Disulfide Bridging the Gap Between Src and Cortactin: a New Paradigm in SH2 Domain-Mediated Signaling

Total Page:16

File Type:pdf, Size:1020Kb

Disulfide Bridging the Gap Between Src and Cortactin: a New Paradigm in SH2 Domain-Mediated Signaling Graduate Theses, Dissertations, and Problem Reports 2013 Disulfide Bridging the Gap between Src and Cortactin: A New Paradigm in SH2 Domain-mediated Signaling Jason VanBuren Evans West Virginia University Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Evans, Jason VanBuren, "Disulfide Bridging the Gap between Src and Cortactin: A New Paradigm in SH2 Domain-mediated Signaling" (2013). Graduate Theses, Dissertations, and Problem Reports. 427. https://researchrepository.wvu.edu/etd/427 This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Disulfide Bridging the Gap between Src and Cortactin: A New Paradigm in SH2 Domain-mediated Signaling Jason VanBuren Evans Dissertation Submitted to the School of Medicine at West Virginia University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Cancer Cell Biology Laura Gibson, Ph.D., Chair Jun Liu, Ph.D. Karen Martin, Ph.D. Yong Qian, Ph.D. Robert Wysolmerski, Ph.D. Scott Weed, Ph.D., Mentor Cancer Cell Biology Program Morgantown, West Virginia 2013 Keywords: Src, SH2, Cortactin, Disulfide Abstract Disulfide Bridging the Gap between Src and Cortactin: A New Paradigm in SH2 Domain-mediated Signaling Jason V. Evans Src and cortactin are cytoplasmic proteins that are implicated in cancer progression and metastasis. Src is a non-receptor tyrosine kinase that also regulates normal cell homeostasis through phosphorylation of multiple downstream substrates. Cortactin is an actin binding protein and nucleation promoting factor that promotes the formation of stable branching networks within the actin cytoskeleton. Together, these proteins work in concert to promote the invasive and metastatic potential of tumor cells due to tyrosine phosphorylation of cortactin by Src. However, the mechanistic details of the interaction between Src and cortactin have never been elucidated. Collectively, this work aims to define how Src and cortactin interact to drive tumor cell invasion. The first study examines the mechanism of interaction between Src and cortactin, whereby the Src SH2 domain interacts with cortactin via a disulfide bond formation and that this binding event is necessary for the formation of pro-invasive invadopodia. The work here also defines a paradigm shift in how SH2 domain-containing proteins interact with reciprocal binding partners. The second study characterizes potential structural changes in cortactin resultant from phosphorylation by extracellular regulated protein kinases (ERKs) in order to gain structural insight into how cortactin conformation is regulated downstream of growth factor-mediated signaling events. The final study focuses on the creation of cortactin biosensor to directly monitor changes in cortactin conformation using FRET-based imaging. Taken together, these studies provide novel insights into the molecular events involved in regulating invasive tumor cell signal transduction and overall control of cortical actin dynamics during tumor metastasis. Dedication I would like to dedicate this to my wife, Tracie, and daughter, Roselyn. The two of you have been an infinite source of inspiration, courage, and strength. My accomplishments exist because of your love and support. iii Acknowledgements I would first like to acknowledge my wonderful wife, Tracie, for her continuous encouragement and support throughout this stage of my career. Beyond that, we have shared many memories with one another throughout our years together at WVU and in Morgantown. May this only be the beginning of our adventure in life! Together we have conquered many obstacles and have brought into this world a beautiful little girl, Roselyn Kate. This blessing to us has given me a new meaning and perspective on life. For this, I am grateful to you both for the person you have shown me I can be. I would also like to also thank my parents, Johnny and Linda Evans, for their 30+ years of love and support of myself and my dreams. Their teachings on hard work and being driven have structured the core of my personality that has allowed me to succeed in academic life as well as life in general. For that, you have my eternal thanks. Next I would like to thank my mentor, Scott Weed, Ph.D. Thank you ever so much for the opportunity to pursue my dreams in your lab. I have learned much from you in these past seven years, in both matters of science and research, as well as life. Thank you for your encouragement and confidence in my abilities. It will not go forgotten. To my committee, I would like to thank Dr. Laura Gibson, Dr. Jun Liu, Dr. Karen Martin, Dr. Yong Qian, and Dr. Robert Wysolmerski for sharing their experience and insight over the years. All of you have truly made committee meetings a source of knowledge and exciting ideas. Thank you. To past and present members of the Weed Lab, thank you for the shared laughter and pain the years have brought our way. It would have been a tough road to travel alone. Lastly, I would like to thank the Cancer Cell Biology program, West Virginia University, and the great state of West Virginia. To the CCB program, thank you for the opportunities over the years and providing the vessel to hone my scientific skills. In my experiences, our impact as a program and Cancer Center reaches well beyond our halls. To WVU, the experiences I’ve had since I started my undergraduate career in 2000 have been fantastic! The friends made and good times shared are memories that I will undoubtedly hold close to my heart for the rest of my life. Last, but most certainly not least, to the state of West Virginia. The state I was born and raised. The state I played in the mountains and streams as a child. The state that molded me into the person I am today. To you, I am forever grateful for your rugged beauty and I pray that your country roads always lead me home. iv Table of Contents Abstract……………………………………………………………………………...........ii Dedication………………………………………………………………………………….iii Acknowledgements……………………………………………………………………….iv Table of Contents…………………………………………………………………………v List of Figures……………………………………………………………………………..vi Glossary……………………………………………………………………………………vii Literature Review…………………………………………………………………………1 Src: Function and Domain-based Regulation Cortactin: Integrator of Actin Cytoskeletal Signaling Src and Cortactin: Phosphoregulation of the Actin Cytoskeleton SH2 Domains: Non-Conventional Interactions Study 1: Src Binds Cortactin Through a SH2 Domain............................................51 Cystine-mediated Linkage Study 2: Further Insights into Cortactin………………………………………………104 Conformational Regulation Study 3: Construction of a FRET-based Cortactin Biosensor……………………..115 Discussion………………………………………………………………………………..127 Appendix Curriculum Vitae…………………………………………………………………136 v List of Figures Literature Review 1. Src kinase structure and role in tumor invasion. 2. Cortactin structure and role in tumor invasion. 3. Src and cortatin work in concert to regulate cell motility and invasion. Study 1 1. Src SH2 Binding to Cortactin Does not Involve Tyrosine Phosphorylation and Binds Cortactin Repeats 1 and 5 2. Cortactin Cysteines 112 and 246 are Required for Src SH2 Domain Binding 3. Cysteine-containing Cortactin Peptides Dock Within the Src SH2 Phosphotyrosine Binding Region 4. Binding and Phosphorylation of Cortactin by Src is Redox Dependent and Requires Src C185 5. Src C-185 Forms a Cystine Bond with Cortactin C112 and C246 6. Cortactin C112/246 is Essential for Phosphotyrosine-based Cortactin Function 7. Model of cysteine-mediated interactions in cortactin regulation Table 1. Observed and predicted ion masses of GST-Src-SH2, GST-Src-SH2 + cortactin C112 and GST-Src-SH2 + cortactin C246 tryptic peptides Supplemental Figures: 1. Src Binding to Cortactin Requires the SH2 Domain and is Phosphotyrosine Independent 2. Phosphorylation of Recombinant Cortactin by Src and Mapping of Src SH2 Binding to the Cortactin Amino Terminal Domain 3. Schematic Diagram of Cortactin Constructs Used in this Study 4. Src SH2 Domain Does not Bind to the 5th Cortactin Repeat vi 5. Src SH2 R175A Retains Binding to Cortactin 6. Y-ion Analysis of Cystine bonding between Src C185 and cortactin C112 and C246 7. Expression of Cortactin Mutants in Cortactin Knockdown Cells and F-actin Co-sedimentation of Cortactin Mutants Study 2 1. Analysis of cortactin secondary structure following ERK1 phosphorylation Study 3 1. Design and testing of a FRET-based cortactin Biosensor 2. Creation and schematic of function of cortactin biosensor and controls vii Glossary 3D Three Dimensional Å Angstrom A Alanine ADF Actin Depolymerizing Factor AFAP Actin Filament Associated Protein Arp Actin related protein ATP Adenosine Triphosphate BCR Breakpoint Cluster Region C Celsius/Cysteine c- Cellular CAS Crk-associated substrate CBL Casitas B-lineage CD Circular Dichroism
Recommended publications
  • SRC Antibody - N-Terminal Region (ARP32476 P050) Data Sheet
    SRC antibody - N-terminal region (ARP32476_P050) Data Sheet Product Number ARP32476_P050 Product Name SRC antibody - N-terminal region (ARP32476_P050) Size 50ug Gene Symbol SRC Alias Symbols ASV; SRC1; c-SRC; p60-Src Nucleotide Accession# NM_005417 Protein Size (# AA) 536 amino acids Molecular Weight 60kDa Product Format Lyophilized powder NCBI Gene Id 6714 Host Rabbit Clonality Polyclonal Official Gene Full Name V-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog (avian) Gene Family SH2D This is a rabbit polyclonal antibody against SRC. It was validated on Western Blot by Aviva Systems Biology. At Aviva Systems Biology we manufacture rabbit polyclonal antibodies on a large scale (200-1000 Description products/month) of high throughput manner. Our antibodies are peptide based and protein family oriented. We usually provide antibodies covering each member of a whole protein family of your interest. We also use our best efforts to provide you antibodies recognize various epitopes of a target protein. For availability of antibody needed for your experiment, please inquire (). Peptide Sequence Synthetic peptide located within the following region: QTPSKPASADGHRGPSAAFAPAAAEPKLFGGFNSSDTVTSPQRAGPLAGG This gene is highly similar to the v-src gene of Rous sarcoma virus. This proto-oncogene may play a role in the Description of Target regulation of embryonic development and cell growth. SRC protein is a tyrosine-protein kinase whose activity can be inhibited by phosphorylation by c-SRC kinase. Mutations in this gene could be involved in the
    [Show full text]
  • The Wiskott-Aldrich Syndrome: the Actin Cytoskeleton and Immune Cell Function
    Disease Markers 29 (2010) 157–175 157 DOI 10.3233/DMA-2010-0735 IOS Press The Wiskott-Aldrich syndrome: The actin cytoskeleton and immune cell function Michael P. Blundella, Austen Wortha,b, Gerben Boumaa and Adrian J. Thrashera,b,∗ aMolecular Immunology Unit, UCL Institute of Child Health, London, UK bDepartment of Immunology, Great Ormond Street Hospital NHS Trust, Great Ormond Street, London, UK Abstract. Wiskott-Aldrich syndrome (WAS) is a rare X-linked recessive primary immunodeficiency characterised by immune dysregulation, microthrombocytopaenia, eczema and lymphoid malignancies. Mutations in the WAS gene can lead to distinct syndrome variations which largely, although not exclusively, depend upon the mutation. Premature termination and deletions abrogate Wiskott-Aldrich syndrome protein (WASp) expression and lead to severe disease (WAS). Missense mutations usually result in reduced protein expression and the phenotypically milder X-linked thrombocytopenia (XLT) or attenuated WAS [1–3]. More recently however novel activating mutations have been described that give rise to X-linked neutropenia (XLN), a third syndrome defined by neutropenia with variable myelodysplasia [4–6]. WASP is key in transducing signals from the cell surface to the actin cytoskeleton, and a lack of WASp results in cytoskeletal defects that compromise multiple aspects of normal cellular activity including proliferation, phagocytosis, immune synapse formation, adhesion and directed migration. Keywords: Wiskott-Aldrich syndrome, actin polymerization, lymphocytes,
    [Show full text]
  • Mitochondrial Membrane Binding and Protein Complexing of the Anti-Apoptotic Adaptor Protein Grblo
    Mitochondrial membrane binding and protein complexing of the anti-apoptotic adaptor protein GrblO. by Jennifer Hassard Department of Biology McGill University, Montreal A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master's of Science August 2001 Supervisor: Dr. David Thomas, Department of Biochemistry © Jennifer Hassard, 2001 .....--. National Library Bibliothèque nationale 1+1 of Canada du Canada Acquisitions and Acquisitions et Bibliographie Services services bibliographiques 395 Wellington Street 395. rue Wellington OttawaON K1A0N4 Ottawa ON K1 A ON4 canada canada Your liIe VoIJ8 rrlfénJnce Our liIe Notre rtifénlncs The author has granted a non­ L'auteur a accordé une licence non exclusive licence al10wing the exclusive permettant à la National Library ofCanada to Bibliothèque nationale du Canada de reproduce, loan, distribute or sell reproduire, prêter, distribuer ou copies ofthis thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/film, de reproduction sur papier ou sur format électronique. The author retains ownership ofthe L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts from it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the autbor's ou autrement reproduits sans son penmsslon. autorisation. 0-612-78889-X Canada ABSTRACT GrblO is a member of the Grb7 family of adaptor proteins that also includes Grb7 and Grb14. These three members contain multiple protein binding domains and lack enzymatic activity.
    [Show full text]
  • Table 2. Significant
    Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S.
    [Show full text]
  • TLR4 Endocytic Trafficking in Macrophages Modulates TLR4
    Glia Maturation Factor-γ Negatively Modulates TLR4 Signaling by Facilitating TLR4 Endocytic Trafficking in Macrophages This information is current as Wulin Aerbajinai, Kevin Lee, Kyung Chin and Griffin P. of September 28, 2021. Rodgers J Immunol 2013; 190:6093-6103; Prepublished online 15 May 2013; doi: 10.4049/jimmunol.1203048 http://www.jimmunol.org/content/190/12/6093 Downloaded from References This article cites 47 articles, 19 of which you can access for free at: http://www.jimmunol.org/content/190/12/6093.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 28, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Glia Maturation Factor-g Negatively Modulates TLR4 Signaling by Facilitating TLR4 Endocytic Trafficking in Macrophages Wulin Aerbajinai, Kevin Lee, Kyung Chin, and Griffin P. Rodgers TLR4 signaling must be tightly regulated to provide both effective immune protection and avoid inflammation-induced pathology. Thus, the mechanisms that negatively regulate the TLR4-triggered inflammatory response are of particular importance.
    [Show full text]
  • Stimulation of Endogenous GH and Interleukin-6 Receptors Selectively Activates Different Jaks and Stats, with a Stat5 Specific Synergistic Effect of Dexamethasone
    301 Stimulation of endogenous GH and interleukin-6 receptors selectively activates different Jaks and Stats, with a Stat5 specific synergistic effect of dexamethasone S von Laue1, J Finidori3, M Maamra1, X-Y Shen1, S Justice1, P R M Dobson2 and R J M Ross1 1Division of Clinical Sciences, University of Sheffield, UK 2Institute for Cancer Studies, University of Sheffield, UK 3INSERM, Unité 344, Faculté de Médecine Necker, Paris, France (Requests for offprints should be addressed to S von Laue, INSERM U344, Laboratoire d’Endocrinologie Moléculaire, Faculté de Médecine Necker-Enfants Malades, 156, rue de Vaugirard, 75 730 Paris cedex 15, France; Email: [email protected]) Abstract The interaction of GH, interleukin (IL)-6 and glucocorti- Stat3 activation. In contrast, the reporter gene containing coids is likely to be important in regulating the GH- the Stat3 responsive element (SIE) was IL-6 specific. The insulin-like growth factor (IGF)-I axis. The signalling levels of gene induction by GH and IL-6 were not altered cascades activated by GH and IL-6 appear to be very by the co-stimulation with GH and IL-6, suggesting that similar, as demonstrated by studies using overexpression of there is little cross-talk at the Jak–Stat activation level the receptor and other components of the Jak-Stat and between the two cytokines. Neither GH nor IL-6 acti- mitogen-activated protein (MAP) kinase pathways. Here vated the MAP-kinase responsive serum response element we show that the human embryonic kidney cell line 293 (SRE), unless GH receptors or gp130 were overexpressed. (HEK293) expresses GH and IL-6 receptors endogenously.
    [Show full text]
  • Increased in Vivo Phosphorylation of Ret Tyrosine 1062 Is a Potential Pathogenetic Mechanism of Multiple Endocrine Neoplasia Type 2B1
    [CANCER RESEARCH 61, 1426–1431, February 15, 2001] Increased in Vivo Phosphorylation of Ret Tyrosine 1062 Is a Potential Pathogenetic Mechanism of Multiple Endocrine Neoplasia Type 2B1 Domenico Salvatore, Rosa Marina Melillo, Carmen Monaco, Roberta Visconti, Gianfranco Fenzi, Giancarlo Vecchio, Alfredo Fusco, and Massimo Santoro2 Centro di Endocrinologia ed Oncologia Sperimentale del CNR, c/o Dipartimento di Biologia e Patologia Cellulare e Molecolare [D. S., R. M. M., C. M., R. V., G. V., M. S.], and Dipartimento di Endocrinologia ed Oncologia Molecolare e Clinica, Facolta` di Medicina e Chirurgia [G. F.], Universita` di Napoli “Federico II,” Naples, Italy; and Dipartimento di Medicina Sperimentale e Clinica, Facolta`di Medicina e Chirurgia di Catanzaro, Universita`di Catanzaro, Catanzaro [A. F], Italy ABSTRACT are responsible for the inheritance of MEN2A and MEN2B and FMTC. Each disease has a distinct phenotype: MEN2A is associated Mutations of the Ret receptor tyrosine kinase are responsible for with MTC, pheochromocytoma, and parathyroid hyperplasia. The inheritance of multiple endocrine neoplasia (MEN2A and MEN2B) and MEN2B phenotype is more severe, being characterized by an earlier familial medullary thyroid carcinoma syndromes. Although several famil- ial medullary thyroid carcinoma and most MEN2A mutations involve occurrence of more aggressive MTC. Unlike MEN2A patients, substitutions of extracellular cysteine residues, in most MEN2B cases MEN2B patients develop multiple mucosal neuromas and several there is a methionine-to-threonine substitution at position 918 (M918T) of skeletal abnormalities. Finally, FMTC consists only of an inherited the Ret kinase domain. The mechanism by which the MEN2B mutation predisposition to MTC (3). Involvement of different tissues corre- converts Ret into a potent oncogene is poorly understood.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • ITRAQ-Based Quantitative Proteomic Analysis of Processed Euphorbia Lathyris L
    Zhang et al. Proteome Science (2018) 16:8 https://doi.org/10.1186/s12953-018-0136-6 RESEARCH Open Access ITRAQ-based quantitative proteomic analysis of processed Euphorbia lathyris L. for reducing the intestinal toxicity Yu Zhang1, Yingzi Wang1*, Shaojing Li2*, Xiuting Zhang1, Wenhua Li1, Shengxiu Luo1, Zhenyang Sun1 and Ruijie Nie1 Abstract Background: Euphorbia lathyris L., a Traditional Chinese medicine (TCM), is commonly used for the treatment of hydropsy, ascites, constipation, amenorrhea, and scabies. Semen Euphorbiae Pulveratum, which is another type of Euphorbia lathyris that is commonly used in TCM practice and is obtained by removing the oil from the seed that is called paozhi, has been known to ease diarrhea. Whereas, the mechanisms of reducing intestinal toxicity have not been clearly investigated yet. Methods: In this study, the isobaric tags for relative and absolute quantitation (iTRAQ) in combination with the liquid chromatography-tandem mass spectrometry (LC-MS/MS) proteomic method was applied to investigate the effects of Euphorbia lathyris L. on the protein expression involved in intestinal metabolism, in order to illustrate the potential attenuated mechanism of Euphorbia lathyris L. processing. Differentially expressed proteins (DEPs) in the intestine after treated with Semen Euphorbiae (SE), Semen Euphorbiae Pulveratum (SEP) and Euphorbiae Factor 1 (EFL1) were identified. The bioinformatics analysis including GO analysis, pathway analysis, and network analysis were done to analyze the key metabolic pathways underlying the attenuation mechanism through protein network in diarrhea. Western blot were performed to validate selected protein and the related pathways. Results: A number of differentially expressed proteins that may be associated with intestinal inflammation were identified.
    [Show full text]
  • Role of Focal Adhesion Kinase in Small-Cell Lung Cancer and Its Potential As a Therapeutic Target
    cancers Review Role of Focal Adhesion Kinase in Small-Cell Lung Cancer and Its Potential as a Therapeutic Target Frank Aboubakar Nana 1,2 , Marie Vanderputten 1 and Sebahat Ocak 1,3,* 1 Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL et Dermatologie (PNEU), Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; [email protected] (F.A.N.); [email protected] (M.V.) 2 Division of Pneumology, Cliniques Universitaires St-Luc, UCL, 1200 Brussels, Belgium 3 Division of Pneumology, CHU UCL Namur (Godinne Site), UCL, 5530 Yvoir, Belgium * Correspondence: [email protected]; Tel.: +32-2-764-9448; Fax: +32-2-764-9440 Received: 15 September 2019; Accepted: 24 October 2019; Published: 29 October 2019 Abstract: Small-cell lung cancer (SCLC) represents 15% of all lung cancers and it is clinically the most aggressive type, being characterized by a tendency for early metastasis, with two-thirds of the patients diagnosed with an extensive stage (ES) disease and a five-year overall survival (OS) as low as 5%. There are still no effective targeted therapies in SCLC despite improved understanding of the molecular steps leading to SCLC development and progression these last years. After four decades, the only modest improvement in OS of patients suffering from ES-SCLC has recently been shown in a trial combining atezolizumab, an anti-PD-L1 immune checkpoint inhibitor, with carboplatin and etoposide, chemotherapy agents. This highlights the need to pursue research efforts in this field. Focal adhesion kinase (FAK) is a non-receptor protein tyrosine kinase that is overexpressed and activated in several cancers, including SCLC, and contributing to cancer progression and metastasis through its important role in cell proliferation, survival, adhesion, spreading, migration, and invasion.
    [Show full text]
  • Ubiquitin in Influenza Virus Entry and Innate Immunity
    viruses Review Ubiquitin in Influenza Virus Entry and Innate Immunity Alina Rudnicka 1 and Yohei Yamauchi 1,2,3,* 1 Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland; [email protected] 2 School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK 3 Structural Biology Research Center, Department of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan * Correspondence: [email protected]; Tel.: +44-117-331-2067 Academic Editors: Eric Freed and Thomas Klimkait Received: 14 September 2016; Accepted: 14 October 2016; Published: 24 October 2016 Abstract: Viruses are obligatory cellular parasites. Their mission is to enter a host cell, to transfer the viral genome, and to replicate progeny whilst diverting cellular immunity. The role of ubiquitin is to regulate fundamental cellular processes such as endocytosis, protein degradation, and immune signaling. Many viruses including influenza A virus (IAV) usurp ubiquitination and ubiquitin-like modifications to establish infection. In this focused review, we discuss how ubiquitin and unanchored ubiquitin regulate IAV host cell entry, and how histone deacetylase 6 (HDAC6), a cytoplasmic deacetylase with ubiquitin-binding activity, mediates IAV capsid uncoating. We also discuss the roles of ubiquitin in innate immunity and its implications in the IAV life cycle. Keywords: ubiquitin; unanchored ubiquitin; HDAC6; aggresome processing; influenza virus; virus entry; virus uncoating; innate immunity; virus–host interactions 1. Ubiquitin and Ubiquitination Ubiquitin is a small, 8.5 kDa protein composed of 76 amino acids expressed in different tissues and present in different subcellular compartments.
    [Show full text]
  • Metabolic Imaging Allows Early Prediction of Response to Vandetanib
    Metabolic Imaging Allows Early Prediction of Response to Vandetanib Martin A. Walter1,2,MatthiasR.Benz2,IsabelJ.Hildebrandt2, Rachel E. Laing2, Verena Hartung3, Robert D. Damoiseaux4, Andreas Bockisch3, Michael E. Phelps2,JohannesCzernin2, and Wolfgang A. Weber2,5 1Institute of Nuclear Medicine, University Hospital, Bern, Switzerland; 2Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California; 3Institute of Nuclear Medicine, University Hospital, Essen, Germany; 4Molecular Shared Screening Resources, UCLA, Los Angeles, California; and 5Department of Nuclear Medicine, University Hospital, Freiburg, Germany The RET (rearranged-during-transfection protein) protoonco- The RET (rearranged-during-transfection protein) proto- gene triggers multiple intracellular signaling cascades regulat- oncogene, located on chromosome 10q11.2, encodes for ing cell cycle progression and cellular metabolism. We therefore a tyrosine kinase of the cadherin superfamily that activates hypothesized that metabolic imaging could allow noninvasive detection of response to the RET inhibitor vandetanib in vivo. multiple intracellular signaling cascades regulating cell sur- Methods: The effects of vandetanib treatment on the full- vival, differentiation, proliferation, migration, and chemo- genome expression and the metabolic profile were analyzed taxis (1). Gain-of-function mutations in the RET gene result in the human medullary thyroid cancer cell line TT. In vitro, tran- in uncontrolled growth and cause human cancers and scriptional changes of pathways regulating cell cycle progres- cancer syndromes, such as Hu¨rthle cell cancer, sporadic sion and glucose, dopa, and thymidine metabolism were papillary thyroid carcinoma, familial medullary thyroid correlated to the results of cell cycle analysis and the uptake of 3H-deoxyglucose, 3H-3,4-dihydroxy-L-phenylalanine, and carcinoma, and multiple endocrine neoplasia types 2A 3H-thymidine under vandetanib treatment.
    [Show full text]