Notes on the Pollination Ecology of the Palm Genus Johannesteijsmannia (A Recaceae )
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Aiphanes Grandis Borchs
Palm Conservation – Palm Specialist Group Aiphanes grandis Borchs. & Balslev Status: Endangered (EN) Common name None recorded Natural range Aiphanes grandis is endemic to the western slopes of the Andes mountains in Ecuador, at elevations between 1000 and 2000 m. It occurs in cloud forest in the central and southern parts of the country. Recognition characteristics It is a large, solitary palm tree, with a stem up to 20 m tall and 10–20 cm in diameter. The stem and leaves are fiercely armed with long, black spines. The leaf blade is 200–250 cm long with up to 50 leaflets on each side, briefly jagged at apex, inserted in groups and pointing in different directions. The inflorescence is 1–1.5 m long, with up to 200 spreading branches. Flowers are white to pale yellow and fruits 2–3 cm in diameter, dull green and covered with brown, loosely attached bristles. The combination of jagged leaflets and large size distinguishes the species from all other South American palms. Natural history Little is known about the natural history of the species. The palm heart is edible, and its seeds are sometimes pureed and cooked with crude cane sugar to form a nougat-like paste. Threats to survival The estimated loss of potential habitat for A. grandis, based on habitat modeling, is 62%, most of which has occurred over the last 30–40 years. The west Andean mountain forest in southern and central Ecudor, where A. grandis occurs, harbors a high number of endemic plant species. It is also the home to remnant populations of such conspicuous palm species as Ceroxylon ventricosum and C. -
Monocotyledons and Gymnosperms of Puerto Rico and the Virgin Islands
SMITHSONIAN INSTITUTION Contributions from the United States National Herbarium Volume 52: 1-415 Monocotyledons and Gymnosperms of Puerto Rico and the Virgin Islands Editors Pedro Acevedo-Rodríguez and Mark T. Strong Department of Botany National Museum of Natural History Washington, DC 2005 ABSTRACT Acevedo-Rodríguez, Pedro and Mark T. Strong. Monocots and Gymnosperms of Puerto Rico and the Virgin Islands. Contributions from the United States National Herbarium, volume 52: 415 pages (including 65 figures). The present treatment constitutes an updated revision for the monocotyledon and gymnosperm flora (excluding Orchidaceae and Poaceae) for the biogeographical region of Puerto Rico (including all islets and islands) and the Virgin Islands. With this contribution, we fill the last major gap in the flora of this region, since the dicotyledons have been previously revised. This volume recognizes 33 families, 118 genera, and 349 species of Monocots (excluding the Orchidaceae and Poaceae) and three families, three genera, and six species of gymnosperms. The Poaceae with an estimated 89 genera and 265 species, will be published in a separate volume at a later date. When Ackerman’s (1995) treatment of orchids (65 genera and 145 species) and the Poaceae are added to our account of monocots, the new total rises to 35 families, 272 genera and 759 species. The differences in number from Britton’s and Wilson’s (1926) treatment is attributed to changes in families, generic and species concepts, recent introductions, naturalization of introduced species and cultivars, exclusion of cultivated plants, misdeterminations, and discoveries of new taxa or new distributional records during the last seven decades. -
Ornamental Garden Plants of the Guianas, Part 3
; Fig. 170. Solandra longiflora (Solanaceae). 7. Solanum Linnaeus Annual or perennial, armed or unarmed herbs, shrubs, vines or trees. Leaves alternate, simple or compound, sessile or petiolate. Inflorescence an axillary, extra-axillary or terminal raceme, cyme, corymb or panicle. Flowers regular, or sometimes irregular; calyx (4-) 5 (-10)- toothed; corolla rotate, 5 (-6)-lobed. Stamens 5, exserted; anthers united over the style, dehiscing by 2 apical pores. Fruit a 2-celled berry; seeds numerous, reniform. Key to Species 1. Trees or shrubs; stems armed with spines; leaves simple or lobed, not pinnately compound; inflorescence a raceme 1. S. macranthum 1. Vines; stems unarmed; leaves pinnately compound; inflorescence a panicle 2. S. seaforthianum 1. Solanum macranthum Dunal, Solanorum Generumque Affinium Synopsis 43 (1816). AARDAPPELBOOM (Surinam); POTATO TREE. Shrub or tree to 9 m; stems and leaves spiny, pubescent. Leaves simple, toothed or up to 10-lobed, to 40 cm. Inflorescence a 7- to 12-flowered raceme. Corolla 5- or 6-lobed, bluish-purple, to 6.3 cm wide. Range: Brazil. Grown as an ornamental in Surinam (Ostendorf, 1962). 2. Solanum seaforthianum Andrews, Botanists Repository 8(104): t.504 (1808). POTATO CREEPER. Vine to 6 m, with petiole-tendrils; stems and leaves unarmed, glabrous. Leaves pinnately compound with 3-9 leaflets, to 20 cm. Inflorescence a many- flowered panicle. Corolla 5-lobed, blue, purple or pinkish, to 5 cm wide. Range:South America. Grown as an ornamental in Surinam (Ostendorf, 1962). Sterculiaceae Monoecious, dioecious or polygamous trees and shrubs. Leaves alternate, simple to palmately compound, petiolate. Inflorescence an axillary panicle, raceme, cyme or thyrse. -
A Review of Animal-Mediated Seed Dispersal of Palms
Selbyana 11: 6-21 A REVIEW OF ANIMAL-MEDIATED SEED DISPERSAL OF PALMS SCOTT ZoNA Rancho Santa Ana Botanic Garden, 1500 North College Avenue, Claremont, California 91711 ANDREW HENDERSON New York Botanical Garden, Bronx, New York 10458 ABSTRACT. Zoochory is a common mode of dispersal in the Arecaceae (palmae), although little is known about how dispersal has influenced the distributions of most palms. A survey of the literature reveals that many kinds of animals feed on palm fruits and disperse palm seeds. These animals include birds, bats, non-flying mammals, reptiles, insects, and fish. Many morphological features of palm infructescences and fruits (e.g., size, accessibility, bony endocarp) have an influence on the animals which exploit palms, although the nature of this influence is poorly understood. Both obligate and opportunistic frugivores are capable of dispersing seeds. There is little evidence for obligate plant-animaI mutualisms in palm seed dispersal ecology. In spite of a considerable body ofliterature on interactions, an overview is presented here ofthe seed dispersal (Guppy, 1906; Ridley, 1930; van diverse assemblages of animals which feed on der Pijl, 1982), the specifics ofzoochory (animal palm fruits along with a brief examination of the mediated seed dispersal) in regard to the palm role fruit and/or infructescence morphology may family have been largely ignored (Uhl & Drans play in dispersal and subsequent distributions. field, 1987). Only Beccari (1877) addressed palm seed dispersal specifically; he concluded that few METHODS animals eat palm fruits although the fruits appear adapted to seed dispersal by animals. Dransfield Data for fruit consumption and seed dispersal (198lb) has concluded that palms, in general, were taken from personal observations and the have a low dispersal ability, while Janzen and literature, much of it not primarily concerned Martin (1982) have considered some palms to with palm seed dispersal. -
Aiphanes Acaulis, a New Species from Colombia
20 PRINCIPES (VOL. 29 Principe., 29(1), 1985, pp. 20-22 Aiphanes acaulis, a New Species from Colombia GLORIA GALEANO-GARCES l AND RODRIGO BERNAL-GONZALEZ2 Recent explorations for palms in north morsely toothed at apex, the upper mar western Colombia have revealed several gin produced into a cauda to 4 cm long, novelties, one of which, an interesting the apical pinnae narrowly cuneate, stemless species of Aiphanes, is described obliquely truncate at apex, 1-3 nerved, here as new to science. all pinnae glabrous above, the midnerve armed with 1-3 slender, bicolor, to 2 cm Aiphanes acaulis Galeano & Bernal sp. long bristles, glabrous below or with very nov. (Fig. 1) short, purplish-black bristles scattered on surface and veins; basal pinnae 7-24.5 Palma solitaria acaulis. Pinnae utrinque cm long along the upper margin, 0.7-2.1 18-30 regulariter in eadem planitie inser cm wide, central pinnae 10.8-27 cm long, tae, lineares vel angustissime cuneatae. 1.7-2.5 cm wide, apical pinnae 6.5-15.5 Spadix simplex. Antherae subquadraticae. cm long, to 5.6 cm wide at apex. Inflo Pistillodium inerme. rescence spicate: prophyll 16-26 cm long, Solitary, acaulescent. Leaves 8-10: 7-11 mm wide, linear, unarmed adaxi sheath 11-16 cm long, 1 cm wide, fibrous, ally, densely covered abaxially with irreg densely covered abaxially with irregular, ular brown scales and with very short, dark brown scales and with purplish-brown, appressed, purplish-brown bristles; pedun less than 0.5 mm long bristles, usually cular bract 37.5-94 cm long, unarmed, with a few -
Seed Geometry in the Arecaceae
horticulturae Review Seed Geometry in the Arecaceae Diego Gutiérrez del Pozo 1, José Javier Martín-Gómez 2 , Ángel Tocino 3 and Emilio Cervantes 2,* 1 Departamento de Conservación y Manejo de Vida Silvestre (CYMVIS), Universidad Estatal Amazónica (UEA), Carretera Tena a Puyo Km. 44, Napo EC-150950, Ecuador; [email protected] 2 IRNASA-CSIC, Cordel de Merinas 40, E-37008 Salamanca, Spain; [email protected] 3 Departamento de Matemáticas, Facultad de Ciencias, Universidad de Salamanca, Plaza de la Merced 1–4, 37008 Salamanca, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-923219606 Received: 31 August 2020; Accepted: 2 October 2020; Published: 7 October 2020 Abstract: Fruit and seed shape are important characteristics in taxonomy providing information on ecological, nutritional, and developmental aspects, but their application requires quantification. We propose a method for seed shape quantification based on the comparison of the bi-dimensional images of the seeds with geometric figures. J index is the percent of similarity of a seed image with a figure taken as a model. Models in shape quantification include geometrical figures (circle, ellipse, oval ::: ) and their derivatives, as well as other figures obtained as geometric representations of algebraic equations. The analysis is based on three sources: Published work, images available on the Internet, and seeds collected or stored in our collections. Some of the models here described are applied for the first time in seed morphology, like the superellipses, a group of bidimensional figures that represent well seed shape in species of the Calamoideae and Phoenix canariensis Hort. ex Chabaud. -
THE LESSER ANTILLES: Aboard the Sea Cloud
THE LESSER ANTILLES: Aboard the Sea Cloud FEBRUARY 10-18, 2016 Red-necked Parrot, Amazona arausiaca LEADERS: VICTOR EMANUEL, BARRY LYON, DAVID ASCANIO, PETER ZIKA & JOHN HARRISON COMPILED BY: DAVID ASCANIO VICTOR EMANUEL NATURE TOURS, INC. 2525 WALLINGWOOD DRIVE, SUITE 1003 AUSTIN, TEXAS 78746 WWW.VENTBIRD.COM THE LESSER ANTILLES ABOARD THE SEA CLOUD FEBRUARY 10-18, 2016 By David Ascanio Once again, a sea with pastel blue or green colors, an incredible and rich history, outstanding cuisine, and the beautiful and breathtaking Sea Cloud, combined with exquisite birds resulted in a memorable journey across six of the Lesser Antilles to see all of the endemic parrots, tremblers, hummingbirds, orioles, and bullfinches that these islands offer. Our treasure wasn’t gold, nor sugar. It was every one of the endemic or the restricted distribution birds. It seemed as if every island offered a unique challenge to finding these treasures. Barbados was the easy task. In Dominica and Martinique we practiced patience. In Guadeloupe we built a successful group dynamic, while St. Lucia and St. Vincent challenged us with trails. Each day offered a unique experience, as if each of the Lesser Antilles had a distinctive personality. We started in British-flavored Barbados. A visit to the Graeme Hall Reserve allowed views of one of the few populations of Little Egret in the Americas. We also saw our first target species, the Barbados Bullfinch, one that’s so common that you can see it wandering around the swimming pool area of the hotel. After a full day sailing north, we made it to Dominica. -
Mar2009sale Finalfinal.Pub
March SFPS Board of Directors 2009 2009 The Palm Report www.southfloridapalmsociety.com Tim McKernan President John Demott Vice President Featured Palm George Alvarez Treasurer Bill Olson Recording Secretary Lou Sguros Corresponding Secretary Jeff Chait Director Sandra Farwell Director Tim Blake Director Linda Talbott Director Claude Roatta Director Leonard Goldstein Director Jody Haynes Director Licuala ramsayi Palm and Cycad Sale The Palm Report - March 2009 March 14th & 15th This publication is produced by the South Florida Palm Society as Montgomery Botanical Center a service to it’s members. The statements and opinions expressed 12205 Old Cutler Road, Coral Gables, FL herein do not necessarily represent the views of the SFPS, it’s Free rare palm seedlings while supplies last Board of Directors or its editors. Likewise, the appearance of ad- vertisers does not constitute an endorsement of the products or Please visit us at... featured services. www.southfloridapalmsociety.com South Florida Palm Society Palm Florida South In This Issue Featured Palm Ask the Grower ………… 4 Licuala ramsayi Request for E-mail Addresses ………… 5 This large and beautiful Licuala will grow 45-50’ tall in habitat and makes its Membership Renewal ………… 6 home along the riverbanks and in the swamps of the rainforest of north Queen- sland, Australia. The slow-growing, water-loving Licuala ramsayi prefers heavy Featured Palm ………… 7 shade as a juvenile but will tolerate several hours of direct sun as it matures. It prefers a slightly acidic soil and will appreciate regular mulching and protection Upcoming Events ………… 8 from heavy winds. While being one of the more cold-tolerant licualas, it is still subtropical and should be protected from frost. -
Systematics and Evolution of the Rattan Genus Korthalsia Bl
SYSTEMATICS AND EVOLUTION OF THE RATTAN GENUS KORTHALSIA BL. (ARECACEAE) WITH SPECIAL REFERENCE TO DOMATIA A thesis submitted by Salwa Shahimi For the Degree of Doctor of Philosophy School of Biological Sciences University of Reading February 2018 i Declaration I can confirm that is my own work and the use of all material from other sources have been properly and fully acknowledged. Salwa Shahimi Reading, February 2018 ii ABSTRACT Korthalsia is a genus of palms endemic to Malesian region and known for the several species that have close associations with ants. In this study, 101 new sequences were generated to add 18 Korthalsia species from Malaysia, Singapore, Myanmar and Vietnam to an existing but unpublished data set for calamoid palms. Three nuclear (prk, rpb2, and ITS) and three chloroplast (rps16, trnD-trnT and ndhF) markers were sampled and Bayesian Inference and Maximum Likelihood methods of tree reconstruction used. The new phylogeny of the calamoids was largely congruent with the published studies, though the taxon sampling was more thorough. Each of the three tribes of the Calamoideae appeared to be monophyletic. The Eugeissoneae was consistently resolved as sister to Calameae and Lepidocaryeae, and better resolved, better supported topologies below the tribal level were identified. Korthalsia is monophyletic, and novel hypotheses of species level relationships in Korthalsia were put forward. These hypotheses of species level relationships in Korthalsia served as a framework for the better understanding of the evolution of ocrea. The morphological and developmental study of ocrea in genus Korthalsia included detailed study using Light and Scanning Electron Microscopy for seven samples of 28 species of Korthalsia, in order to provide understanding of ocrea morphological traits. -
Perennial Edible Fruits of the Tropics: an and Taxonomists Throughout the World Who Have Left Inventory
United States Department of Agriculture Perennial Edible Fruits Agricultural Research Service of the Tropics Agriculture Handbook No. 642 An Inventory t Abstract Acknowledgments Martin, Franklin W., Carl W. Cannpbell, Ruth M. Puberté. We owe first thanks to the botanists, horticulturists 1987 Perennial Edible Fruits of the Tropics: An and taxonomists throughout the world who have left Inventory. U.S. Department of Agriculture, written records of the fruits they encountered. Agriculture Handbook No. 642, 252 p., illus. Second, we thank Richard A. Hamilton, who read and The edible fruits of the Tropics are nnany in number, criticized the major part of the manuscript. His help varied in form, and irregular in distribution. They can be was invaluable. categorized as major or minor. Only about 300 Tropical fruits can be considered great. These are outstanding We also thank the many individuals who read, criti- in one or more of the following: Size, beauty, flavor, and cized, or contributed to various parts of the book. In nutritional value. In contrast are the more than 3,000 alphabetical order, they are Susan Abraham (Indian fruits that can be considered minor, limited severely by fruits), Herbert Barrett (citrus fruits), Jose Calzada one or more defects, such as very small size, poor taste Benza (fruits of Peru), Clarkson (South African fruits), or appeal, limited adaptability, or limited distribution. William 0. Cooper (citrus fruits), Derek Cormack The major fruits are not all well known. Some excellent (arrangements for review in Africa), Milton de Albu- fruits which rival the commercialized greatest are still querque (Brazilian fruits), Enriquito D. -
Johannesteijsmannia Altifrons in PALM BEACH COUNTY
GROWING Johannesteijsmannia altifrons IN PALM BEACH COUNTY Submitted by Ernesto Rodriguez Johannesteijsmannia altifrons is found in Sumatra, peninsular Malaysia, southern Thailand, and western Borneo. It grows in mountainous rain forest on ridge tops and slopes from near sea-level to about 3000 feet altitude. The epithet is Latin for “tall frond” and the centermost leaf can reach as high as 20 feet. The species is commonly referred to as the diamond joey. The palm has a creeping, subterranean trunk and a cluster of up to thirty leaves which form an impressive erect tussock. The petioles are 6-10 feet long and are armed with sawlike teeth. The diamond- shaped blades are prominently ribbed and with coarsely toothed margins and can be 10 feet long in older plants and 6 feet wide at their broadest points. The white flowers have a sour smell and a corky fruit that is brown when ripe. Fresh seed takes about three months to germinate but may be erratic. Seedlings are slow growing and must be given ample room to develop since the radicle buries about 4-5 inches deep in the soil before the first leaf is formed. Each fruit can contain up to three seeds. Plants are generally best suited to the tropics but are proving to be adaptable and success has been achieved in the subtropics. They require a sheltered position protected from excess sun and wind. Well- drained, loamy soils rich in organic matter, mulches and regular watering are useful for these lovely palms. Plants are very sensitive to root disturbance; be extremely careful when potting up, or planting out. -
Covers an Estimated Sixty Reside on the Island’S North-East Coast, Where Percent of the 289.8 Sq
Palms Journal of the International Palm Society Vol. 53(2) Jun. 2009 THE INTERNATIONAL PALM SOCIETY, INC. The International Palm Society Palms (formerly PRINCIPES) Journal of The International Palm Society Founder: Dent Smith An illustrated, peer-reviewed quarterly devoted to The International Palm Society is a nonprofit corporation information about palms and published in March, engaged in the study of palms. The society is inter- June, September and December by The International national in scope with worldwide membership, and the Palm Society, 810 East 10th St., P.O. Box 1897, formation of regional or local chapters affiliated with the Lawrence, Kansas 66044-8897, USA. international society is encouraged. Please address all inquiries regarding membership or information about Editors: John Dransfield, Herbarium, Royal Botanic the society to The International Palm Society Inc., 6913 Gardens, Kew, Richmond, Surrey, TW9 3AE, United Poncha Pass, Austin, TX 78749-4371 USA. e-mail Kingdom, e-mail [email protected], tel. 44- [email protected], fax 512-607-6468. 20-8332-5225, Fax 44-20-8332-5278. Scott Zona, Dept. of Biological Sciences, Florida OFFICERS: International University (OE 167), 11200 SW 8 St., President: Bo-Göran Lundkvist, P.O. Box 2071, Pahoa, Miami, Florida 33199 USA, e-mail [email protected], tel. Hawaii 96778 USA, e-mail 1-305-348-1247, Fax 1-305-348-1986. [email protected], tel. 1-808-965-0081. Associate Editor: Natalie Uhl, 228 Plant Science, Vice-Presidents: John DeMott, 18455 SW 264 St, Cornell University, Ithaca, New York 14853 USA, e- Homestead, Florida 33031 USA, e-mail mail [email protected], tel.