Index of Keywords

Total Page:16

File Type:pdf, Size:1020Kb

Index of Keywords Index of Keywords A Acidification, 361, 1804, 1891, 1892, 1914, Aammiq wetland, 1156 1916, 1917, 1963 Aapa mire, 261, 1541 drainage basin, 1409 peat layer, 284 lakes, 139 vs. raised bog, 283 ocean, 12, 82, 451, 456–458, 502 Abay in Ethiopia, 1247 Acinonyx jubatus, 1303, 1372 Aberdare Range, 1389 Acioa deweverei, 207 Abies, 938 Acipenser A. pindrow, 1608 A. baerii, 1444, 1455, 1474, 1480, 1481 A. sibirica, 1537 A. baerii baicalensis, 1481 Abramis brama, 939, 953, 1443 A. brevirostrum, 633 Abu Dhabi Gulf coast, 1175 A. fulvescens, 428 Abutilon A. gueldenstaedtii, 900, 918, 939, 953 A. longicuspe, 206 A. medirostris, 569 A. mauritanum, 206 A. nudiventris, 905, 918, 939, 953 Acacia, 207, 1302 A. oxyrinchus, 633 A. caven, 816 A. persicus, 940 A. dealbata, 1313 A. ruthenus, 900, 905, 940, 953, 1480 A. fistula, 1294 A. schrenckii, 1513 A. mearnsii, 1313 A. sinensis, 1569 A. mellifera, 1385 A. stellatus, 900, 918, 939, 953, 1629, 1630 A. nubica, 1272 A. sturio, 928, 1131 A. polyacantha, 1236 A. transmontanus, 569, 642 A. seyal, 206, 1262, 1272, 1293, Aconitum spicatum, 1609 1294, 1302 Acrocephalus A. sieberiana, 206, 1236, 1294, 1302 A. arundinaceus, 1621, 1708 A. stenophylla, 1901 A. familiaris, 2020 A. thailandica, 208 A. griseldis, 1688 A. tortilis, 1353, 1368, 1385, 1386 A. melanopogon, 1621 A. xanthophloea, 201, 1236, 1357, 1386 A. rufescens, 192 Acacia savanna, 1236 A. scirpaceus, 1337 Acanthobrama hulensis, 1161, 1169 A. tangorum, 1788 Accipter brevipes, 1255 Acrochordus granulatus, 1955 Accretion, 162, 167, 411, 709, 714, 840, 969, Acronychia pedunculata, 1815 1019, 1102, 1109, 1120, 1258, 1749 Acrostichum, 1823 Acer, 938 A. aureum, 96, 750, 765 A. negundo, 817 Acrotelm, 234, 296, 309 A. rubrum, 177, 581, 672, 673 Actitis hypoleucos, 1336, 1385 A. saccharinum, 525 Active blanket bog, 290 # Springer Science+Business Media B.V., part of Springer Nature 2018 2027 C. M. Finlayson et al. (eds.), The Wetland Book, https://doi.org/10.1007/978-94-007-4001-3 2028 Index of Keywords Active raised bog, 290 Agathis dammara, 239 Adaptive management, 351, 720, 1906, 1907 Agave cundinamarcensis, 777 Kakagon, 434 Agelaius phoeniceus, 612 Lake Chilika, 397–402 Ageneiosus caucanus, 763 Lake Fuquene, 781 Aggressive urbanization, 1146 Addax nasomaculatus, 1303 Agmon restoration project, 1171 Adenostemma lavenia, 1746 Agriculture, 12, 31, 58, 61, 62, 89, 135, Aechmophorus occidentalis, 597 138, 146, 152, 1156, 1163, Aegialitis rotundifolia, 1737 1193–1194, 1254 Aegiceras corniculatum, 1728 Azraq Oasis wetland, 462, 466, 467 Aegopis, 339 Congo Basin, 1209 Aeluropus Danube Delta, 890, 891, 917, 919–921 A. lagopoides, 1728 Ebro Delta, 119, 1114, 1118 A. littoralis, 916, 1117 food recession, 118, 1229, 1239 Aepyceros Gangetic-Brahmaputra Plains, 1713, 1716, A. melampus, 1358, 1405 1720, 1721 A. melampus rendilis, 1385 Indus Basin, 1699, 1701, 1702 Aerial roots, 94, 100, 217 karst wetland, 316, 325, 326, 328 Aeschynomene, 194 Kilombero Valley Floodplain, 1345–1347 A. indica, 205 Lake Seyfe, 1108, 1193–1194 A. pfundii, 1353, 1354 Lake Wular, 1706, 1709 Aeshna New Zealand, 114 A. isosceles, 1030 Nile Delta, 1254–1257 A. sitchensis, 571 Nile River Basin, 1248, 1249 A. subarctica, 571 peatlands for, 237, 238, 240, 938 Africa, 9, 11, 28, 29, 59, 81, 96, 113, 116, 131, pocosin, 675 145, 146, 150, 171, 175, 176, 1156, Prairie Pothole Region, 685, 686 1160 Rhine River Basin, 927, 928 Bahr el Ghazal, 1270, 1274 Rhone River Delta, 1102, 1103, 1106, 1109 Bijagós archipelago, 1334 rice, 407, 584, 587, 1114 Congo River Basin, 1200, 1206, 1210–1212 Rugezi Marsh, 1309, 1310, 1316 Cyperus papyrus swamps, 204, 205 on San Pablo Bay, 644, 647 Itezhi-Tezhi dam, 1230 Volga River Basin, 934, 940, 942 Kilombero floodplain, 1342, 1343 wetland conversion, 362–364, 366, 534 Lake Turkana, 1362 Zambezi River Basin, 1222, 1225, 1227, Mimosa pigra, 385 1229 Nile Delta, 1254 Agropyron pungens, 964 Nile River Basin, 1244, 1249 Agropyrum spp., 851 Papyrus marshes, 184–186, 190–193, 195 Agrostis peatland, 229, 232, 1413–1421 A. mongolica, 1537, 1538 Rift Valley soda lakes, 153 A. stolonifera, 916, 964, 1130 salt lakes, 147 Ailanthus altissima, 1640 Sudd, 1300, 1302 Ailurus fulgens, 1608, 1609 tropical freshwater wetlands, 202 Air Hitam Laut River, 1832, 1836, 1837 wetland loss, 372, 373 Aix sponsa, 583 Zambezi Delta, 1234 Akysis Zambezi River Basin, 1222 A. filifer, 1806 African buffalo, 1227, 1236, 1237, 1240 A. fuscus, 1845 Afro-Syrian rift valley, 1168 Alaria esculenta, 626 Agabus, 660, 661 Alaska National Interest Lands Conservation A. labiatus, 1071 Act, 548, 562 Agamia agami, 750 Alaskan boreal zone, 519, 522, 527, 529, 531, Agarum cribrosum, 626 532, 537, 539 Index of Keywords 2029 Alas lake, 1446, 1467 Hydrilla verticillata, 1746, 1859 Alauda Hymenachne amplexicaulis, 1957 A. alauda, 965 impact assessment, 387 A. arvensis, 1083, 1084 Impatiens glandulifera, 164 Al Bahr al-Azraq in Sudan, 1247 Ipomoea spp., 194 Alberta Provincial Lands, 553 invasion methods, 386–387 Albizia Juncus acutus, 64, 1116, 1117 A. amara, 1272 Lasimorpha senegalensis, 1210 A. inundata, 816 Lyngbya wollei, 603 Albúferas, 827 Lythrum salicaria, 432, 597, 613, 915 Alburnoides bipunctatus thessalicus, 1143 Mimosa pigra, 137, 206, 220, 366, 385, Alburnus chalcoides, 939 386, 1773, 1798, 1859, 1952 Alca torda, 1094 Myriophyllum spicatum, 480, 613, Alcedo 914, 952, 1105, 1106, 1117, 1460, A. atthis, 905 1524 A. cristata, 1345 Phalaris arundinacea, 432, 613 A. euryzona, 1825 Phragmites australis, 58, 67, 149, 159, 163, A. semitorquata, 1345 164, 170, 385, 386, 431–432, 471, Alcelaphus 603, 612, 914, 915, 949, 965, 1105, A. buselaphus, 1282 1116, 1117, 1140, 1156, 1171, 1190, A. lichtensteinii, 1227, 1236 1237, 1398, 1416, 1427, 1524, 1619, Alces alces, 532, 553, 561, 1444 1639, 1642, 1649, 1650, 1653, 1666, Alcolapia grahami, 1386–1388 1686, 1689, 1900 Aldan and Amga rivers, 1449, 1472, 1473 Phragmites karka, 204, 1272, 1302, Alder and Willow communities, 560 1746, 1748 Aldrichetta forsteri, 1912 Pistia stratiotes, 218, 220, 713, 765, 1210, Alectoria, 279 1237, 1353, 1746, 1815 Alestes stuhlmanni, 1344 population growth and migration, 384–385 Aleuropus littoralis, 916, 1117 Potomageton crispus, 613, 914 Al-Hammar, 1686, 1688–1691, 1693 risk assessment, 387 Al-Hawizeh, 1686, 1688, 1693, 1694 Salix cinerea, 915, 1029, 1986 bird counts, 1691 Salvinia molesta, 218, 220, 384, 1237, drained portion, 1692 1357, 1409, 1952 ecological diversity indices for fish, 1690 Spartina alterniflora, 58, 384, 969, 988 water buffalo feeding, 1689 Tamarix, 64, 1140, 1666, 1669, 1730 Alien plants in wetlands Typha angustifolia, 163, 428, 613, 777, 914, Aeschynomene sp., 194 915, 952, 1190, 1639, 1654, 1655, Azolla filiculoides, 1133, 1140, 1237 1679, 1680, 1746 Butomus umbellatus, 603, 952 Typha domingensis, 190, 713, 1156, 1171, control methods, 388 1221, 1265, 1272, 1302, 1353, Cyperus papyrus, 170, 177, 184, 190, 204, 1354, 1900 205, 209–211, 1156, 1168–1169, Typha species, 26, 159, 163, 189, 204, 385, 1210, 1237, 1244, 1265, 1272, 1302, 386, 612, 712, 715, 851, 915, 1117, 1313, 1350, 1357, 1398, 1427 1255, 1642 definitions, 384 Urochloa mutica, 765, 1952 Egeria densa, 385, 777 Alien species, 179, 193, 220, 324, 327, Eichhornia crassipes, 117, 134, 137, 189, 384–387, 470, 638, 818, 1798, 1905, 209, 218, 220, 384, 385, 713, 765, 1945, 2014, 2017, 2020 777, 779, 790, 809, 1210, 1237, Alisma 1249, 1255, 1272, 1301, 1305, 1357, A. orientale, 1524 1368, 1720, 1746, 1773, 1859, 1948 A. plantago-aquatica, 949, 1556, 1639 Elodea canadensis, 384, 914 Alkaline, 146, 518, 706, 709, 1362, 1382, Halophila stipulacea,81 1384–1386, 1426, 1582, 1961 2030 Index of Keywords Alkaline (cont.) fauna, 735–736 lakes, 1365, 1382, 1445, 1486 flora, 733–735 swamps, 1386 future challenges and developments, Alkaliphilic bacteria, 1389 739–741 Alligator mississippiensis, 675 interfluvial wetlands, 732 Alligator weed, 1710 large-river floodplains, 729–731 Allium location, 728 A. angulosum, 951 pollution, 740 A. chamaemoly, 1106 river damming for hydropower generation, Allotropic riverine lake, 1365 217, 739–740 Alluvial fan, 698, 1395, 1401, unsustainable use of resources, 740 1649, 1650 wetland types and extent, 204–207, Alluvial terrace, 1453 729–733 Alnus, 525, 545, 560, 1043 Ambystoma, 658 A. acuminata, 1313 A. jeffersonianum, 658 A. glutinosa, 915 A. laterale, 658 A. incana, 612 A. maculatum, 658 A. japonica, 1598 A. opacum, 658 A. rubra, 571 A. tigrinum, 612 Alocasia macrorrhiza, 2009 A. tigrinum tigrinum, 658 Alopecurus turczaninovii, 1539 A. tremblayi, 658 Alosa Ameiurus melas, 1133 A. fallax, 165 Amietophrynus reesi, 1344 A. kessleri, 939, 953 Ammannia, 1117 A. kessleri volgensis, 953 Ammodramus bairdii, 683 A. pontica, 918 Ammophila arenaria, 1104 A. sapidissima, 165, 629 Amoria fragifera, 951 Alpine fens, 1420 Amorpha fruticosa, 915, 918, 1107 Alpine wetlands, 130, 297, 888, 1414, Amphibacillus 1445, 1535, 1553, 1699–1701 A. fermentum, 1388 Alstonia A. tropicus, 1388 A. pneumatophora, 1823, 1834 Amphibians, 100, 101, 113, 149, 165, 176, 191, A. scholaris, 208 192, 214, 236, 323, 352, 377, 584, A. spathulata, 1815, 1816 611, 612, 656, 657, 660, 662, 682, Alternanthera 692, 735, 736, 750, 805, 817, 824, A. philoxeroides, 816, 1710 828, 830, 831, 852, 899, 918, 1067, A. sessilis, 1639 1105, 1107, 1118, 1119, 1142, 1228, Althaea officinalis, 951 1238, 1315, 1368, 1406, 1469, 1474, Althea rosea, 916 1502, 1513, 1516, 1561, 1584, 1679, Althenia filiformis, 1104 1700, 1737, 1859, 1981 Amazonian large-river floodplains, 729–731, in Doñana wetlands, 1128, 1131 733, 737 egg clutches, 471 Amazonian white-sand savannas, 730, 732, in Kakadu National Park, 1953 734, 738 Lake Fúquene biodiversity, 776, 777 Amazon of Europe, see Danube River; Drava in Lake Seyfe, 1190 River; Mura River in Mekong River Basin, 1773, 1778 Amazon River Basin in papyrus wetlands, 193 biodiversity, 733–736 Sanjiang Plain, 1514 coastal wetlands, 733 in Tasek Bera, 1859 conservation status, 737 in tropical freshwater swamps, 212 deforestation, 219, 739 in turloughs, 1071 ecosystem degradation, 739 in vernal pools, 652–654, 658–659 ecosystem services, 738–739 in Volga Basin, 939 Index of Keywords 2031 Amphibolis A.
Recommended publications
  • Human-Nature Relationships in the Tungus Societies of Siberia and Northeast China Alexandra Lavrillier, Aurore Dumont, Donatas Brandišauskas
    Human-nature relationships in the Tungus societies of Siberia and Northeast China Alexandra Lavrillier, Aurore Dumont, Donatas Brandišauskas To cite this version: Alexandra Lavrillier, Aurore Dumont, Donatas Brandišauskas. Human-nature relationships in the Tungus societies of Siberia and Northeast China. Études mongoles et sibériennes, centrasiatiques et tibétaines, Centre d’Etudes Mongoles & Sibériennes / École Pratique des Hautes Études, 2018, Human-environment relationships in Siberia and Northeast China. Knowledge, rituals, mobility and politics among the Tungus peoples, 49, pp.1-26. 10.4000/emscat.3088. halshs-02520251 HAL Id: halshs-02520251 https://halshs.archives-ouvertes.fr/halshs-02520251 Submitted on 26 Mar 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Études mongoles et sibériennes, centrasiatiques et tibétaines 49 | 2018 Human-environment relationships in Siberia and Northeast China. Knowledge, rituals, mobility and politics among the Tungus peoples, followed by Varia Human-nature relationships in the Tungus societies of Siberia
    [Show full text]
  • Chamaedorea Amabilis
    Principes,34(l),1990, pp. 4-10 Chamaedoreaamabilis: an Ornamental ra ' ': )pecres lrom Central America Donero R. Honnr Uniaersity of California, 2615 S. Grand Attenue, Suite 4OO, Los Angeles, CA 9OO07 One of the objectives of field work in that I was not going to achieve my objec- CostaRica and Panamain I9B7 in support tive with this specieson this trip. Later, of a project on the cultivated species of however,I wasfortunate enoughto observe Chamaedoreawas to locate C. am(rbilis what I assumedto be C. amabilis at Jardin in the wild in order to compare it with Bot6nico Robert y Catherine Wilson (for- material bearing that name in cultivation. merlv Las Cruces Tropical Botanical Gar- Collectors in California and Florida have den) near San Vito de Coto Brus in Costa a highly ornamental,bifidJeaved palm they Rica (Figs. l-3). These plants had been call C. amabills. Although thesecultivated collectedby the late Mr. RobertG. Wilson, plantsappear to match descriptionsin the founder of the Garden, on the Atlantic literature (Dammer 1904, Guillaumin slope of Costa Rica or had been brought 1923, Standley 1937), it was difficult to to him from Panama.They had been iden- confirm since the published accounts are tified as such by the late Harold E. Moore, so meager and without illustrations. Key Jr. during one of his visits to the Garden. detailed information about its habit, inflo- Another objective of this trip was to rescences,and flowerswas lacking. Iocate Chamaedoreacoclensis Bailey, a Charnaedoreadmabilis was first col- bifid-leavedspecies described from near El lected by Hermann Wendland about the Valle in Cocl6 Province of Panama' C.
    [Show full text]
  • EAAFP MOP8 Agenda Documents Version 4
    East Asian – Australasian Flyway Partnership 8th Meeting of Partners, Kushiro, Japan 16-21 January 2015 AGENDA DOCUMENTS VERSION 4 Please note the following changes from the Agenda Documents Version 3. Doc 3.2.1 Partner Report: China, Cambodia, WWF Doc 3.3.1 Task Force Report: SBS TF Doc 6.1.2 Partner Workplan: China Doc 5.2.7 Shorebird Working Group Informal meeting (16:00 – 16:50 on Monday 19 Jan) NOTES ON STATUS OF DOCUMENTS This is the first version of the Agenda Documents, circulated to Partners and to registered participants for the 8th Meeting of Partners (MoP8) before the Meeting date. It is also available on the MoP8 web page at http://www.eaaflyway.net/mop-8/. Additional material may be provided at registration or during the Meeting. ANNEX There are additional supporting documents for some agenda items. These supporting documents are attached to the same email as separate documents. • Annex. Doc 3.3.1.2_Scientific Task Force on Avian Influenza and Wild Birds statement (19th December 2014) • Annex. Doc 3.3.2.1_Input of Asian Waterbird Census and Waterbird Population Estimates • Annex. Doc 4.3.3_Review International Policy Framework EAAF • Annex. Doc 4.5.2_CMS COP PROGRAMME OF WORK ON MIGRATORY BIRDS AND FLYWAYS (Annex 1 to Resolution 11.14) • Annex. Doc 4.5.4_CAFF Strategy Series Report No. 5, May 2014_Arctic Migratory Birds Initiative (AMBI) • Annex. Doc 5.1.5 _FAO EMPRES animal health 360 No.44(2)/2014 INSTRUCTIONS In order to save paper and reduce impacts on our environment, no paper copies of the final agenda document for the MoP8 will be printed or provided.
    [Show full text]
  • Print This Article
    97 Flyway structure, breeding, migration and wintering distributions of the globally threatened Swan Goose Anser cygnoides in East Asia IDERBAT DAMBA1,2,3, LEI FANG1,4, KUNPENG YI1, JUNJIAN ZHANG1,2, NYAMBAYAR BATBAYAR5, JIANYING YOU6, OUN-KYONG MOON7, SEON-DEOK JIN8, BO FENG LIU9, GUANHUA LIU10, WENBIN XU11, BINHUA HU12, SONGTAO LIU13, JINYOUNG PARK14, HWAJUNG KIM14, KAZUO KOYAMA15, TSEVEENMYADAG NATSAGDORJ5, BATMUNKH DAVAASUREN5, HANSOO LEE16, OLEG GOROSHKO17,18, QIN ZHU1,4, LUYUAN GE19, LEI CAO1,2 & ANTHONY D. FOX20 1State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. 2University of Chinese Academy of Sciences, Beijing 100049, China. 3Ornithology Laboratory, Institute of Biology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia. 4Life Sciences, University of Science and Technology of China, Hefei, China. 5Wildlife Science and Conservation Center of Mongolia, Union Building B701, Ulaanbaatar 14210, Mongolia. 6Planning and Design Team of Datian Forestry Investigation, Fujian 366100, China. 7Animal and Plant Quarantine Agency, Gimcheon 39660, Korea. 8National Institute of Ecology, Seocheon 33657, Korea. 9Fujian Wildlife Conservation Center, Fuzhou 350003, China. 10Jiangxi Poyang Lake National Reserve Authority, Nanchang, Jiangxi 330038, China. 11Shengjin Lake National Nature Reserve, Dongzhi, Anhui, China. 12Nanji Wetland National Nature Reserve Agency, Nanchang, China. 13Inner Mongolia Hulun Lake National Nature Reserve Administration, Hulunbeir 021008, China. 14Migratory Bird Research Center National Institute of Biological Research, Incheon, Korea. 15Japan Bird Research Association, Tokyo, Japan. 16Korea Institute of Environmental Ecology, 62-12 Techno 1-ro, Yuseong-gu, Daejeon 34014, Korea. 17Daursky State Nature Biosphere Reserve, Zabaykalsky Krai, 674480, Russia. 18Chita Institute of Nature Resources, Ecology and Cryology, Zabaykalsky Krai 672014, Russia.
    [Show full text]
  • Two Distinct Flyways with Different Population Trends Of
    13 Two distinct flyways with different population trends of Bewick’s Swan Cygnus columbianus bewickii in East Asia LEI FANG1, JUNJIAN ZHANG2,3, QINGSHAN ZHAO2, DIANA SOLOVYEVA4, DIDIER VANGELUWE5, SONIA B. ROZENFELD6, THOMAS LAMERIS7, ZHENGGANG XU8, INGA BYSYKATOVA-HARMEY9, NYAMBAYAR BATBAYAR10, KAN KONISHI11, OUN-KYONG MOON12 , BU HE13, KAZUO KOYAMA14, SACHIKO MORIGUCHI15,16, TETSUO SHIMADA17, JINYOUNG PARK18, HWAJUNG KIM18, GUANHUA LIU19, BINHUA HU20, DALI GAO21, LUZHANG RUAN22, TSEVEENMYADAG NATSAGDORJ10, BATMUNKH DAVAASUREN10, ALEXEY ANTONOV23, ANASTASIA MYLNIKOVA4, ALEXANDER STEPANOV4,9, GEORGE KIRTAEV6, DMYTRY ZAMYATIN6, SAVAS KAZANTZIDIS24, TSUNEO SEKIJIMA15, IDERBAT DAMBA2,3, HANSOO LEE25, BEIXI ZHANG2,3, YANBO XIE26, EILEEN C. REES27, LEI CAO2,3,* & ANTHONY D. FOX28 1Life Sciences, University of Science and Technology of China, Hefei, China. 2State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China. 3School of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China. 4Laboratory of Ornithology, Institute of Biological Problems of the North, Magadan, Russia. 5Royal Belgian Institute of Natural Sciences, Brussels, Belgium. 6Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia. 7Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands. 8Key Laboratory of Forestry Remote Sensing Based on Big Data & Ecological Security of Hunan Province, Central South University of Forestry and Technology, Changsha 410004, China. 9Institute of Biological Problems of Cryolitozone, Siberian Branch of the Russian Academy of Sciences, Yakutsk, Russia. 10Wildlife Sciences and Conservation Center of Mongolia, Union Building, B-701, UNESCO Str., Ulaanbaatar 14210, Mongolia. 11Hamatonbetsu Lake Kutcharo Waterfowl Observatory, Kutcharo-kohan, Hamatonbetsu-cho, Esashi-gun, Hokkaido 098-5739, Japan.
    [Show full text]
  • Colletotrichum Leaf Spot of Red Sealing Wax Palm
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ScholarSpace at University of Hawai'i at Manoa Cooperative Extension Service Plant Disease January 1997 PD-10 Colletotrichum Leaf Spot of Red Sealing Wax Palm Janice Y. Uchida and Chris Y. Kadooka Department of Plant Pathology Introduction Symptoms and spread Red sealing wax palm, Cyrtostachys renda Blume., is Leaf spots on red sealing wax palm begin as small, wa- an unarmed, monoecious, clumping palm with glossy ter-soaked, dark green areas about 1–2 mm wide. These green leaves. The petioles and sheaths are yellow on areas expand into circular spots with tan to light brown young plants and turn distinctively red on mature plants. centers, bordered by water-soaked tissue (Figure 1). As This attractive indoor tropical palm is relatively uncom- the spots expand, lesion centers lighten to very light tan mon and generally commands high prices. In response to cream color, with some spots developing brown mar- to market demand, production of red sealing wax palm gins around the centers. Most of the circular spots are grown for export in Hawaii has recently expanded. 3–7 mm wide, and the size of the necrotic (dead) areas In l994, leaf spots were observed on hundreds of increases as spots coalesce (Figure 2). Large spots de- red sealing wax palms at a commercial nursery. Fungi velop on young, expanding leaves. that commonly cause palm leaf spots, such as Bipolaris Young leaves are highly susceptible, while older and Calonectria, were not found to be associated with leaves are more resistant to the disease.
    [Show full text]
  • The Water Balance of China and Its Large River Basins
    Hydrology for the Water Management of Large Riva- Basins (Proceedings of the Vienna Symposium, August 1991). IAHS Publ. no. 201, 1991. THE WATER BALANCE OF CHINA AND ITS LARGE RIVER BASINS LIU GUOWEI AND GUI YUENG Nanjing Institute of Hydrology and Water Resources China ABSTRACT The Yangtze River, Yellow River and other five large river basins are the largest ones in China, with a total area amount­ ing to about 4 333 687 km2 and covering both humid and arid/semi- arid regions. Based on the computation of atmospheric vapour transport, precipitation, évapotranspiration and runoff, water bal­ ance models for the whole country and its seven large river basins have already been developed. Through analyses with the models, some characteristics of hydrologie cycles in the river basins, includ­ ing the origins and routes of atmospheric moisture flux, the water circulation coefficients, etc., have been determined. The results provide a hydrologie basis for water resources assessment and management in China. INTRODUCTION China is located in the East Asian monsoon region, where the hydrologie cycle presents a monsoon climate regime. Every year in May, with the monsoon onset, the rainy season begins in the region south of 25 °N in China. During June to July, the rain band advances to the south of 35°N, and in the whole country the rainy season has developed by August. From November to March of the next year, it is a dry season, and there is a transient season from April to September. The whole country can be divided into three hydrologic-climatic zones: humid, semi-arid and arid zone.
    [Show full text]
  • Seed Geometry in the Arecaceae
    horticulturae Review Seed Geometry in the Arecaceae Diego Gutiérrez del Pozo 1, José Javier Martín-Gómez 2 , Ángel Tocino 3 and Emilio Cervantes 2,* 1 Departamento de Conservación y Manejo de Vida Silvestre (CYMVIS), Universidad Estatal Amazónica (UEA), Carretera Tena a Puyo Km. 44, Napo EC-150950, Ecuador; [email protected] 2 IRNASA-CSIC, Cordel de Merinas 40, E-37008 Salamanca, Spain; [email protected] 3 Departamento de Matemáticas, Facultad de Ciencias, Universidad de Salamanca, Plaza de la Merced 1–4, 37008 Salamanca, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-923219606 Received: 31 August 2020; Accepted: 2 October 2020; Published: 7 October 2020 Abstract: Fruit and seed shape are important characteristics in taxonomy providing information on ecological, nutritional, and developmental aspects, but their application requires quantification. We propose a method for seed shape quantification based on the comparison of the bi-dimensional images of the seeds with geometric figures. J index is the percent of similarity of a seed image with a figure taken as a model. Models in shape quantification include geometrical figures (circle, ellipse, oval ::: ) and their derivatives, as well as other figures obtained as geometric representations of algebraic equations. The analysis is based on three sources: Published work, images available on the Internet, and seeds collected or stored in our collections. Some of the models here described are applied for the first time in seed morphology, like the superellipses, a group of bidimensional figures that represent well seed shape in species of the Calamoideae and Phoenix canariensis Hort. ex Chabaud.
    [Show full text]
  • Notes on the Pollination Ecology of the Palm Genus Johannesteijsmannia (A Recaceae )
    Journal of Pollination Ecology, 6(15), 2011, pp 108-117 — Short Communication — NOTES ON THE POLLINATION ECOLOGY OF THE PALM GENUS JOHANNESTEIJSMANNIA (A RECACEAE ) Y.M. Chan* and L.G. Saw Forest Biodiversity Division, Forest Research Institute Malaysia, 52109 Kepong, Selangor, Malaysia Abstract The floral biology and flower visitors of the tropical palms Johannesteijsmannia altifrons, J. magnifica and J. perakensis were investigated. We combined the data from this study with published data of J. lanceolata to give an overview of the reproductive biology and pollination system of the genus. Anthesis peaks from 0500–1100 hrs when the inflorescences are visited mainly by flies, beetles and stingless bees ( Trigona ), the last are potential pollinators. The breeding system is facultative selfing, indicating the ability of the species to reproduce in the absence of pollinators or in isolation. Keywords: reproductive biology, pollinator, breeding system, flower biology, Coryphoideae, Johannesteijsmannia INTRODUCTION The reproductive biology of J. lanceolata has been well- documented (Chan et al. 2011b): It is self-compatible, the Studies on reproductive biology and pollination ecology flowers are homogamous with diurnal anthesis and are can help to shed light on plant-pollinator relationships, visited by bees, flies and ants. For the remaining members of evolution, and also possible reasons for the persistence, the genus, such information is lacking. Thus, we extended rarity, genetic diversity or species richness of plants (e.g. the investigations into the floral biology and pollination of J. Bawa et al. 1985; Henderson 2002; Rymer et al. 2005; altifrons , J. magnifica and J. perakensis , to determine the Barfod et al. 2011).
    [Show full text]
  • An Updated and Annotated List of Indian Lizards (Reptilia: Sauria) Based on a Review of Distribution Records and Checklists of Indian Reptiles
    JoTT REVIEW 2(3): 725-738 An updated and annotated list of Indian lizards (Reptilia: Sauria) based on a review of distribution records and checklists of Indian reptiles P. Dilip Venugopal Department of Entomology, University of Maryland, 4124 Plant Sciences Building, College Park, MD 20742-4454, USA Email: [email protected] Date of publication (online): 26 March 2010 Abstract: Over the past two decades many checklists of reptiles of India and adjacent Date of publication (print): 26 March 2010 countries have been published. These publications have furthered the growth of ISSN 0974-7907 (online) | 0974-7893 (print) knowledge on systematics, distribution and biogeography of Indian reptiles, and the field Editor: Aaron Bauer of herpetology in India in general. However, the reporting format of most such checklists of Indian reptiles does not provide a basis for direct verification of the information presented. Manuscript details: As a result, mistakes in the inclusion and omission of species have been perpetuated Ms # o2083 and the exact number of reptile species reported from India still remains unclear. A Received 21 October 2008 Final received 31 December 2009 verification of the current listings based on distributional records and review of published Finally accepted 14 February 2010 checklists revealed that 199 species of lizards (Reptilia: Sauria) are currently validly reported on the basis of distributional records within the boundaries of India. Seventeen Citation: Venugopal, P.D. (2010). An updated other lizard species have erroneously been included in earlier checklists of Indian reptiles. and annotated list of Indian lizards (Reptilia: Omissions of species by these checklists have been even more numerous than Souria) based on a review of distribution records and checklists of Indian reptiles.
    [Show full text]
  • (Arecaceae): Évolution Du Système Sexuel Et Du Nombre D'étamines
    Etude de l’appareil reproducteur des palmiers (Arecaceae) : évolution du système sexuel et du nombre d’étamines Elodie Alapetite To cite this version: Elodie Alapetite. Etude de l’appareil reproducteur des palmiers (Arecaceae) : évolution du système sexuel et du nombre d’étamines. Sciences agricoles. Université Paris Sud - Paris XI, 2013. Français. NNT : 2013PA112063. tel-01017166 HAL Id: tel-01017166 https://tel.archives-ouvertes.fr/tel-01017166 Submitted on 2 Jul 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITE PARIS-SUD ÉCOLE DOCTORALE : Sciences du Végétal (ED 45) Laboratoire d'Ecologie, Systématique et E,olution (ESE) DISCIPLINE : -iologie THÈSE DE DOCTORAT SUR TRAVAUX soutenue le ./05/10 2 par Elodie ALAPETITE ETUDE DE L'APPAREIL REPRODUCTEUR DES PAL4IERS (ARECACEAE) : EVOLUTION DU S5STE4E SE6UEL ET DU NO4-RE D'ETA4INES Directeur de thèse : Sophie NADOT Professeur (Uni,ersité Paris-Sud Orsay) Com osition du jury : Rapporteurs : 9ean-5,es DU-UISSON Professeur (Uni,ersité Pierre et 4arie Curie : Paris VI) Porter P. LOWR5 Professeur (4issouri -otanical Garden USA et 4uséum National d'Histoire Naturelle Paris) Examinateurs : Anders S. -ARFOD Professeur (Aarhus Uni,ersity Danemark) Isabelle DA9OA Professeur (Uni,ersité Paris Diderot : Paris VII) 4ichel DRON Professeur (Uni,ersité Paris-Sud Orsay) 3 4 Résumé Les palmiers constituent une famille emblématique de monocotylédones, comprenant 183 genres et environ 2500 espèces distribuées sur tous les continents dans les zones tropicales et subtropicales.
    [Show full text]
  • Mar2009sale Finalfinal.Pub
    March SFPS Board of Directors 2009 2009 The Palm Report www.southfloridapalmsociety.com Tim McKernan President John Demott Vice President Featured Palm George Alvarez Treasurer Bill Olson Recording Secretary Lou Sguros Corresponding Secretary Jeff Chait Director Sandra Farwell Director Tim Blake Director Linda Talbott Director Claude Roatta Director Leonard Goldstein Director Jody Haynes Director Licuala ramsayi Palm and Cycad Sale The Palm Report - March 2009 March 14th & 15th This publication is produced by the South Florida Palm Society as Montgomery Botanical Center a service to it’s members. The statements and opinions expressed 12205 Old Cutler Road, Coral Gables, FL herein do not necessarily represent the views of the SFPS, it’s Free rare palm seedlings while supplies last Board of Directors or its editors. Likewise, the appearance of ad- vertisers does not constitute an endorsement of the products or Please visit us at... featured services. www.southfloridapalmsociety.com South Florida Palm Society Palm Florida South In This Issue Featured Palm Ask the Grower ………… 4 Licuala ramsayi Request for E-mail Addresses ………… 5 This large and beautiful Licuala will grow 45-50’ tall in habitat and makes its Membership Renewal ………… 6 home along the riverbanks and in the swamps of the rainforest of north Queen- sland, Australia. The slow-growing, water-loving Licuala ramsayi prefers heavy Featured Palm ………… 7 shade as a juvenile but will tolerate several hours of direct sun as it matures. It prefers a slightly acidic soil and will appreciate regular mulching and protection Upcoming Events ………… 8 from heavy winds. While being one of the more cold-tolerant licualas, it is still subtropical and should be protected from frost.
    [Show full text]