Structure and Mechanical Properties of Selected Protective Systems in Marine Organisms

Total Page:16

File Type:pdf, Size:1020Kb

Structure and Mechanical Properties of Selected Protective Systems in Marine Organisms Materials Science and Engineering C 59 (2016) 1143–1167 Contents lists available at ScienceDirect Materials Science and Engineering C journal homepage: www.elsevier.com/locate/msec Review Structure and mechanical properties of selected protective systems in marine organisms Steven E. Naleway a,⁎,JenniferR.A.Taylorb, Michael M. Porter e, Marc A. Meyers a,c,d, Joanna McKittrick a,c a Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA b Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92037, USA c Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA d Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA e Department of Mechanical Engineering, Clemson University, Clemson, SC 29634, USA article info abstract Article history: Marine organisms have developed a wide variety of protective strategies to thrive in their native environments. Received 21 January 2015 These biological materials, although formed from simple biopolymer and biomineral constituents, take on many in- Received in revised form 29 September 2015 tricate and effective designs. The specific environmental conditions that shape all marine organisms have helped Accepted 12 October 2015 modify these materials into their current forms: complete hydration, and variation in hydrostatic pressure, temper- Available online 23 October 2015 ature, salinity, as well as motion from currents and swells. These conditions vary throughout the ocean, being more consistent in the pelagic and deep benthic zones while experiencing more variability in the nearshore and shallows Keywords: Marine organisms (e.g. intertidal zones, shallow bays and lagoons, salt marshes and mangrove forests). Of note, many marine organ- Protective mechanisms isms are capable of migrating between these zones. In this review, the basic building blocks of these structural bi- Structural biological materials ological materials and a variety of protective strategies in marine organisms are discussed with a focus on their Bioinspired design structure and mechanical properties. Finally, the bioinspired potential of these biological materials is discussed. © 2016 Elsevier B.V. All rights reserved. Contents 1. Introduction.............................................................. 1144 2. Basicbuildingblocksofmarineorganisms................................................ 1145 2.1. Biopolymers.......................................................... 1146 2.2. Biominerals........................................................... 1148 3. Crushingresistantstructures...................................................... 1150 3.1. Molluskshells......................................................... 1150 3.2. Diatomandcoccolithophoreexoskeletons............................................. 1154 3.3. Crustaceanexoskeletons..................................................... 1155 3.4. Seahorseskeleton........................................................ 1156 4. Flexureresistantstructures....................................................... 1157 4.1. Seaspongespicules....................................................... 1157 4.2. Seaurchinspines........................................................ 1157 4.3. Porcupine fishspines...................................................... 1159 5. Piercingresistantstructures....................................................... 1159 5.1. Overlapping fishscales...................................................... 1159 5.2. Marinescutesandskeletalarmors................................................ 1161 6. Impactresistantstructures....................................................... 1162 6.1. Mantisshrimpdactylclub.................................................... 1162 7. Bioinspiredmaterialspotential..................................................... 1162 8. Conclusions.............................................................. 1164 Acknowledgments............................................................. 1164 References................................................................. 1164 ⁎ Corresponding author. E-mail addresses: [email protected] (S.E. Naleway), [email protected] (J.R.A. Taylor), [email protected] (M.M. Porter), [email protected] (M.A. Meyers), [email protected] (J. McKittrick). http://dx.doi.org/10.1016/j.msec.2015.10.033 0928-4931/© 2016 Elsevier B.V. All rights reserved. 1144 S.E. Naleway et al. / Materials Science and Engineering C 59 (2016) 1143–1167 1. Introduction The combination of these qualities provides for high levels of complexity and performance within marine biological materials. This The study of biological materials within materials science provides the is enacted through hierarchical structural design elements [6].The nexus where the fields of physics, engineering, chemistry and biology con- toughness of biological materials and their constituents is plotted as a verge to understand and harness the vast body of knowledge that can be function of the elastic modulus in Fig. 1. The high toughness of biopoly- learned from the natural world. The findings of this research provide for mers together with the high strength of biominerals is combined into better biological understanding of the complex and unique organisms many composite biological materials (e.g. bone and mollusk shell) [7]. and structures in nature. In addition, this knowledge provides inspiration When compared to engineered synthetic materials, metals and ce- for the peripheral fields of bioinspired materials, where synthetic struc- ramics are capable of providing mechanical properties up to an order tures are inspired by nature, and biomaterials, where materials and struc- of magnitude higher than biological materials. However, biominerals tures are designed for optimum compatibility with biological systems. (natural ceramics) and biopolymers (natural polymers) are mechani- While still bound by the same physical laws, biological materials are cally comparable with many synthetic engineering composites and en- starkly different from synthetic ones. To succinctly describe the unique gineering polymers, respectively [5]. qualities of biological materials, seven interrelated features have been Biological materials can be systematized along different classifi- identified (inspired by Arzt [1] and expanded by Meyers et al. and cation methods. Naleway et al. [6] recently proposed eight structural de- Chen et al. [2–5]). These characteristics are: self-assembly, multi- sign elements as a new paradigm for identifying common features in functionality, hierarchical design, hydration effects, mild synthesis con- different organisms. Using a similar methodology, the organisms and ditions, evolutionary design and environmental constraints, and self- structures in this manuscript can be divided into four classes based healing capability. While they apply throughout biology, marine organ- upon their biomechanical function: isms face a number of specific environmental constraints not shared by 1. Crushing resistant structures: found within the exoskeletons of their terrestrial counterparts. These marine specific conditions include: mollusks, crustaceans, diatoms and coccolithophores, and the complete hydration, and variation in hydrostatic pressure (0.1– skeletal armor of the seahorse. 100 MPa), temperature (−2–38 °C), salinity (34–36 ppt), as well as mo- 2. Flexure resistant structures: found within sea sponge spicules, the tion from currents and swells. These conditions vary throughout the spines of sea urchins and porcupine fish. ocean, being more consistent in the pelagic and deep benthic zones 3. Piercing resistant structures: found within the scales and scutes of while experiencing more variability in the nearshore and shallows fish as well as marine skeletal armors. (e.g. intertidal zones, shallow bays and lagoons, salt marshes and man- 4. Impact resistant structures: found in the dactyl clubs of the mantis grove forests). Of note, many marine organisms are capable of migrating shrimp. between these zones, forcing them to be dynamic through many envi- ronments. Through evolution, these environmental constraints have There are protective structures that provide effective resistance to shaped the form of all structural marine biological materials. multiple forms of stress, however here we aim to highlight the most Fig. 1. Toughness as a function of elastic modulus for biological materials. Adapted from [7]. S.E. Naleway et al. / Materials Science and Engineering C 59 (2016) 1143–1167 1145 Fig. 2. Examples of some spectacular marine organisms. (a) Odontodactylus (mantis shrimp); (b) Hippocampus (seahorse); (c) Farrea (honeycomb glass sponge); (d) Haliotis (abalone). Adapted from: (a)–(c) nationalgeographic.com,(d)wikipedia.com. remarkable defenses of individual organisms. We describe notable ex- wires inspired by sea sponge spicules [10,11] and body armor inspired amples of organisms within each of these classes focusing primarily by fish scales [12,13]. Given the complex structures that have already on systems that have a protective exoskeleton, or shell, that surrounds been discovered and the immense number of organisms that have yet a soft body. The approach used here provides a valuable perspective to be investigated, the study of structural biological materials of marine on how the materials science methodology, connecting the structure organisms offers much interest
Recommended publications
  • Establishment of a New Genus for Arete Borradailei
    Zoological Studies 46(4): 454-472 (2007) Establishment of a New Genus for Arete borradailei Coutière, 1903 and Athanas verrucosus Banner and Banner, 1960, with Redefinitions of Arete Stimpson, 1860 and Athanas Leach, 1814 (Crustacea: Decapoda: Alpheidae) Arthur Anker1,* and Ming-Shiou Jeng2 1Smithsonian Tropical Research Institute, Naos Unit 0948, APO AA 34002-0948, USA. E-mail:[email protected] 2Research Center for Biodiversity, Academia Sinica, Taipei 115, Taiwan. E-mail:[email protected] (Accepted October 5, 2006) Arthur Anker and Ming-Shiou Jeng (2007) Establishment of a new genus for Arete borradailei Coutière, 1903 and Athanas verrucosus Banner and Banner, 1960, with redefinitions of Arete Stimpson, 1860 and Athanas Leach, 1814 (Crustacea: Decapoda: Alpheidae). Zoological Studies 46(4): 454-472. Arete borradailei Coutière, 1903 and Athanas verrucosus Banner and Banner, 1960 are transferred to Rugathanas gen. nov., based on several unique features on the chelipeds, 3rd pereiopods, antennules, and mouthparts. The estab- lishment of Rugathanas enables the redefinition of Athanas Leach, 1814 and Arete Stimpson, 1860, and a for- mal revalidation of Arete, formerly a synonym of Athanas. Two important features, the number of pereiopodal epipods and the number of carpal segments of the 2nd pereiopod, are variable within Rugathanas gen. nov., but may be used to distinguish Athanas from Arete. The distribution ranges of R. borradailei (Coutière, 1903) comb. nov. and R. verrucosus (Banner and Banner, 1960) comb. nov. are considerably extended based on recently collected material from the Ryukyu Is., Japan; Kenting, southern Taiwan; and Norfolk I., off eastern Australia. http://zoolstud.sinica.edu.tw/Journals/46.4/454.pdf Key words: Alpheidae, New genus, Athanas, Arete, Indo-Pacific.
    [Show full text]
  • Skeletonized Microfossils from the Lower–Middle Cambrian Transition of the Cantabrian Mountains, Northern Spain
    Skeletonized microfossils from the Lower–Middle Cambrian transition of the Cantabrian Mountains, northern Spain SÉBASTIEN CLAUSEN and J. JAVIER ÁLVARO Clausen, S. and Álvaro, J.J. 2006. Skeletonized microfossils from the Lower–Middle Cambrian transition of the Cantabrian Mountains, northern Spain. Acta Palaeontologica Polonica 51 (2): 223–238. Two different assemblages of skeletonized microfossils are recorded in bioclastic shoals that cross the Lower–Middle Cambrian boundary in the Esla nappe, Cantabrian Mountains. The uppermost Lower Cambrian sedimentary rocks repre− sent a ramp with ooid−bioclastic shoals that allowed development of protected archaeocyathan−microbial reefs. The shoals yield abundant debris of tube−shelled microfossils, such as hyoliths and hyolithelminths (Torellella), and trilobites. The overlying erosive unconformity marks the disappearance of archaeocyaths and the Iberian Lower–Middle Cambrian boundary. A different assemblage occurs in the overlying glauconitic limestone associated with development of widespread low−relief bioclastic shoals. Their lowermost part is rich in hyoliths, hexactinellid, and heteractinid sponge spicules (Eiffelia), chancelloriid sclerites (at least six form species of Allonnia, Archiasterella, and Chancelloria), cambroclaves (Parazhijinites), probable eoconchariids (Cantabria labyrinthica gen. et sp. nov.), sclerites of uncertain af− finity (Holoplicatella margarita gen. et sp. nov.), echinoderm ossicles and trilobites. Although both bioclastic shoal com− plexes represent similar high−energy conditions, the unconformity at the Lower–Middle Cambrian boundary marks a drastic replacement of microfossil assemblages. This change may represent a real community replacement from hyolithelminth−phosphatic tubular shells to CES (chancelloriid−echinoderm−sponge) meadows. This replacement coin− cides with the immigration event based on trilobites previously reported across the boundary, although the partial infor− mation available from originally carbonate skeletons is also affected by taphonomic bias.
    [Show full text]
  • Biomineralization and Global Biogeochemical Cycles Philippe Van Cappellen Faculty of Geosciences, Utrecht University P.O
    1122 Biomineralization and Global Biogeochemical Cycles Philippe Van Cappellen Faculty of Geosciences, Utrecht University P.O. Box 80021 3508 TA Utrecht, The Netherlands INTRODUCTION Biological activity is a dominant force shaping the chemical structure and evolution of the earth surface environment. The presence of an oxygenated atmosphere- hydrosphere surrounding an otherwise highly reducing solid earth is the most striking consequence of the rise of life on earth. Biological evolution and the functioning of ecosystems, in turn, are to a large degree conditioned by geophysical and geological processes. Understanding the interactions between organisms and their abiotic environment, and the resulting coupled evolution of the biosphere and geosphere is a central theme of research in biogeology. Biogeochemists contribute to this understanding by studying the transformations and transport of chemical substrates and products of biological activity in the environment. Biogeochemical cycles provide a general framework in which geochemists organize their knowledge and interpret their data. The cycle of a given element or substance maps out the rates of transformation in, and transport fluxes between, adjoining environmental reservoirs. The temporal and spatial scales of interest dictate the selection of reservoirs and processes included in the cycle. Typically, the need for a detailed representation of biological process rates and ecosystem structure decreases as the spatial and temporal time scales considered increase. Much progress has been made in the development of global-scale models of biogeochemical cycles. Although these models are based on fairly simple representations of the biosphere and hydrosphere, they account for the large-scale changes in the composition, redox state and biological productivity of the earth surface environment that have occurred over geological time.
    [Show full text]
  • Invertebrate Predators and Grazers
    9 Invertebrate Predators and Grazers ROBERT C. CARPENTER Department of Biology California State University Northridge, California 91330 Coral reefs are among the most productive and diverse biological communities on earth. Some of the diversity of coral reefs is associated with the invertebrate organisms that are the primary builders of reefs, the scleractinian corals. While sessile invertebrates, such as stony corals, soft corals, gorgonians, anemones, and sponges, and algae are the dominant occupiers of primary space in coral reef communities, their relative abundances are often determined by the activities of mobile, invertebrate and vertebrate predators and grazers. Hixon (Chapter X) has reviewed the direct effects of fishes on coral reef community structure and function and Glynn (1990) has provided an excellent review of the feeding ecology of many coral reef consumers. My intent here is to review the different types of mobile invertebrate predators and grazers on coral reefs, concentrating on those that have disproportionate effects on coral reef communities and are intimately involved with the life and death of coral reefs. The sheer number and diversity of mobile invertebrates associated with coral reefs is daunting with species from several major phyla including the Annelida, Arthropoda, Mollusca, and Echinodermata. Numerous species of minor phyla are also represented in reef communities, but their abundance and importance have not been well-studied. As a result, our understanding of the effects of predation and grazing by invertebrates in coral reef environments is based on studies of a few representatives from the major groups of mobile invertebrates. Predators may be generalists or specialists in choosing their prey and this may determine the effects of their feeding on community-level patterns of prey abundance (Paine, 1966).
    [Show full text]
  • A Perspective on Underlying Crystal Growth Mechanisms in Biomineralization: Solution Mediated Growth Versus Nanosphere Particle Accretion
    CrystEngComm A perspective on underlying crystal growth mechanisms in biomineralization: solution mediated growth versus nanosphere particle accretion Journal: CrystEngComm Manuscript ID: CE-HIG-07-2014-001474.R1 Article Type: Highlight Date Submitted by the Author: 01-Dec-2014 Complete List of Authors: Gal, Assaf; Weizmann Institute of Science, Structural Biology Weiner, Steve; Weizmann Institute of Science, Structural Biology Addadi, Lia; Weizmann Institute of Science, Structural Biology Page 1 of 23 CrystEngComm A perspective on underlying crystal growth mechanisms in biomineralization: solution mediated growth versus nanosphere particle accretion Assaf Gal, Steve Weiner, and Lia Addadi Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel 76100 Abstract Many organisms form crystals from transient amorphous precursor phases. In the cases where the precursor phases were imaged, they consist of nanosphere particles. Interestingly, some mature biogenic crystals also have nanosphere particle morphology, but some are characterized by crystallographic faces that are smooth at the nanometer level. There are also biogenic crystals that have both crystallographic faces and nanosphere particle morphology. This highlight presents a working hypothesis, stating that some biomineralization processes involve growth by nanosphere particle accretion, where amorphous nanoparticles are incorporated as such into growing crystals and preserve their morphology upon crystallization. This process produces biogenic crystals with a nanosphere particle morphology. Other biomineralization processes proceed by ion-by-ion growth, and some cases of biological crystal growth involve both processes. We also identify several biomineralization processes which do not seem to fit this working hypothesis. It is our hope that this highlight will inspire studies that will shed more light on the underlying crystallization mechanisms in biology.
    [Show full text]
  • Chitosan-Based Biomimetically Mineralized Composite Materials in Human Hard Tissue Repair
    molecules Review Chitosan-Based Biomimetically Mineralized Composite Materials in Human Hard Tissue Repair Die Hu 1,2 , Qian Ren 1,2, Zhongcheng Li 1,2 and Linglin Zhang 1,2,* 1 State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Disease, Sichuan University, Chengdu 610000, China; [email protected] (D.H.); [email protected] (Q.R.); [email protected] (Z.L.) 2 Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610000, China * Correspondence: [email protected] or [email protected]; Tel.: +86-028-8550-3470 Academic Editors: Mohamed Samir Mohyeldin, Katarína Valachová and Tamer M Tamer Received: 16 September 2020; Accepted: 16 October 2020; Published: 19 October 2020 Abstract: Chitosan is a natural, biodegradable cationic polysaccharide, which has a similar chemical structure and similar biological behaviors to the components of the extracellular matrix in the biomineralization process of teeth or bone. Its excellent biocompatibility, biodegradability, and polyelectrolyte action make it a suitable organic template, which, combined with biomimetic mineralization technology, can be used to develop organic-inorganic composite materials for hard tissue repair. In recent years, various chitosan-based biomimetic organic-inorganic composite materials have been applied in the field of bone tissue engineering and enamel or dentin biomimetic repair in different forms (hydrogels, fibers, porous scaffolds, microspheres, etc.), and the inorganic components of the composites are usually biogenic minerals, such as hydroxyapatite, other calcium phosphate phases, or silica. These composites have good mechanical properties, biocompatibility, bioactivity, osteogenic potential, and other biological properties and are thus considered as promising novel materials for repairing the defects of hard tissue.
    [Show full text]
  • Journal of Marine Research, Sears Foundation for Marine Research
    The Journal of Marine Research is an online peer-reviewed journal that publishes original research on a broad array of topics in physical, biological, and chemical oceanography. In publication since 1937, it is one of the oldest journals in American marine science and occupies a unique niche within the ocean sciences, with a rich tradition and distinguished history as part of the Sears Foundation for Marine Research at Yale University. Past and current issues are available at journalofmarineresearch.org. Yale University provides access to these materials for educational and research purposes only. Copyright or other proprietary rights to content contained in this document may be held by individuals or entities other than, or in addition to, Yale University. You are solely responsible for determining the ownership of the copyright, and for obtaining permission for your intended use. Yale University makes no warranty that your distribution, reproduction, or other use of these materials will not infringe the rights of third parties. This work is licensed under the Creative Commons Attribution- NonCommercial-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. Journal of Marine Research, Sears Foundation for Marine Research, Yale University PO Box 208118, New Haven, CT 06520-8118 USA (203) 432-3154 fax (203) 432-5872 [email protected] www.journalofmarineresearch.org Bioerosion by two rock boring echinoids (Echinometra mathaei and Echinostrephus aciculatus) on Enewetak Atoll, Marshall Islands 1 2 by Anthony R.
    [Show full text]
  • A Note on the Obligate Symbiotic Association Between Crab Zebrida
    Journal of Threatened Taxa | www.threatenedtaxa.org | 26 August 2015 | 7(10): 7726–7728 Note The Toxopneustes pileolus A note on the obligate symbiotic (Image 1) is one of the most association between crab Zebrida adamsii venomous sea urchins. Venom White, 1847 (Decapoda: Pilumnidae) ISSN 0974-7907 (Online) comes from the disc-shaped and Flower Urchin Toxopneustes ISSN 0974-7893 (Print) pedicellariae, which is pale-pink pileolus (Lamarck, 1816) (Camarodonta: with a white rim, but not from the OPEN ACCESS white tip spines. Contact of the Toxopneustidae) from the Gulf of pedicellarae with the human body Mannar, India can lead to numbness and even respiratory difficulties. R. Saravanan 1, N. Ramamoorthy 2, I. Syed Sadiq 3, This species of sea urchin comes under the family K. Shanmuganathan 4 & G. Gopakumar 5 Taxopneustidae which includes 11 other genera and 38 species. The general distribution of the flower urchin 1,2,3,4,5 Marine Biodiversity Division, Mandapam Regional Centre of is Indo-Pacific in a depth range of 0–90 m (Suzuki & Central Marine Fisheries Research Institute (CMFRI), Mandapam Takeda 1974). The genus Toxopneustes has four species Fisheries, Tamil Nadu 623520, India 1 [email protected] (corresponding author), viz., T. elegans Döderlein, 1885, T. maculatus (Lamarck, 2 [email protected], 3 [email protected], 1816), T. pileolus (Lamarck, 1816), T. roseus (A. Agassiz, 5 [email protected] 1863). James (1982, 1983, 1986, 1988, 1989, 2010) and Venkataraman et al. (2013) reported the occurrence of Members of five genera of eumedonid crabs T. pileolus from the Andamans and the Gulf of Mannar, (Echinoecus, Eumedonus, Gonatonotus, Zebridonus and but did not mention the association of Zebrida adamsii Zebrida) are known obligate symbionts on sea urchins with this species.
    [Show full text]
  • Role of Phosphate in Biomineralization
    Henry Ford Health System Henry Ford Health System Scholarly Commons Endocrinology Articles Endocrinology and Metabolism 7-25-2020 Role of Phosphate in Biomineralization Sanjay Kumar Bhadada Sudhaker D. Rao Henry Ford Health System, [email protected] Follow this and additional works at: https://scholarlycommons.henryford.com/endocrinology_articles Recommended Citation Bhadada SK, and Rao SD. Role of Phosphate in Biomineralization. Calcif Tissue Int 2020. This Article is brought to you for free and open access by the Endocrinology and Metabolism at Henry Ford Health System Scholarly Commons. It has been accepted for inclusion in Endocrinology Articles by an authorized administrator of Henry Ford Health System Scholarly Commons. Calcifed Tissue International https://doi.org/10.1007/s00223-020-00729-9 REVIEW Role of Phosphate in Biomineralization Sanjay Kumar Bhadada1 · Sudhaker D. Rao2,3 Received: 31 March 2020 / Accepted: 14 July 2020 © Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract Inorganic phosphate is a vital constituent of cells and cell membranes, body fuids, and hard tissues. It is a major intracel- lular divalent anion, participates in many genetic, energy and intermediary metabolic pathways, and is important for bone health. Although we usually think of phosphate mostly in terms of its level in the serum, it is needed for many biological and structural functions of the body. Availability of adequate calcium and inorganic phosphate in the right proportions at the right place is essential for proper acquisition, biomineralization, and maintenance of mass and strength of the skeleton. The three specialized mineralized tissues, bones, teeth, and ossicles, difer from all other tissues in the human body because of their unique ability to mineralize, and the degree and process of mineralization in these tissues also difer to suit the specifc functions: locomotion, chewing, and hearing, respectively.
    [Show full text]
  • Springer Handbookoƒ Marine Biotechnology Kim Editor
    Springer Handbookoƒ Marine Biotechnology Kim Editor 123 1279 58.Biomineraliz Biomineralization in Marine Organisms a Ille C. Gebeshuber 58.2.5 Example of Strontium This chapter describes biominerals and the ma- Mineralization in Various rine organisms that produce them. The proteins Marine Organisms...................... 1290 involved in biomineralization, as well as func- 58.2.6 Example of Biomineralization tions of the biomineralized structures, are treated. of the Unstable Calcium Current and future applications of bioinspired Carbonate Polymorph Vaterite .... 1290 material synthesis in engineering and medicine highlight the enormous potential of biominer- 58.3 Materials – Proteins Controlling alization in marine organisms and the status, Biomineralization................................ 1290 challenges, and prospects regarding successful 58.4 Organisms and Structures marine biotechnology. That They Biomineralize....................... 1290 58.4.1 Example: Molluscan Shells ......... 1293 58.4.2 Example: Coccolithophores......... 1293 58.1 Overview ............................................. 1279 58.1.1 Marine Biomining ..................... 1280 58.5 Functions ............................................ 1294 58.2 Materials – Biominerals 1281 ....................... 58.6 Applications ........................................ 1294 58.2.1 Biominerals Produced 58.6.1 Current Applications by Simple Precipitation of Bioinspired and Oxidation Reactions 1285 ............ Material Synthesis 58.2.2 Biological Production in Engineering and
    [Show full text]
  • Fossil Microbial Shark Tooth Decay Documents in Situ Metabolism Of
    www.nature.com/scientificreports OPEN Fossil microbial shark tooth decay documents in situ metabolism of enameloid proteins as nutrition source in deep water environments Iris Feichtinger1*, Alexander Lukeneder1, Dan Topa2, Jürgen Kriwet3*, Eugen Libowitzky4 & Frances Westall5 Alteration of organic remains during the transition from the bio- to lithosphere is afected strongly by biotic processes of microbes infuencing the potential of dead matter to become fossilized or vanish ultimately. If fossilized, bones, cartilage, and tooth dentine often display traces of bioerosion caused by destructive microbes. The causal agents, however, usually remain ambiguous. Here we present a new type of tissue alteration in fossil deep-sea shark teeth with in situ preservation of the responsible organisms embedded in a delicate flmy substance identifed as extrapolymeric matter. The invading microorganisms are arranged in nest- or chain-like patterns between fuorapatite bundles of the superfcial enameloid. Chemical analysis of the bacteriomorph structures indicates replacement by a phyllosilicate, which enabled in situ preservation. Our results imply that bacteria invaded the hypermineralized tissue for harvesting intra-crystalline bound organic matter, which provided nutrient supply in a nutrient depleted deep-marine environment they inhabited. We document here for the frst time in situ bacteria preservation in tooth enameloid, one of the hardest mineralized tissues developed by animals. This unambiguously verifes that microbes also colonize highly mineralized dental capping tissues with only minor organic content when nutrients are scarce as in deep-marine environments. Teeth and bones are ofen the only evidence of ancient vertebrate life because of the mineralized nature of tissues. Tere are numerous possibilities for chemical alteration during the transition from the bio- to the lithosphere of which bacterial catabolysis of these tissues and organic matter within the carcass is an important example 1,2.
    [Show full text]
  • A Stem Group Echinoderm from the Basal Cambrian of China and the Origins of Ambulacraria
    ARTICLE https://doi.org/10.1038/s41467-019-09059-3 OPEN A stem group echinoderm from the basal Cambrian of China and the origins of Ambulacraria Timothy P. Topper 1,2,3, Junfeng Guo4, Sébastien Clausen 5, Christian B. Skovsted2 & Zhifei Zhang1 Deuterostomes are a morphologically disparate clade, encompassing the chordates (including vertebrates), the hemichordates (the vermiform enteropneusts and the colonial tube-dwelling pterobranchs) and the echinoderms (including starfish). Although deuter- 1234567890():,; ostomes are considered monophyletic, the inter-relationships between the three clades remain highly contentious. Here we report, Yanjiahella biscarpa, a bilaterally symmetrical, solitary metazoan from the early Cambrian (Fortunian) of China with a characteristic echinoderm-like plated theca, a muscular stalk reminiscent of the hemichordates and a pair of feeding appendages. Our phylogenetic analysis indicates that Y. biscarpa is a stem- echinoderm and not only is this species the oldest and most basal echinoderm, but it also predates all known hemichordates, and is among the earliest deuterostomes. This taxon confirms that echinoderms acquired plating before pentaradial symmetry and that their history is rooted in bilateral forms. Yanjiahella biscarpa shares morphological similarities with both enteropneusts and echinoderms, indicating that the enteropneust body plan is ancestral within hemichordates. 1 Shaanxi Key Laboratory of Early Life and Environments, State Key Laboratory of Continental Dynamics and Department of Geology, Northwest University, 710069 Xi’an, China. 2 Department of Palaeobiology, Swedish Museum of Natural History, Box 50007104 05, Stockholm, Sweden. 3 Department of Earth Sciences, Durham University, Durham DH1 3LE, UK. 4 School of Earth Science and Resources, Key Laboratory for the study of Focused Magmatism and Giant Ore Deposits, MLR, Chang’an University, 710054 Xi’an, China.
    [Show full text]