol. Ges., 43:49- Proceedings of the International Conference, 50, Hannover. Tampa Bay. 243-250 (Balkema), Rotterdam. KLEEMANN, K., 1990B. Coral associations, bio­ HERRING, P. J., 1972. Observations on the distri­ corrosion, and space competition in Pedum bution and feeding habits of some littoral echi- spondyloideum (GMELIN) (Pectinacea, Bi- noids from Zanzibar. — J. of Nat. Hist. 6:169- valvia). — P.S.Z.N.I. Mar. Ecology, 11(1):77- 175, London. 94, Berlin. HUGHES CLARKE, M. W k KEIJ, A. J., 1973. KLEEMANN, K., 1992. Coral communities and Organisms as Producers of Carbonate Sediment coral-bivalve associations in the Northern Red and Indiators of Environment in the Southern Sea at Sfaga, Egypt. — Facies, 26:125-134, Er­ Persian Gulf. — [In:] PURSER, B. H. (Edt.), langen. The Persian Gulf. p. 33-56 (Springer-Verlag), Berlin, Heidelberg, New York. LAWRENCE, J. M. k FERBER, L, 1971. Sub­ strate particle size and the occurrence of Love- JAMES, D. B. k PEARSE, J. S., 1969. Echino­ nia elongata (Echinodermata: Echinoidea) at derms from the Gulf of and the Northern Taba, Gulf of Elat (Red Sea). — Israel J. Zool., Red Sea. — J. Mar. biol. Ass. India, 11:78- 20:131-138, Jerusalem. 125, Bombay. MCNAMARA, K. J. k PHILIP, G. M., 1980. JORESKOG, K. G., KLOVAN, J. E. k REY- Australian Tertiary schizasteroid echinoids. — MENT, R. A., 1976. Geologic factor analy­ Alcheringa, 4:47-65, Sydney. sis, 178 p. (Elsevier Scientific Publishing Com­ pany), Amsterdam-Oxford-New York. MERGNER, H. k SCHUHMACHER, H., 1974. Morphologie, Ökologie und Zonierung von Ko­ KENNARD, M. C. k SMITH, A. J., 1961. A simple rallenriffen bei Aqaba, (Gulf von Aqaba, Rotes micro-sample splitter. — J. Paleontol., 35:396- Meer). — Helgoländer wiss. Meeresunters., 397, Tulsa. 26:238-358, Kiel. KHAMALA, C. P M., 1971. Ecology of Echinome- MORTENSEN, T., 1928-1951. A Monograph of tra mathaei (Echinoidea; Echinodermata) at Di- the Echinoidea, v. 1. Cidaroidea, 551 p (1928); ani Beach, Kenya. — Marine Biology, 11:167- v. 2 Bothriocidaroida, Melonechinoida, Lepido- 172. Berlin, Heidelberg, New York. centroida, and Stirodonta, 647 p. (1935); v. 3/1, Aulodonta, 370 p. (1940).; v. 3/2, Camarodonta KIDWELL, S. M. k BAUMILLER, T., 1990. Ex­ 1, 446 p. (1943); v. 3/3, Camarodonta 2, 533 perimental disintegration of regular echinoids: p. (1943); v. 4/1, Holectypoida, Cassiduloida, ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien NEBELSICK, J. H., The Northern Bay of Safaga 51 363 p. (1948); v. 4/2, Clypeasteroida, 371 p. and Bottom facies. — Beitr. Paläont. Österr., (1948); v. 5/1, Spatangoida I, 432 p. (1950); v. 15:103-147, Wien. 5/ 2, Spatangoida 2, 593 p. (1951); index to v. 1-5, 63 p. (1951): (C. A. Reitzel), Copenhagen. POR, F. D. k LERNER-SEGGEV, R., 1966. Pre­ liminary data about the benthic fauna of the MÜLLER, G., 1961. Das Sand-Silt-Ton Verhältnis Gulf of Elat (Aqaba); — Red Sea. Israel J. in rezenten marinen Sedimenten. — N. Jb. Min­ Zool., 15:38-50, Jerusalem. eral. Mh., 1961: 148-163, Stuttgart RICHTER, R., 1929. Gründung und und Aufgaben NEBELSICK, J. H., 1990. Die Nördliche Bucht der Forschungsstelle für Meeresgeologie ,,Senck- von Safaga (Rotes Meer, Ägypten): ein ak- enberg“ in Wilhelmshaven. — Nat. Mus. 59:1- tuopaläontologisches Beispiel Echiniden: Ihre 30. Verteilung und Faziesabhängigkeit. — Nachr. Dt. Geol. Ges., 43:69-70, Hannover. ROSE, E. P F., 1984. Problems and principles of Neogene Echinoid Biostratigraphy. — Ann. NEBELSICK, J. H., 1992. Echinoid Distribution by Geol. Pays Helleniques, 32:171-181, Athens. Fragment Identification in the Northern Bay of RUSSO, A. R., 1977. Water flow and the distri­ Safaga, Red Sea, Egypt. — Palaios, 7:2, Tulsa. bution and abundance of echinoids (genus Echi­ NERAUDEAU, D., 1991. Lateral variations of size- nometra) on an Hawaiian reef. — Aust. J. Mar. frequency distribution in a fossil echinoid com­ Freshwater Res., 28:693-702, Melbourne. munity and their palaeoecological significance. SCHÄFER, W., 1962. Aktuo-Paläontologie nach — Lethaia, 24:229-309, Oslo. Studien in der Nordsee: p. 666 (Verlag Walde­ PARSONS, K. M. k BRETT, C. E., 1991. Tapho- mar Kramer), Frankfurt am Main. nomic processes and biases in modern marine environments: an actualistic perspective on fos­ SCHUBÖ, W k UEHLINGER, H., 1986. SPSSx, sil assemblage preservation. — [In:] DONO­ Handbuch der Programmversion 2.2, 657 VAN, S. K. (edt.) The Processes of Fossiliza- pp.(Gustav Fischer Verlag), Stuttgart-New tion, 22-65 (Belhaven Press), London. York SEILACHER, A., 1979. Constructional morphol­ PEARSE, J. S., 1969. Reproductive periodici­ ogy of sand dollars. — Paleobiology, 5:191-221, ties of Indo-Pacific in the Gulf of Chicago. Suez. II. The echinoid Echinometra mathaei (de Blainville). — Bull. mar. Sei., 19:580-613, Mi­ SLOAN, N. A., CLARK, A. M. k TAYLOR, J. D., ami. 1979. The echinoderms of Aldabra and their habitats. — Bull. Brit. Mus. (Nat. Hist.), PERVESLER, P., 1990. Die Nördliche Bucht 37:81-128, London. von Safaga (Rotes Meer, Ägypten): ein ak- tuopaläontologisches Beispiel Verteilung von SMITH, A. B., 1979. Peristomal Tube Feet and Lebensspuren. — Nachr. Dt. Geol. Ges., Plates of Regular Echinoids. — Zoomorph., 43:75-76, Hannover. 94:67-80, Berlin, Heidelberg, New York. PILLER, W., 1990. Die Nördliche Bucht von SMITH, A. B., 1980a. Stereom microstructure of Safaga (Rotes Meer, Ägypten): ein ak- the Echinoid test. — Spec. Papers Palaeont., tuopaläontologisches Beispiel Bodentypen und 25:1-81, London. Sedimentologie. — Nachr. Dt. Geol. Ges., 43:77-78, Hannover. SMITH, A. B., 1980B. The structure and arrang- ment of echinoid tubercles. —Phil. Trans. Roy. PILLER, W. E. k MANSOUR, A. M., 1990. The Soc. Lond. (B)., 289:1-54, London. Northern Bay of Safaga (Red Sea, Egypt): An actuopalaeontological approach, II. Sedi­ SMITH, A. B., 1980C. The structure, function, and ment analyses and sedimentary facies. — Beitr. evolution of tube feet and ambulacral pores in Paläont. Österr., 16:1-102, Wien. irregular echinoids. — Palaeontology., 23:39- 83, London. PILLER, W E. k PERVESLER, P, 1989. The Northern Bay of Safaga (Red Sea, Egypt): An SMITH, A. B., 1984. Echinoid palaeobiology. — actuopalaeontological approach, I. Topography 191 pp. (George Allen and Unwin), London. ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien 52 Beitr. Paläont. Osterr., 17, Wien 1992 STRATHMAN, R. R., 1981. The role of spines in TELFORD, M., HAROLD, A. S. k MOOI, R., preventing structural damage to echinoid test. 1983. Feeding structures, behavior, and micro- — Paleobiology, 7:400-406, Chicago. habitat of Echinocyamus pusillus (Echinoidea: Clypeasteroida). — Biol. Bull., 165:745-757, TAUBER, A. F., 1951. Tripneustes ventricosus aus- Boston. triacus nov. ssp. ein tropischer Seeigel aus dem Torton des Wiener Beckens. — Sitzungsber. TORTONESE, E., 1977. Report on Echinoderms Osterr. Akad. Wiss. math.-naturwiss. Kl., from the Gulf of Aqaba (Red Sea). — Monit. Abt. I, 160:303-320, Wien. zool. Ital., 9:273-290., Firenze. TELFORD, M., 1985. Structural analysis of the ZARDINI, R. 1988. Geologia e Fossili delle test of Echinocyamus pusiJJus (O. F Miiller). Dolomiti di Cortini e dintorni. 45pp. (Ediziono — [In:] KEEGAN, B. B. k O’CONNER, Dolomiti. San Vito di Cadore) Belluno. B. D. S. (Edt.), Echinodermata. 353-360A. (A. Balkema), Rotterdam.

Plate 1 Fig. 1. Eucidaris metularia: Complete test; note primary spines (ps), some incrusted by bivalves (bi) and large apical system (JAE71, Tubya Al-Kabir; scale bar = 5 mm). Fig. 2. Eucidaris metularia: Denuded test with missing apical system. Note distinctly sinuate ambulacra (A) and large primary tubercles in the interambulacra (IA). (sample: Bl/1, 2xR; scale bar = 3 mm). Fig. 3. Eucidaris metularia: Large fragment consisting of an interambulacra (IA), with non-crenulate, per­ forated primary tubercles with non-sunken areoles (pt), and two incomplete ambulacra (A) (sample C1/6T; scale bar = 3 mm). Fig. 4. Eucidaris metularia: Single interambulacral plate broken along plate boundaries and ambulacral plates showing partly interplate fracturing. Interambulacral plate shows scrobicular tubercles (set) with semi-elliptical boss prolonged toward the primary tubercle. Primary ambulacral tubercles (at) with knobby appearance (sample: D4/1T; scale bar = 1 mm). Fig. 5. Eucidaris metularia: Cylindrical primary spine with abruptly truncated shaft terminating in a crown (cr) with a central prominence. Low rounded warts (w) are disposed in regular, longitudinal series (sample C1/1T; scale bar =2 mm). Fig. 6. Eucidaris metularia: Primary spines incrusted mainly through bryozoans (br). Incrustation of the base (b) shows that incrustation occured or continued after death (sample Cl/IT; scale bar = 3 mm). Fig. 7. Phyllacanthus imperialis: Large interambulacral plate showing a large sunken areole with a promi­ nent, non-crenulate, primary tubercle. The prominent semilunar scrobicular tubercles (set) with a distinct elevation on the side towards the areole are larger than the secondary tubercles (st) (sample D4/1T; scale bar = 3 mm). Fig. 8. Phyllacanthus imperialis: Large, partly incrusted fusiform primary spines showing longitudinal ribs (C1/1C; scale bar = 2 mm). ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien NEBELSICK, J. H., The Northern Bay of Safaga ... 53 Plate 1 ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien 54 Beitr. Palaont. Osterr., 17, Wien 1992

Plate 2 Cidaroida, Diadematoida Fig. 1. Prionocidaris baculosa: Single interambulacral plate with non-crenulate primary tubercle (sample D4/1T; scale bar = 2 mm). Fig. 2. Prionocidaris baculosa: Cylindrical primary spine showing the base (b), spotted collar (c) and longitudinal series of thorns (th) which can be arranged in distinct whorls (wh) (sample B5/4T; scale bar = 2 mm). Fig. 3. Prionocidaris baculosa: Somewhat tapering primary spine, with spotted collar, longitudinal series of thorns, and terminal crown (cr) (sample B5/4T; scale bar = 5 mm). Fig. 4. Prionocidaris baculosa: Spine fragment showing the very distinctive spotted collar, (sample B5/4T; scale bar = 3 mm). Fig. 5. Prionocidaris baculosa: Spine fragment showing spotted collar and especially well developed thorns (sample B5/4T; scale bar = 3 mm). Fig. 6. Diadema setosum: Single trigeminate ambulacral plate with large crenulated, perforated primary tubercle (sample B5/4T; scale bar = 1 mm). Fig. 7. Diadema setosum: Single interambulacral plate with large crenulated, perforated tubercle (sample B5/4; scale bar = 1 mm). Fig. 8. Diadema setosum: Slightly abraded, broken spine base; The acetabulum (ac) is just visible. Although the milled ring (mr) has been rounded off, the whorls (wh) are clearly visible (sample A4/2T; scale bar = 1 mm). Fig. 9. Diadema setosum: Broken spine fragment showing slender, hollow, cylindrical form with well spaced whorls (wh) (= verticillate) (sample A4/2T; scale bar = 2 mm). ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien NEBELSICK, J. H., The Northern Bay of Safaga ... 55 Plate 2 ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien 56 Beitr. Palaont. Osterr., 17, Wien 1992

Plate 3 Temnopleuroida Fig. 1. Tripneustes gratilla: Very well preserved test with intact apical system and a few articulated spines. Note the sparce tuberculation and naked areas. Round hole in the test suggest gastropod predation (sample JAE9, Mangrove S of Safaga; scale bar = 1 cm). Fig. 2. Tripneustes gratilla: Very well preserved apical system showing plated periproctal membrane (A4/2C; scale bar = 1 mm). Fig. 3. Tripneustes gratilla: Large fragment consisting mostly of interambulacral plates (IA) showing inter­ plate fracturing and ambulacral plates (A) showing intraplate fracturing; note the sparse tubercu­ lation (sample B5/7T; scale bar = 4 mm). Fig. 4. Tripneustes gratilla: Trigeminate ambulacral plates with primary tubercles (pt) in every 4th plates. Broad pore-zone (pz) with pore-pairs in horizontal arcs forming three distinct vertical series: inner and outer ones regularly, the median series more or less irregular arranged (sample C8/2T; scale bar = 2 mm). Fig. 5. Microcyphus rousseaui: Very well preserved test lacking the apical system. Clearly recognizable are the narrow anbulacra (A) and the naked areas (na) within the interambulacra (IA). Round hole in the test suggest gastropod predation (C8/1C; scale bar = 1 cm). Fig. 6. Microcyphus rousseaui: Fragment consisting largely of a single interambulacral plate with the dis­ tinctive naked areas (sample C1/1T; scale bar = 2 mm). Fig. 7. Temnotrema sp.: Fragment of the small test characterized by conspicuous deep pits (pi) along the horizontal sutures (sample B17/2T; scale bar = 1 mm). Fig. 8. Nudechinus sp.: slightly abraded small hemispherical test with missing apical system (sample D2/1, 2xR; scale bar = 3 mm). ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien NEBELSICK, J. H., The Northern Bay of Safaga ... 57 Plate 3 ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien 58 Beitr. Palaont. Osterr., 17, Wien 1992

Plate 4 Echinoida Fig. 1. Echinometra mathaei: Complete test with spines (sample A4/2C; scale bar = 1 cm). Fig. 2. Echinometra mathaei: complete denuded test with intact apical system and few articulating spines (sample JAE 17, Mangrove S of Safaga; scale bar =1 cm). Fig. 3. Echinometra mathaei: Highly abraded fragment showing intra- and interplate fracturing (sample B4/2T; scale bar = 2 mm). Fig. 4. Echinometra mathaei: Denuded, partially incrusted test with missing apical system (B2/2C; scale bar = 5 mm). Fig. 5. Echinometra mathaei: Slightly abraded ambulacral test fragment showing intraplate facturing (sam­ ple B4/2T; scale bar —2 mm). Fig. 6. Echinometra mathaei: Well preserved fragment of the polyporous ambulacra containing 4 pore pairs (pp) to each arc and imperforate non-crenulate primary tubercles (pt). Both inter- and intraplate fracturing is present (sample B4/2T; scale bar = 1 mm). Fig. 7. Echinometra mathaei: Well preserved spine showing base (b), distinct milled ring (mr) and fine striations (sr) which continue to the regenerated (broken) tip (rt) (sample A4/2T; scale bar = 3 mm). Fig. 2. Echinometra mathaei: Heavily abraded spine fragment showing the base, milled ring (mr) and rounded striations (sample A4/2T; scale bar = 1 mm). ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien NEBELSICK, J. H., The Northern Bay of Safaga ... 59 Plate 4 ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien 60 Beitr. Palaont. Osterr., 17, Wien 1992

Plate 5 Echinoida Fig. 1. Heterocentrotus mammiHatus: Large elongated test with massive, basally cylindrical, distally flat­ tened primary spines and numerous truncate secondary spines forming a dense cover of the test (JAE 49; Reef E of Tubya Al-Bayda, scale bar = 5 cm). Fig. 2. Heterocentrotus mammiHatus: large abraded test fragment showing massive, imperforate, non- crenulated primary tubercles (pt) and smaller secondary tubercles (st). (sample B2/4,2xR; scale bar = 3 mm). Fig. 3. Heterocentrotus mammiHatus: Base of spine showing finely straited shaft (sample B2/4,2xR; scale bar = 2 mm). Fig. 4. Heterocentrotus mammiHatus: Complete and fragmented spines showing different grades of incrus­ tation (Sample JS87-116, Reef E of Tubya Al-Bayda; scale bar = 2 cm). Fig. 5. Heterocentrotus mammiHatus: small, flattened, secondary spines originating from close to the peri­ stome (sample C1/1T; scale bar = 1 mm). Fig. 6. Heterocentrotus mammiHatus: small, robust, secondary spines originating from close to the periproct (sample C1/1T; scale bar = 1 mm). Fig. 7. Parasalenia poehli: Small oblong test with distinctly banded primary spines, (sample C1/1C; scale bar = 5 mm). Fig. 8. Parasalenia poehli: Large fragment with Ambulacra (A) and Interambulacra (IA); note large primary tubercles, (sample A1-2/1T; scale bar = 1 mm). ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien NEBELSICK, J. H., The Northern Bay of Safaga ... 61 Plate 5 & & ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien 62 Beitr. Palaont. Osterr., 17, Wien 1992

Plate 6 Clypeasteroida Fig. 1. Clypeaster humilis: Complete specimen showing spine coverage, closed frontal ambulacrum and small petals. Plate boundaries are discernable. (sample A4/2C; scale bar = 1 cm). Fig. 2. Clypeaster humilis: Complete denuded specimen. Plate boundaries are clearly discernable. (sample JS87-315, SE Channel S of A1/1B; scale bar = 1 cm). Fig. 3. Clypeaster fervens: Complete specimen. Note open frontal ambulacrum and relately large petal area, (sample B12/1C; scale bar = 1 cm). Fig. 4. Clypeaster reticulatus: Complete denuded test. Note inflated ambitus. The 5 genital pores are clearly visible (sample JAE46, South of Tubya Al-Bayda; scale bar = 1 mm). Fig. 5. Clypeaster sp.: Larger fragment showing plate boundaries (pb), tuberculation, and petal remnants (p) (compare Fig. 6) (sample C1/3T; scale bar = 4 mm). Fig. 6. Clypeaster sp.: Inner surface of the same fragment as in Fig. 5 (inverted negative). Note peg-like internal supports (pillars) (is) and petals (p) (sample C1/3T; scale bar = 4 mm). Fig. 7. Clypeaster sp.: Smaller fragment showing size and density of sunken tubercles (sample B10/1T; scale bar = 1 mm). Fig. 8. Clypeaster sp.: Slightly abraded petal fragment showing tuberculation as well as inner and outer ambulacral pores (ip = inner pore, op = outer pore) and one half of the interporifous zone (iz) (sample B10/1T; scale bar = 1 mm). ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien NEBELSICK, J. H., The Northern Bay of Safaga ... 6i Plate 6 ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien 64 Beitr. Palaont. Osterr., 17, Wien 1992

Plate 7 Clypeasteroida Fig. 1. Echinocyamus crispus: Aboral view of the very small, finely tuberculated flattened test. The petals do not reach the ambitus. The rounded hole suggest gastropod predation. The margin of the test is largely missing (sample C10/2; scale bar = 1 mm). Fig. 2. Echinocyamus crispus: Oral view showing sunken oral surface with the periroct (pe) which is midway between the margin and mouth (m) (sample Cl0/2; scale bar = 1 mm). Fig. 3. Echinocyamus crispus: Internal view of the same specimen as in Fig. 2. Note the radiating internal supports (sample C10/2; scale bar = 1 mm). Fig. 4. Fibularia ovulum: Aboral view of the very small, finely tuberculated, high, globular test. The round hole suggest gastropod predation (sample D2/1T; scale bar = 1 mm). Fig. 5. Fibularia ovulum: Another specimen also showing a hole suggesting gastropod predation (sample D2/1T; scale bar = 1 mm). Fig. 6. Fibularia ovulum: Oral view showing rounded oral surface with mouth (m) and periproct (pe) (sample D2/1T; scale bar = 1 mm). Fig. 7. Laganum depressum: Very well preserved specimen showing pentagonal test, large petaloid area with well developed petals, and thickened margin. Note the sinuous groove of the madreporite pores and 5 genital pores in the apical system (sample A14/4C; scale bar = 5 mm). Fig. 8. Laganum depressum: Oral view showing plate boundaries, food grooves and tuberculation (sample A14/4C; scale bar = 5 mm). Fig. 9. Laganum depressum: Finely tuberculated fragment with petals and partially preserved apical system (sample A10/1T; scale bar = 2 mm). Fig. 10. Laganum depressum: Large fragment of the thickened rim showing the distal ambulacral pores of a petal (p). The fragment has been incrusted by a polychaete worm Note plate boundaries (sample A10/1T; scale bar = 4 mm). ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien NEBELSICK, J. H., The Northern Bay of Safaga ... 65 Plate 7 ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien 66 Beitr. Palaont. Osterr., 17, Wien 1992

Plate 8 Clypeasteroida, Spatangoida Fig. 1. Echinodiscus auritus: The large test clearly shows the spine coverage, and the two elongate, distally open lunules situated in the posterior paired ambulacra (sample A4/2C; scale bar = 2 cm). Fig. 2. Echinodiscus auritus: The large denuded test clearly shows the petals, Note the variations in outline between this specimen and that shown in Fig. 1. (sample A4/2C; scale bar = 2 cm). Fig. 3. Echinodiscus auritus: Detail of the oral surface with the mouth (left) and periproct (right), clearly showing the polyfurcating food grooves) and highly differentiated oral tuberculation (A4/2C; scale bar = 1 mm). Fig. 4. Echinodiscus auritus: Large fragments of the flattened test with petals (p), polyfurcating foodgrooves (fg) and lunules (lu) (sample A4/2C: scale bar = 2 cm). Fig. 5. Lovenia elongata: Detail showing large sunken tubercles (tu), pore pairs of the right anterior ambu­ lacrum (aa) and internal fasciole (if) (sample A14/3C; scale bar = 2 mm). Fig. 6. Lovenia elongata: This small fragment bears two very characeristic sunken tubercles (tu) and the corresponding prominant camellae (ca) which bulge out in the interior of the test (sample A1/4T; scale bar = 1 mm). Fig. 7. Schizasteridae: A fragment of the test showing the peripetalous fasciole (f), right anterior ambu­ lacrum (aa), and rim of the fronatal ambulacrum (fa) (sample D5/1T; scale bar = 2 mm). Fig. 8. Schizasteridae: A fragment of the very thin test showing the sunken petal of the short left posterior ambulacrum (pa) abutting againts the perpitalous facsciole (f). Note the fine tuberculation of the test surface, (sample B5/4T; scale bar = 2 mm). ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien NEBELSICK, J. H., The Northern Bay of Safaga ... 67 Plate 8 ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien 68 Beitr. Paläont. Österr., 17, Wien 1992 Appendix 1: Position and description of sample localities; after PILLER k MANSOUR (1990). sample transect + depth description bottom sedimentary no. distance (m) (m) facies facies A1/1B A1 1304 0.5 Sand with coral patches scp son Al-2/1 Al-2 220 10 Sand between patches scp A1-2/2 Al-2 220 10 Sand between patches scp Al/2 A1 980 17.5 Muddy sand ms son Al/3 A1 520 18.5 Muddy sand with brown algae ms operc Al/4 A1 220 10 Halophila meadow seag son Al/5 A1 114 1.5 Seagrass meadow seag terr A4/1 A4 650 10 Sand with Halophila between coral patches scp A4/2 A4 50 2 Sand sand A5/1 A5 880 6 Sand with mixed seagrass ssg son A5/2 A5 450 8 sand between patches scp A5/3 A5 1320 1 Coarse sand between Mangrove roots mangr terr A10/1 A14 850 35 Fine sand with mounds ms moll All/2 A ll 1000 28 Sand with mounds sand moll A13/1 A13 370 17 Halophila meadow seag son A14/2 A14 320 6 sand between coral patches scp A14/3 A14 120 1 Fine sand with sparse Halodule ssg terr A14/4 A14 650 28 Sand with Halophila patches ssg cor B2/2 B2 100 1 Sand on reef-flat sand B3/2 B3 3700 3 Sand between fringing reef and seagrass sand B3/3 B3 3000 11 Sand in coral carpet cc B3/4 B3 2650 25 Sandy mud ms B3/5 B3 2000 35 Mud mud B4/2 B4 200 10 Sand sand B4/5 B4 1510 37 Mud mud B5/1 B5 2050 21 Sand in front of coral carpet cc B5/2 B5 2005 28 Sand bottom with seagrass ssg moll B5/3 B5 1420 34 Mud mud B5/4 B5 1020 33 Muddy sand at base of coral carpet mud mud B5/5 B5 150 1 Sand and seagrass ssg B5/6 B5 100 1 Sand sand B5/7 B5 10 0 Sand ifl B5/8 B5 2630 6 Halophila meadow seag son B5/9 B5 1910 34 Mud bottom with burrow openings mud B5/10 B5 3100 6 Seagrass meadow seag B7/1 B7 950 50 Muddy sand covered by microbial mat ms moll B9/1 B9 1325 48 Sand with Halophila and Operculina sand moll Bll/1 Bll 950 41 Sand with sparse Halophila ssg cor B12/2 B12 1750 48 Muddy sand with Operculina ms mud B14/1 B14 1165 47 Fine sand sand mud B15/1 B15 820 27 Sand patch in coral carpet cc cor B15/2 B15 2310 32 Mud with burrow openings mud mud B17/1 B17 1250 51.5 Muddy sand with star-like trails ms B17/2 B17 1650 49.5 Muddy sand with Operculina ms B18/1 B18 2300 32 Muddy sand ms moll B20/1 B20 1400 48 Sand with Operculina sand cm Cl 650 10 Coral sand reef cm Cl 1650 50 Muddy sand with Operculina and Halimeda ms operc Cl/3 Cl 900 40 Muddy sand with Halophila patches ms moll Cl/4 Cl 750 35 Sand near seagrass ssg Cl/5 Cl 2050 57 Sand with macroids rock Cl/6 Cl 1930 37 Sand in coral carpet cc cm C2 1810 7 Halophila meadow seag mud C3/1 C3 1030 13.5 Muddy sand patch in Halophila meadow ms son C4/2 C4 2700 3 Sand and seagrass ssg C6/1 C6 2088 8 Sand adjacent to Halophila meadow sand cor C6/3 C6 1520 7 Sand with Cymodocea patches scp cor cm Cl 1650 14 Sand with Halophila sand terr cm C8 900 6 Sand with coral patches sand compo cm C8 1250 17 Halophila meadow seag moll cm C8 1630 7 Sand sand Cl 0/2 CIO 1250 38.5 Sand with Halophila and large mounds ssg moll Cl 2/3 C12 1230 29 Sand groove in coral carpet cc D2/1 D2 1800 3 Sand and seagrass seag D2/2 D2 100 0.75 Sand with rhodoliths sand cor D4/1 D4 1270 22 Sand patch in coral carpet with burrows cc cor D5/1 D5 520 32 Sandy mud ms mud

bottom facies: reei = coral reef; cc = coral carpet; scp = sand with coral patches; ssg = sand with seagrass; seag = seagrass; ms = muddy sand; rock = rock bottom, ifl = intertidal flat; mang = mangrove, sedimentary facies: cor = coralgal; moll = molluscan; operc = Operculina ; sor = soritid; terr = terrigenous; compo = compound grain. ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien NEBELSICK, J. H., The Northern Bay of Safaga 69 Appendix 2: Frequency of echinoid fragment weights within samples. 3 |

h. 3 3 a as cs •3 3 •js: .§■ 'C 8 Ik & o ¡3a Is. a cs •§ Cl 0 a 5 5 3 Ik cs ■§ 2 2 1 3 3 bo Cl O S' 3 •5 3 "C3 0 S •C is fcc •s C 3 a a 3 5 o 1 3 « •5 o o 3 o o 6S 0 k. 1 .3 § Ik c •5 It | 1 b 3 •2 s,

Schizasteridae w Cfypeaster sp. Fibularia ovulun Lovenia elongat Temnotrema sp. Parasaleniapoe¡ Nudechinus sp.

Diadema setosun £ sample £ £ 1 § 1 3

A1/1B 0.00 0.00 2.03 1.08 0.00 0.00 0.00 0.50 0.00 5.79 0.00 78.67 0.00 10.41 0.00 0.00 0.13 1.40 90.61 Al-2/1 2.85 0.62 14.89 8.16 3.54 0.00 0.00 1.08 4.62 13.15 0.00 25.19 0.00 19.63 0.00 0.00 1.27 5.00 51.09 A 1-2/2 16.46 13.79 22.26 6.02 2.59 0.00 0.00 1.02 5.02 5.36 1.47 18.08 0.00 0.83 1.30 0.22 0.97 4.61 26.01 Al/2 1.73 0.00 8.96 0.00 0.00 0.54 0.00 33.66 0.00 0.00 0.00 51.64 0.00 0.19 0.00 0.00 0.00 3.28 55.10 Al/3 0.00 0.00 13.18 0.00 0.00 0.00 0.00 7.27 0.00 0.00 0.00 20.28 0.00 0.00 0.00 0.00 0.00 59.27 79.55 Al/4 0.70 0.00 0.00 2.85 0.00 0.00 0.00 1.49 0.11 0.62 0.42 28.72 0.00 4.83 0.00 38.23 22.02 0.00 93.80 Al/5 2.28 0.00 0.00 0.00 0.00 0.00 0.00 3.41 0.00 32.01 0.00 0.00 0.00 13.94 0.00 46.37 1.99 0.00 62.30 A4/1 13.96 0.00 62.92 0.00 0.00 0.00 0.00 1.18 0.00 1.25 0.00 16.20 0.00 1.43 2.44 0.00 0.00 0.62 20.69 A4/2 0.74 0.00 7.56 3.17 0.00 0.84 0.08 0.53 0.09 34.99 0.69 2.45 0.00 7.59 0.00 41.06 0.00 0.20 51.30 A5/1 0.00 1.90 4.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 33.46 0.00 59.98 0.00 0.00 0.00 0.39 93.83 A5/2 0.00 0.00 0.00 0.00 0.00 1.92 0.00 0.00 0.00 0.00 0.00 20.45 0.00 77.64 0.00 0.00 0.00 0.00 98.08 A5/3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 31.03 0.00 68.97 0.00 0.00 0.00 0.00 100.00 A 10/1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.55 0.00 0.00 0.00 30.51 0.07 0.00 19.14 0.00 0.00 48.73 98.45 All/2 0.00 0.00 0.14 0.00 0.00 0.00 0.00 8.71 0.00 0.00 0.00 58.11 0.32 1.30 23.01 0.00 0.08 8.33 91.14 A13/1 43.23 2.29 2.87 0.97 0.71 0.00 0.00 0.09 0.71 6.32 0.41 30.14 0.00 0.66 11.45 0.00 0.00 0.15 42.41 A14/2 78.85 0.00 0.00 0.55 0.00 0.00 0.00 0.87 0.00 0.21 0.00 16.74 0.00 2.52 0.00 0.00 0.00 0.27 19.53 A14/3 14.92 0.00 0.00 6.10 0.00 0.00 0.00 4.07 0.00 34.07 0.00 14.92 0.00 20.34 0.00 3.56 2.03 0.00 40.85 A14/4 8.45 0.00 3.67 0.00 0.00 0.00 0.00 6.17 0.00 1.98 0.00 46.36 0.49 9.67 12.41 0.00 0.00 10.81 79.73 B2/2 8.55 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 76.94 12.77 1.74 0.00 0.00 0.00 0.00 0.00 0.00 1.74 B3/2 6.27 2.80 9.08 1.65 0.60 0.00 0.00 1.05 0.00 55.16 8.07 12.98 0.00 2.15 0.00 0.00 0.00 0.20 15.33 B3/3 16.58 0.63 2.46 1.45 0.05 0.00 0.00 0.49 0.00 70.56 3.66 3.53 0.00 0.59 0.00 0.00 0.00 0.00 4.12 B3/4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.41 0.48 0.00 76.43 0.00 0.00 22.63 99.95 B3/5 0.00 0.00 0.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 46.54 0.00 0.02 4.31 0.00 0.00 48.55 99.41 B4/2 12.02 0.00 0.00 2.23 0.00 0.00 0.61 3.24 0.00 39.50 3.87 6.58 0.00 27.57 0.00 0.00 0.00 4.38 38.52 B4/5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00100.00 100.00 B5/1 45.38 0.00 31.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.70 17.56 0.00 0.00 0.00 0.00 0.00 0.00 17.56 B5/2 7.31 0.00 3.81 1.06 0.00 0.00 0.00 0.00 0.00 1.59 0.00 45.66 0.00 2.12 23.20 0.00 0.00 15.25 86.23 B5/3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.61 0.00 0.00 0.00 0.00 0.00 96.39 100.00 B5/4 4.08 0.08 7.09 0.74 0.33 0.00 0.00 0.09 0.03 0.00 0.00 7.11 0.00 0.00 20.97 0.00 0.00 59.48 87.56 B5/5 0.00 0.00 0.00 4.58 0.00 0.00 0.00 0.00 0.00 43.14 0.00 0.00 0.00 52.29 0.00 0.00 0.00 0.00 52.29 B5/6 3.25 0.00 0.00 0.80 0.00 0.00 0.55 0.00 0.00 70.65 0.80 2.51 0.00 21.45 0.00 0.00 0.00 0.00 23.96 B5/7 2.93 4.35 0.00 0.00 0.00 0.00 0.00 64.69 0.00 16.59 0.24 8.08 0.00 2.60 0.00 0.00 0.00 0.52 11.20 B5/8 2.31 0.00 7.47 0.74 0.00 0.00 0.00 7.15 0.00 0.69 0.00 52.19 0.00 24.20 0.00 0.00 0.00 5.26 81.65 B5/9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 16.01 0.00 0.05 35.90 0.00 0.00 48.05 100.00 B5/10 4.44 0.00 21.13 1.04 0.00 0.00 0.00 2.65 0.00 0.00 0.00 32.01 0.00 36.74 0.00 0.00 1.99 0.00 70.73 B7/1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 19.96 0.00 0.00 2.14 0.00 0.00 77.90 100.00 B9/1 0.00 0.00 1.06 0.00 0.00 0.00 0.00 1.23 0.00 0.00 0.00 37.91 13.09 0.07 31.54 0.00 0.00 15.09 97.71 Bll/1 0.00 0.00 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 67.78 0.62 0.27 5.52 0.00 0.00 25.59 99.78 B12/2 1.86 0.00 6.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 67.00 6.23 0.03 5.89 0.00 0.00 12.94 92.09 B14/1 1.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 55.46 3.77 0.32 37.55 0.00 0.00 1.23 98.33 B15/1 45.27 0.00 45.01 0.00 1.51 0.00 0.00 0.00 0.00 0.00 0.00 6.80 0.00 0.00 1.42 0.00 0.00 0.00 8.22 B15/2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.06 0.00 0.00 3.31 0.00 0.00 91.63 100.00 B17/1 0.00 0.00 1.44 0.73 0.00 0.00 0.00 0.00 0.00 0.00 0.00 25.57 1.32 0.00 13.37 0.00 0.00 57.57 97.83 B17/2 0.00 0.00 1.63 0.00 0.00 0.24 0.00 0.11 0.42 0.68 0.00 61.81 1.25 0.00 1.52 0.00 0.00 32.35 96.93 B18/1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 22.13 0.00 0.00 44.45 0.00 0.00 33.42 100.00 B20/1 0.37 0.00 1.28 0.55 0.00 0.28 0.00 0.00 0.37 0.00 0.00 71.38 8.81 1.33 4.77 0.00 0.00 10.87 97.16 Cl/1 40.03 3.00 2.80 0.60 2.75 0.00 0.03 8.13 0.04 26.78 15.25 0.20 0.00 0.00 0.00 0.00 0.00 0.40 0.59 Cl/2 0.00 0.00 1.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 90.57 0.00 0.00 0.00 0.00 0.00 7.93 98.50 Cl/3 0.00 0.00 0.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 79.24 12.37 0.37 0.00 0.00 0.00 7.73 99.71 Cl/4 0.00. 0.00 0.00 1.68 0.00 0.00 0.00 6.15 0.00 0.00 0.00 67.90 10.96 0.00 5.82 0.00 0.00 7.49 92.17 Cl/5 21.54 0.00 1.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 13.02 0.00 0.00 63.89 0.00 0.00 0.46 77.36 Cl/6 79.02 1.16 1.39 0.30 0.00 0.00 0.00 1.73 0.00 0.16 2.99 13.26 0.00 0.00 0.00 0.00 0.00 0.00 13.26 C2/1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 19.20 0.00 0.00 0.00 80.11 0.00 0.00 0.00 0.00 0.00 0.69 80.80 C3/1 26.74 0.00 3.22 0.78 0.00 0.00 0.00 0.00 0.28 5.89 0.00 44.41 1.72 14.17 0.22 0.00 0.00 2.56 63.09 C4/2 0.00 0.00 2.76 0.00 0.00 0.00 0.00 41.73 0.00 0.00 0.00 53.54 0.00 1.97 0.00 0.00 0.00 0.00 55.51 C6/1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.37 0.00 0.00 0.00 75.14 0.00 4.33 6.35 0.00 0.00 13.81 99.63 C6/3 22.43 0.00 38.10 0.00 0.00 0.00 0.00 0.26 0.00 9.25 0.00 29.96 0.00 0.00 0.00 0.00 0.00 0.00 29.96 C7/1 0.00 0.00 6.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 93.10 0.00 0.00 0.00 0.00 0.00 0.00 93.10 C8/1 31.04 0.00 1.69 1.36 0.00 0.00 0.00 2.54 0.00 25.14 4.59 23.38 0.06 9.62 0.09 0.00 0.00 0.47 33.63 cm 0.14 0.00 0.23 0.40 0.00 0.00 0.00 25.83 0.00 0.47 0.00 68.62 1.69 0.94 0.93 0.00 0.00 0.75 72.93 C8/3 61.52 3.41 6.49 0.92 2.58 0.00 0.00 0.14 0.00 8.61 5.17 9.19 0.00 1.37 0.61 0.00 0.00 0.00 11.17 C10/2 0.10 0.00 0.58 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.00 45.14 23.78 0.90 9.49 0.00 0.00 19.91 99.22 C12/3 26.43 0.00 3.65 0.00 0.00 0.00 0.00 0.07 0.00 0.26 0.31 55.09 4.86 2.60 3.65 0.00 0.00 3.10 69.29 D2/1 3.42 2.25 1.68 1.24 0.10 0.00 0.00 21.22 0.00 1.68 0.00 15.17 0.00 53.24 0.00 0.00 0.00 0.00 68.41 D2/2 10.43 9.94 0.00 2.73 0.00 0.00 0.00 6.50 0.00 5.13 0.00 57.18 0.00 8.08 0.00 0.00 0.00 0.00 65.26 D4/1 51.58 0.82 25.87 1.45 0.00 0.00 0.00 0.00 0.44 1.74 0.00 7.26 0.00 1.60 6.31 0.00 0.00 2.94 18.11 D5/1 0.00 0.00 0.83 0.09 0.00 0.00 0.00 0.00 0.22 0.00 0.00 1.52 0.00 0.28 38.67 0.00 0.00 58.38 98.86 ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien 70 Beitr. Palaont. Osterr., 17, Wien 1992 Appendix 3. Statistical parameters of echinoid fragment weight frequencies of clusters resulting from UPGMA cluster analysis of all echinoid fragment weights (see Fig. 17).

O t-« Os cs SO vo o CO CN o cs st 00 Tf r- CO Sinyos r- -st ^t cs r- vn a Os 8 s CO VO vn a 8 s (S 00 cs vn Os Os cs d o d co o d o CO o d o o o o d

Tf Tf 00 r- o ■sj- CO o VO vn On vn - Os Os r* vn Os CO r- UPQUJ CS i-H Os o 8 q 00 VO Os vn o NO q q Os q a cs CO vn o vn q Tf »-Hd d o o d d o xf o d d CO d o d d

S3[duiBs jusuiipss Os - cs cs cs 3uipuods3Uoo jo joqiunu cs co 'O o o co o o

o o © o o o o o O ' VN O 00 n CO Os pvqivui vMdxuOuxqyg Ti- 00 O O r-N cs^ oh os^ vn o vn Os >n h 'O d Os o Tf cs CO NO 04 O 04 r- o DjpivjS sajsnaudux Tf 04 00 Tf o o o h (4 00 Tt 00 -H CO o o o o H NO O 04 o r- o o o r- mnsoias muBpvtq o NO O o q q ^ ^ NO d d vo d CO

NO CO O 04 —I O' O no vn o © oo cs vO o VO vscqrtDDq siu v p to o u o u j O On On ON NO ON vn q vn O O — 04d o 04 NOoi oi 04 00 d d o © © o ^ H O a n o Nf Os ^* © O o o o o njDuadun mqiUDPVjjfyj O On q rC o Tt o oo d co co o oi o d d

T}- 00 o 00 O O O 00 Tf o o 00 vurqruaui stjvptonq CO — O CS Os r- cs O -< 't o o d

d X .3 p3 .5 3 c £ .5 t« .5 3 .5 E « E E E E E E E E E E E V) E E

SQ{duiHS jo joquinu

Ed J a i s n j o u ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien NEBELSICK, J. H., The Northern Bay of Safaga 71 Appendix 4: Varimax rotated Q-mode factor loadings matrix of samples listed in order of cluster analysis results of all echinoid fragment remains. sample cluster factor 1 factor 2 factor 3 factor 4 B4/5 A .257 .941 -.040 -.050 B5/3 A .477 .834 -.028 -.042 B15/2 A .666 .738 -.003 -.025 B7/1 A -.045 .994 -.033 -.031 Al/3 A -.008 .995 -.031 -.030 A10/1 A .040 .956 .003 -.057 B17/1 A .213 .801 -.058 -.057 B3/5 A .205 .976 -.022 -.029 B5/9 A .008 .996 -.033 -.032 D5/1 A .359 .919 -.031 -.040 B5/4 A .337 .577 -.057 -.057 B18/1 A -.031 .849 -.070 -.060 B3/4 B -.038 .278 -.081 -.065 Cl/5 B .129 -.013 .259 -.054 A4/1 C .382 .026 .419 .057 C 6/3 C .113 -.021 .140 -.048 A1-2/2 C .475 -.045 .839 .107 Cl/1 C .101 -.032 .992 .005 C8/1 C .162 -.048 .788 -.034 B 5 /1 C -.050 .040 .671 -.051 D4/1 C -.153 -.087 .774 .531 B15/1 C .057 -.039 .996 -.001 A14/2 C .045 -.040 .395 .135 Cl/6 C .039 -.061 .685 .586 C8/3 C .001 -.057 .982 .127 A13/1 C -.033 .006 .875 -.090 Al/2 D .970 .001 .033 .086 C4/2 D .829 .011 .024 -.058 C3/1 D .923 .116 .005 -.029 C 12/3 D .901 .194 .173 .021 A11/2 D .829 .002 .019 -.028 B17/2 D .880 .465 .021 .001 A14/4 D .733 .268 -.047 -.062 B9/1 D .930 .351 .027 -.005 B14/1 D .971 .173 .047 -.013 B1 1/1 D .829 .002 .019 -.028 B1 7/2 D .880 .465 .021 .001 C2/1 D .983 .131 .029 -.008 C8/2 D .987 .080 .044 .008 Cl/3 D .988 .075 .030 -.004 Cl/4 D .989 .080 .017 -.019 B12/2 D .973 -.012 .034 -.012 B20/1 D .766 .006 .537 .128 C6/1 D .790 -.045 -.001 -.054 Cl/2 D .971 .172 .033 .003 C7/1 D .984 -.008 .042 .006 A1/1B D .942 -.021 .023 -.021 D2/2 D .845 .331 -.026 -.048 B5/8 D .868 .020 .471 .001 C10/2 D .939 -.046 .197 .081 A5/1 E .568 .051 -.020 .036 A5/3 E .371 -.036 -.021 .042 A5/2 E .126 -.041 -.031 .047 D2/1 E .293 -.038 -.019 .049 Al-2/1 E .484 -.052 .046 .002 B5/10 E .122 -.039 .003 .035 B2/2 F .193 -.091 .276 .821 B3/3 F -.057 -.053 .036 .980 B3/2 F .126 -.063 .027 .969 B5/6 F -.043 -.052 .156 .973 A14/3 F -.028 .015 .165 .858 B4/2 F -.147 -.060 -.087 .679 B5/5 F -.068 -.051 -.039 .973 Al/5 G .048 -.096 -.037 -.157 A4/2 G .014 -.086 -.059 .447 Al/4 G .097 -.083 -.098 .541 B5/7 H .079 -.069 -.028 .151 ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien 72 Beitr. Paläont. Osterr., 17, Wien 1992 Appendix 5. Q-mode factor score matrix of echinoids and variance of factors.

Echinoids factor 1 factor 2 factor 3 factor 4 factor 5 factor 6 factor 7 Eucidaris metularia -.416 -.127 3.970 -.001 -.120 .035 .050 Phyllacanthus imperialis -.199 -.329 -.326 -.275 -.334 -.393 -.084 Prionocidaris baculosa -.445 -.077 -.333 -.270 .003 -.134 3.393 Diadema setosum -.203 -.309 -.327 -.147 -.177 -.357 -.142 Microcyphus rousseaui -.232 -.323 -.286 -.311 -.297 -.352 -.284 Temnotrema sp. -.231 -.331 -.319 -.362 -.295 -.333 -.401 Nudechinus sp. -.231 -.332 -.319 -.348 -.308 -.334 -.404 Tripneustes gratilla -.062 -.235 -.220 -.390 -.052 -.213 -.317 Parasalenia poehli -.219 -.326 -.354 -.317 -.288 -.360 -.192 Echinometra mathaei -.234 -.148 -.291 3.924 -.472 -.049 -.021 Heterocentrotus mammillatus -.234 -.307 -.057 .045 -.442 -.366 -.448 Clypeaster sp. 3.970 -.028 .193 .045 .313 -.070 .239 Echinocyamus crispus .076 -.369 -.368 -.312 -.443 -.258 -.550 Fibularia ovulum -.527 -.153 -.170 .189 3.935 -.032 -.322 Laganum depressum -.123 -.034 -.291 -.229 -.239 3.970 -.152 Echinodiscus auritus -.312 -.221 -.197 -.596 -.369 -.151 -.280 Lovenia elongata -.197 .330 -.264 -.521 -.284 -.354 -.400 Schizasteridae -.180 3.981 -.133 -.123 -.132 -.248 -.212 % of the variance 38.7 17.9 11.6 10.5 6.3 5.2 3.5 cumulative % of variance 38.7 56.6 68.2 78.7 85.1 90.2 93.7 Appendix 6. Statistical parameters of echinoid fragment weight frequencies of clusters resulting from UPGMAof weight from echinoid frequencies offragment resulting clusters parameters Statistical 6. Appendix NEBELSICK, J. H., The Northern Bay of Safaga Bay Northern The H., J. NEBELSICK, 9 D 1 E 10 C 15 B 18 A

number of samples lse nlsso eua ciod seFg 22). Fig.(see echinoids of regular analysis cluster s max s m max min s m max min s m max min m min 100.00 22.92 25.21 67.80 49.32 30.03 11.35 10.84 14.74 12.44 2.06 0.00 0.00 9.00 0.00 3.63 8.79 ¿j :§ 2 . .«■) 'C .<3 c C E <3 a 28.62 30.73 0.00 7.12 0.00 2.71 0.00 0.40 0.00 7.29 2.79 0.00 2.85 3.30 8.22 ©Verein zurFörderungderPaläontologieamInstitutfürPaläontologie,GeozentrumWien 1.34 1.04 Í .§ [3 <3 8 c i ft. a O W c 27.73 61.90 99.41 53.63 91.78 26.59 26.84 98.26 32.16 31.35 30.47 88.80 3 6.20 9.39 1.55 1.67 1.14 % regular echino (0 in samples 57.00 21.95 51.50 26.26 35.00 16.10 18.54 10.00 13.89 16.17 11.00 0.75 0.00 0.50 3.79 3.20 6.00 depth .5 L .. CL o W) d 11 15 4 5 1 number of corres sediment samples 2.39 2.57 2.76 0.77 2.94 0.69 0.75 5.81 0.63 0.51 3.06 3.91 3.26 3.15 1.70 1.43 1.32 mean 0.19 2.43 0.41 0.78 2.34 2.21 2.31 0.16 2.09 0.84 3.42 1.95 1.04 1.04 1.62 1.28 1.24 sorting 73 ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien 74 Beitr. Palaont. Osterr., 17, Wien 1992 Appendix 7. Statistical parameters of echinoid fragment weight frequencies of clusters resulting from UPGMA cluster analysis of irregular echinoids without C lypeaster sp. (see Fig. 27).

GCJJ 5 to & a C o, 5 _3£ 3 §* 8 B i 3 doa V t Tx a 3 "a> 3 G cd o E u - i QS o t 3 O .<3 E *Cu o u & ‘C 3 •2 u a t o 0) o C 3 B B ! .3 0 5 6« 2 a. 0 | t: 3 3 <0 3 G bj £ bj a CO T3 a ui s B g

21 m 0.47 90.89 1.56 0.65 0.90 5.53 4.94 10 2.12 1.42 s 2.01 10.00 6.67 3.00 2.19 7.15 3.97 0.77 0.36 min 0.00 69.38 0.00 0.00 0.00 0.00 0.00 1.11 0.84 max 9.23 100.00 30.63 13.73 7.84 19.30 13.50 3.15 2.00

3 m 0.00 15.11 0.00 72.41 12.34 0.14 4.50 2 2.59 1.57 s 0.00 7.48 0.00 12.77 18.68 0.24 4.77 0.03 0.91 min 0.00 7.42 0.00 58.75 0.00 0.00 1.50 2.57 0.93 max 0.00 22.37 0.00 84.06 33.83 0.41 10.00 2.61 2.21

12 m 2.80 7.58 70.29 0.00 0.02 19.32 30.75 11 1.98 1.88 s 6.51 11.49 20.78 0.00 0.07 15.23 13.55 0.99 0.44 min 0.00 0.00 37.18 0.00 0.00 0.00 10.00 0.69 1.26 max 21.89 31.83 100.00 0.00 0.25 42.92 57.00 3.70 2.60

18 m 0.41 1.94 12.97 0.15 0.68 83.85 31.94 14 3.63 2.54 s 0.99 4.76 14.43 0.64 2.87 16.91 14.44 1.36 0.52 min 0.00 0.00 0.00 0.00 0.00 56.39 7.00 1.37 1.71 max 3.56 17.67 42.74 2.73 12.19 100.00 51.50 6.07 3.42

7 m 40.28 6.98 18.68 0.00 0.00 34.05 36.50 6 2.77 1.93 s 11.24 9.16 8.75 0.00 0.00 11.78 10.95 0.92 0.70 min 24.84 0.00 0.00 0.00 0.00 17.33 17.00 1.44 1.04 max 60.44 21.87 25.69 0.00 0.00 51.56 48.00 3.66 3.09 ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien NEBELSICK, J. H., The Northern Bay of Safaga 75 Appendix 8: Granulometric data and descriptions of sediment samples corresponding to bulk samples analyzed for echinoid fragments. Data from PILLER & MANSOUR (1990); Mz = mean; 2.mom. = sorting; Sk = skewness; 4.mom = kurtosis. bulk sediment gravel sand silt clay terminology sorting Mz 2.mom. Sk. 4.mom sample sample % % % % (Phi) Al/IB A 2 0.85 98.53 0.62 0 sand moderate 2.47 1.16 -0.38 3.26 Al/2 A3 3.23 68.20 26.85 1.72 silt sand v. poor 2.76 2.31 -0.08 7.92 Al/3 A4 1.98 62.98 32.93 2.12 siltsand v. poor 2.98 2.40 -0.11 6.52 Al/4 A 5 5.66 72.24 20.98 1.12 silty sand v. poor 2.57 2.21 -0.01 4.10 Al/5 A 6 0.63 96.44 2.93 0 sand moderate 2.61 0.93 -0.11 5.77 A4/1 A 8 4.50 68.80 25.35 1.35 siltsand v. poor 2.62 2.28 -0.10 4.70 A5/1 A 11 2.88 78.56 17.62 0.93 silty sand poor 2.39 2.00 -0.02 6.78 A5/3 A 9 3.87 94.60 1.53 0 sand moderate 1.11 1.24 0.02 3.61 A10/1 A 27 0.37 73.27 23.72 2.65 silty sand v. poor 3.14 2.19 0.11 9.44 All/2 A 20 1.61 75.78 21.01 1.60 silty sand poor 2.82 1.97 0.02 7.12 A13/1 A 25 2.08 72.30 23.56 2.07 silty sand v. poor 2.90 2.13 -0.13 7.00 A14/3 A 32 0.27 94.25 5.38 0.11 sand moderate 3.15 0.84 -0.14 16.86 A14/4 A 28 15.71 80.17 4.11 0 gravelly sand poor 0.69 1.72 0.14 3.31 B3/2 B 11 3.85 94.69 1.46 0 sand moderate 1.32 1.24 0.00 3.02 B5/2 B 18 1.82 85.73 11.44 1.01 silty sand poor 2.38 1.79 -0.07 8.06 B5/4 B 23 2.27 24.03 55.82 17.88 clayey siltsand extr. poor 5.81 3.42 0.06 2.67 B5/8 B 17 0.85 75.03 22.66 1.47 silty sand poor 2.99 1.86 0.11 7.00 B5/9 B 20 2.10 55.50 35.98 6.42 siltsand extr. poor 3.94 2.69 0.48 4.90 B7/1 B 36 1.12 56.57 38.02 4.92 siltsand v. poor 3.70 2.39 0.07 5.29 B9/1 B 41 1.00 92.06 5.82 1.13 sand poor 2.18 1.64 -0.02 13.04 Bll/1 B 49 6.12 86.01 6.12 1.75 sand v. poor 1.78 2.13 -0.13 9.08 B12/2 B 52 2.42 47.47 44.08 6.03 siltsand extra poor 3.43 3.09 -0.11 3.88 B14/1 B 57 9.93 86.43 3.64 0 sand poor 1.14 1.59 -0.15 3.24 B15/1 B 61 7.01 91.49 1.50 0 sand moderate 0.92 1.28 -0.01 4.00 B15/2 B 58 0.02 10.15 76.23 13.60 clayey sandy silt v. poor 6.07 2.55 0.43 4.51 B17/1 B 65 0.88 55.03 38.10 5.99 siltsand extr. poor 3.64 2.78 0.20 5.00 B17/2 B 64 1.83 52.91 38.65 6.61 siltsand extr. poor 3.38 3.30 0.00 4.68 B18/1 B 69 2.06 59.04 33.59 5.32 siltsand extr. poor 3.70 2.60 0.14 6.25 B20/1 B 71 0.74 93.78 5.09 0.39 sand poor 1.93 1.48 -0.03 8.66 Cl/2 C 2 0.64 35.79 52.02 11.54 clayey sandsilt extr. poor 4.71 3.18 0.08 3.28 Cl/3 C 4 1.44 62.96 32.38 3.23 siltsand v. poor 3.51 2.17 0.07 6.18 Cl/5 C 1 3.88 94.24 1.56 0.32 sand moderate 1.20 1.26 -0.04 4.22 C2/1 C 7 0.42 61.89 33.90 3.80 siltsand poor 3.91 1.95 0.35 9.57 C3/1 C 12 1.53 72.19 24.39 0.89 silty sand poor 2.94 1.80 -0.08 6.37 C6/1 C 17 8.30 86.34 5.20 0.16 sand poor 1.37 1.71 -0.03 4.12 C6/3 C 18 12.75 85.68 1.37 0.20 gravelly sand poor 0.63 1.46 0.10 2.94 C7/1 C 20 0.43 71.40 27.32 0.86 siltsand poor 3.21 1.58 0.03 6.97 C8/1 C 24 1.50 96.46 2.05 0 sand moderate 1.72 1.25 -0.07 2.95 C8/2 C 23 1.58 56.38 40.13 1.90 siltsand v.poor 3.66 2.02 -0.03 7.35 C8/3 C 22 3.13 92.93 3.95 0 sand poor 1.88 1.48 -0.15 2.63 Cl 0/2 C 26 0.57 85.64 12.27 1.52 silty sand poor 2.66 1.75 0.09 11.19 Cl 2/3 C 32 1.05 98.15 0.80 0 sand moderate 1.44 1.04 -0.11 3.48 D2/2 D 2 2.28 95.47 2.25 0 sand moderate 1.22 1.37 0.14 2.71 D4/1 D 3 15.19 72.84 10.76 0.21 silty gravely sand v. poor 1.24 2.43 0.08 5.88 D5/1 D 9 1.59 24.91 63.18 10.33 clayey sandsilt extr. poor 5.15 3.29 0.20 5.12 ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien ^ Beitr. Palaont. Osterr., 17, Wien 1992 Appendix 9. Statistical parameters of echinoid fragment weight frequencies within mean grain size classes (n = 45).

o VOcs CO cs o r- o cs vn O n cs O n cs m CO cs NOo S3|dlUBS UI co VOcs q T f CO o in vn VOcs CO vn 008 cs 00in o spiouiipa jB[n3aiJi % on VO00O n vo NO vn CO o O n O n r- d vo vn o CO CO r- NOCO 8 r- cs cs O n 00 T f 8 O n 00o

o T i­ Q t O n NOo O n ONcs o r- 00CO o O NO00CO CO VOcs q oo 00ONo vo CO 00o CS VO00o q CO in q vo 3BpU31SBZIip

O o o o o O o o CO NO Q cs r- O n Q CO o Q o o vjuSuop DtU 3AO q o o o o o o o o q OO o o q vn o o o o o o o o o o o o d o vn d cs d d d cs d o o o

o o o o o o o Q T f T f o r- o CO o NO o o o o sruunv snjsipouiqjj o o q o o q q q q T f o CO CO q o in o o o o o o o o o o o o vo vn o vo d d CO o o o o T f

cr\ o CO r- o O n T f T f T f 00CO o vn T f vn o r-- wnss3jd9p uinuvSv'j VOr- o T i- t - - VOo 00 cs O n 8 vn cs CO o T f r - 00o NO T i­ vo o CS o ONd CO O o o vn o vn r-* o 00 NO CO 5 CO

cs 00o r- O n CS Q r- O n in Q 00 T f Q T f T f o 00 tanjnAo vjjvjnqij cs lO o v o CO CO q q vn CS o q 0000o CO o q o cs co vo o O n 00*ONo 00 O n VO o ON vn d o o o o o NO vn cs

VO00o O n , T f o , 00r- o 00 , T f O r- o o o o sndstuj smuDtOouiqou q cs o T f vo OO o 00 q q o q q q q CO o o q o o o o o cs o 00 cs VO o csCO CO o cs o o o d

00o NO r- NOT f in ON o r- vn CO cs o r- NO cs 'ds J3JST)3di(]Q q 0000 CO q cs CS q q in o VO q q O n q o o in vn t - * O n vo vo* ONVOr- vn oo O n o 00* 00O n T f CO NOCO o CS T f CO CS r- CO r- T f CS ON cs T f O n

O r- NO vo o 00 00O n m O n NO vn 00o NO vo 008 to CO t-*. o VT) CO 8 T f o 8 NO o CO spiouiipa jB[n3aJ jaqjo o o o o o o CS O o o o d o o o o o o

o o o o O n r- m CS O o © o o q vo q 8 o 8 8 T f 8 o 8 8 o 8 8 8 SrVDHllUlUVUJ SV10JlU9D0J3l3p[ o o o o cs d 00 o o o o o o o o o o o o

T f c- o o T f o vo r- in o CO o r- e'­ 00o s o lO o 00 T f o o O n 00o o 8 8 8 8 pvqtVlU VJ)9UIOUll{3g en T f o O n oo* vo o in CO 00o cs CS O n o T f o o o o m CO co

T f O s o r- O n cs o o cs o o vo CO T f o CO cs in o ON T f OO 00 j q o q o vn NOq o vo q q o o o o o V]]IJD8 S3JS713udlJJ' CS CO d VO* O o VO T f 00d CO T f 00d vn o o d o CO cs

O o o O CS o CO co vn o m o NO T f o o o o f-". O n o vn 008 00 NO c-. 8 cs CO 8 c*» lunsoiss VlUSpDIQ o o o o o o o cs O o o CS o o NO* o o o o

co T f r- T f Q r- O n o o cs 00NO o o vn Q O n ONq vo o q T f q 00 00CO o q CO T f o q CO cs q o DsojnoDq suvppououj 00CS CO vo T f o c- no*o cs CS o NO cs CO o t- CS cs T f si NO

O o o o T f o T f o NOo O n o o o cs T f o 00 o o o o T f O n o O n CO r-» o CS o o o 8 o o o o sijvusdiui snqjuvovjjfyj o o o d CS d O n o o o cs o o o d o o o o

0000vo r- t*- NOo CS CO 00o CO , ONo cs cs T f o 00 CO lo T f cs vo CO o in o 00o cs T f q o q q o q q VUDJT1J3UJ suvppnj 0000vo C- o c- cs o CO T f d T f cs o T f a T f cs NO T f

a X h: X d X d * B VI ■g § S V) | § a CO a 1 s VJ■g 1 e (/) ■g

sajdmBS jo jaqoina Cl

u (iq,j) 3ZIS 0IEJ3 ITB3U1 co'T •■= w A « ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien NEBELSICK, J. H., The Northern Bay of Safaga 77 Appendix 10. Statistical parameters of echinoid fragment weight frequencies within sorting classes (n = 45).

s3[duiES m q0000CSCM8 00qo t*- qco CO00q■*3* 8 C-* qo qNOqo spiouiipa jcjnSaui o ¿ 'O d 00 d NO On CO 00 vo ■'3’c-* d vo co 8 00CM On t- CO 8 O n 00o VOONo O vo On »o OO CO VO© CO00 On On00 00 T f 3Fpuajst?znps VO q q 8 q q 8 q q q q ó O d co NOVOd On vOCOd 00d O n CMCO On COCM VO

CMTj* o ro (M 00 COVOo CM T f o o o w S u o p v iu s a o j 00q q q q 8 q 00COq q 8 q 8 q ó d d cm d d d d VOO CM d d d d

on oo o r*» o o o O n T f o ro o o o sntunv STtJSipOUllfJJ OnVOo co o 8 o o o o CM 8 o o o T f d VO d d d d CO d COoo d d d d

© VO ON T f VO C- o r- vo xunssaidap umuvSvj On© 8 00 q oo 8 q q 008 q q q 8 q VOcmd d VOco Oncm d co vo d On CMo d ^3*■*3* vocm o qOOqCO 00 00VOr- 00CO T f o 00 wnjrtAO ouDjnqtj VO q q 8 q CO8 q 8 q co CMd d VO00 p"»vo d voO n d d d d d d Onco VO VOCM oo CO o r- o vo CO sndsiM) snumfoomipz vo 8 00 008 q CMq q CO 8 q Ó O mVOd CMco COd CM CMd vo

r- r- Ono vo O n VOTt r- vo CMr- co 008 q 00vo q q q q q q r f COq •ds J3)SV3d/(]J On d 00 Onro vo vo vo On VO(M qd CMa r- vo CM On COCM COCO O n Ono r- 00 CM vo o vo cs o vo CMVO8 VO CM 8 ¡3o NO spiouiupa JBiaSaJ jaipo d d d d d d CM d d d d d d d

coo r-00o or^* mT f co o r- o VOo CM o o o o SnjD ]l¡W lUD lU STl)OJ)U30OJ9¡3JJ cm d 00 d d vo d d d d d d d d

VO VO VOo o CM OnT f o oo r- vo 8 00CMo a 0000o CO o CMo NO pvqtviu vii3iuounp3 n vn O d vo co d On d d NO d d d d

VOo o 00CM o O CMCO VO COvn 00CMo vo 00T f o CM O n N t 8 NO o o d j jij d jS S3jsn3udu£ 8 cm d vo cm vo d O n VO d CO d d d d

ON o o VO ONo vo o COo -<3- (S O n o CMT j" 8 o tí 00o 00 CMCOo IUT1SOJ3S VlUapDIQ d vo' d d d d d d CM d d d d

vo O o co O n © O 00o (M CM o O n vsojnjvq suoppououj q q q q ^3-q q q q q q CO q q q VOCO o vo•*3* vo O n o CO00 On00d VOCM CMCMd r-

00 O n r-(S r- o O*3*n voco Ono CMVOvo00o CM o oCOo o00 stjvusduji smintüOvii&q¿ co d O n O O d CO d d d CM d d d d

a X c X c X a X e V) ■g 1 e 1/5■g 1 a V)■g i a ’§ 1

S9[dcnes jo jgquino

iT CM o 2.6 isUi oor) oOh (U 1 CX. NO Suijjos •o ^ O cm Er CM u o o X V £ A A A w ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien 78 Beitr. Palaont. Osterr., 17, Wien 1992 Appendix 11. Statistical parameters of echinoid fragment weight frequencies within skewness classes (n = 45).

00 r- 00 cs (S COr- NO o 00 O o saiduics m q vqvqcs 8 oo CS8 q o 00 o spiouiqM JEjnSaxii oja v© On Tt 00 oo COvo CO O vo co On r*- CO 8 oo NO8 On 00 8

OvOn r- SO O o On 00 On 00 ONCO acpuaistrznps SOvo 8 cs 00 8 On q 8 CO q q 00 o On cs On o O o 00 vo d vo r- CO¡ a vo s ON

00 ONo cs CS o 00 o o o VtoSliOp VWSAO'J CS © o 8 o o o 8 8 8 q o 8 8 o CSSOo cs o o d o o o o o o o o o to vo r- sviunv mosipoutqjj co T f 8 CO 8 8 8 8 8 8 8 8 8 8 8 8 s o d NO o d o o o o o o o o o o

O n vo vo cs ON ON vo r- T t o umss3jdap tunuoSvj q NO8 vo vqa 8 00 cs s 8 o 00 8 On vo o o 00 vo o CO 00* o COOn o v n CO VO 3 CO 00 VOo T f r- CO cs CO v n um\n\o vuvjnqtj VCNOo CO i q Tfr 8 o n o s 8 o o 8 o ' i NOo cso t-* oo o vo00 v o O n o csTi­ o o o d

On 00 CO 00 r - O cs sndsiJD smuvfoouiqjg cs (N 8 cs t q s 8 t q cs vq8 CO 8 8 8 8 cs o s o cs s o o csCO d d o o d o o vo 00 r ^ 00 o o 00 cs 00 COT t ’ds J3]ST}3dl(jJ On 8 q 00 oo q vqvq q q 8 SOVOo 00 CO s o CO COOn r-** COO yno co cs r - T t cs On CO vo CO 00 00 cs t-- CO00 cs co 00 8 vq cs CO8 vq o o 8 cs 8 8 8 8 spioniqoa JEjnSaj jaipo o o o CS o o o o o o o o o o o

cn r - r - VO o o r - O o o o o v o v o o O o o o o SmVHfUJUlDUi STl)0J)U330J3J3f{ 8 On o 8 8 8 o o v o o o 00 o o o o o o o o

T t r - r t t - vo cs CO o co 8 o COCO8 On 8 8 8 8 o poqjvui VdidUiOUiqoj CS o t* T* CS o v o o v o o o o o co v o

CS 00 r - vo o vo v o 00 o v o o 00 o o vo CS 8 cs CS NOo VO o COo o o cs v idj 00 ]]: S ssjsnsudpx cs o CO o CO COCOo VO o ON On cs o o v o v o o v o On CO o o o On 00 o COv o o VO s o On 8 r - 8 o o o umsoiss DtuspviQ o o SO o o o d O o cs o o o o

cs o o cs T t On 00 o o o o vsojnovq suDppououj o ON o c s 8 o ONr - o o 8 o o 00 o NOcs cs O v o cs o r-* o O o o 00 t *- o Ti­ o o o cs NOo T t o o o o si}DU3diut snq)UV3Djji(qj o e s f - o 00 r - o On o o o o o o CO o o o cs co o On o o o o

00 VOo cs o v o o 00 COo o CO o o o o 00 o vq vqq o vq q q o T f o o o q V1JVJT1J3UJ siuvppng m o o O n v o o COT* o O o o o o cs VO v o

k k min max min e u min § B Vi a Vi min a Vi max

s3jdujES jo Jaquinn cs csro p~ m — £ 0 .1 ^ "S 0 .3 5

- > M - q .c i> letrical) > « vo ® rt "to q H • C/3 CO to SS30M3qS i oo t/5 d o o 9 | o o fc*o Q« v s A A a A ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien NEBELSICK, J. H., The Northern Bay of Safaga 79 Appendix 12. Statistical parameters of echinoid fragment weight frequencies within kurtosis classes (n = 45).

m p*- 0 q CM 00 0 CM O m 00 S9|duies m O 8 8 ov vo q 8 m q vi 0 q 00 q r-’ d ^t in 00 Ov ov CM d d d Ov spiounjaa JBjnSauT % vo n 8 t*- m 8 vi 8 00 CM Ov

0 00 CM cn cn CM cn in q 8 in 5 8 vo q vo 8 q q q 8 q 3BpU3)SFZiq0g d VO d Ov Ov d d 00 d Ov d in d 00 in c m m ov m

m m 00 CM CO © s 8 00 8 8 S 0 s 8 0 a 8 0 DwSuOJS DIU9AOJ © d d O VO d d d d d d d d CM s

p- 0 \o VO 8 8 8 8 in q 8 cn 8 8 8 0 5 q 8 q sntunv snosipouiipg d d d d vo in d d d d d d d d 5?

m in Ov r-* Ov 00 tn m rv 7 q cn 8 in q 8 00

00 r- cn m VO VO 00 n Ov q in 8 q 0 q 8 q r{ in 8 q Ov 8 S lunjnAO vuDjnqij 00 00 d 00 c m d d d Ov 00 d Ov d VO d vo m 8

00 tn 00 c m 00 0 cn 00 q 8 q 8 Vi 8 q $ q 8 q q 00 8 q sndsio snumfoouiipg H c m d vo d d d d d CM in 00 d d CM

00 m cn 0 cn 00 0 00 00 CM rn 00 s m q 00 8 m

c m 00 co 0 CM 't (M 8 m c m 5 8 in CM 5 8 S CM 8 vO spiouiqcra JEinSsi jsqio O d d c m d d d d d d d d d d

O 0 cn ts c m CM q 8 q O 8 s 8 8 8 8 8 sn)D]jiujumiu snn>utu9DOJ9i9jj CM d 00 d d d d d d d d d d d d

VO P- VO Ov 0 CM cn CM VO 00 C- in vO 8 q 00 8 © CM ■** 8 q q 8 q pvqjoiu VJtawouiqjj 00 in d in c m 00 d c m CM d VO Vt d m m - m

cn m 0 0 CM m VO Ov rn q 8 in m 8 8 in q 8 q q 8 8 VpiWjS S9iSTI9udUil CM d vo d d d d d d d id d ov - cn

m 0 m Ov m m VO Ov 0 r^ VO 0 vo 00 0 q m 00 8 00 CM m 0 Ov Ov - 8 WMOJ9S VtU9pVJQ d d d c m d d d c4 d d d d d CM d id

0 VO 0 0 00 r- CM CM in 0 00 r- Ov 0 O 0 VO 8 q q q q 00 q 0 00 vsojnoDq suoppououj VO d d 00 d d d CM ■vt d d d d d cn c m VO

vo vo m CM 00 m ov S 00 8 ov 0 cm 8 00 m 00 8 q 8 8 8 8 stjvu9dm snqjuooDjjiCqj c m d Ov d d d d O d d CM d d d d

O cn CM 00 00 Tf r- m Ti 0 CM vt q 8 in tT 8 in q 8 q 00 q 8 q vuDjn)9UJ suoppng d d d d 00 d vo d d CM in d ■vt vo m "V*

d X d X X§ 6 »a 1X

S3[duiBS jo Jsqmnu

VO 00

sisoyrui ■vt ■vt >0 * 00 V A A A