TLR4 Endocytic Trafficking in Macrophages Modulates TLR4

Total Page:16

File Type:pdf, Size:1020Kb

TLR4 Endocytic Trafficking in Macrophages Modulates TLR4 Glia Maturation Factor-γ Negatively Modulates TLR4 Signaling by Facilitating TLR4 Endocytic Trafficking in Macrophages This information is current as Wulin Aerbajinai, Kevin Lee, Kyung Chin and Griffin P. of September 28, 2021. Rodgers J Immunol 2013; 190:6093-6103; Prepublished online 15 May 2013; doi: 10.4049/jimmunol.1203048 http://www.jimmunol.org/content/190/12/6093 Downloaded from References This article cites 47 articles, 19 of which you can access for free at: http://www.jimmunol.org/content/190/12/6093.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 28, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Glia Maturation Factor-g Negatively Modulates TLR4 Signaling by Facilitating TLR4 Endocytic Trafficking in Macrophages Wulin Aerbajinai, Kevin Lee, Kyung Chin, and Griffin P. Rodgers TLR4 signaling must be tightly regulated to provide both effective immune protection and avoid inflammation-induced pathology. Thus, the mechanisms that negatively regulate the TLR4-triggered inflammatory response are of particular importance. Glia mat- uration factor-g (GMFG), a novel actin depolymerization factor/cofilin superfamily protein that is expressed in inflammatory cells, has been implicated in mediating neutrophil and T cell migration, but its function in macrophage immune response remains unclear. In the current study, the role of GMFG in the LPS-induced TLR4-signaling pathway was investigated in THP-1 macro- phages and human primary macrophages. LPS stimulation of macrophages decreased GMFG mRNA and protein expression. We Downloaded from show that GMFG negatively regulates LPS-induced activation of NF-kB–, MAPK-, and IRF3-signaling pathways and subsequent production of proinflammatory cytokines and type I IFN in human macrophages. We found that endogenous GMFG localized within early and late endosomes. GMFG knockdown delayed LPS-induced TLR4 internalization and caused prolonged TLR4 retention at the early endosome, suggesting that TLR4 transport from early to late endosomes is interrupted, which may contribute to enhanced LPS-induced TLR4 signaling. Taken together, our findings suggest that GMFG functions as a negative regulator of TLR4 signaling by facilitating TLR4 endocytic trafficking in macrophages. The Journal of Immunology, 2013, 190: 6093–6103. http://www.jimmunol.org/ oll-like receptors, which are broadly distributed on the LPS, into the early/sorting endosome network, where the second cells of the immune system, play a critical role in innate signaling pathway is triggered through TRIF and TRIF-related T and adaptive immune responses through recognition of adaptor molecule (9–11). TLR4 is then either sorted to late pathogenic molecules and triggering of an inflammatory response endosomes and lysosomes for its degradation or sent to recycling (1, 2). TLR4 is the most extensively studied TLR in both innate compartments to be returned to the plasma membrane. Accord- immunity and signal transduction. It senses LPS from Gram- ingly, LPS-induced endocytosis of TLR4 is essential for its sig- negative bacteria and initiates two separate signaling pathways naling function. Recent studies revealed that Rab family members through the recruitment of MyD88 or TRIF, which eventually regulate TLR4 trafficking. For example, Rab7b localizes to the by guest on September 28, 2021 induces the production of proinflammatory cytokines and type I late endosomes, where it negatively regulates TLR4 trafficking to IFN by activation of NF-kB, MAPK, and IRF3 (3, 4). LPS- late endosomes for degradation (12). Rab10 localizes to both the induced TLR4 signaling is tightly controlled to prevent exces- Golgi and early endosomes, where it regulates TLR4 signaling by sive inflammation and to allow for tissue repair and the return to promoting transport of TLR4 from the Golgi to the plasma mem- homeostasis postinfection. Uncontrolled or prolonged activation brane (13). Rab11a is enriched in pericentriolar-recycling endo- of TLR4 can have devastating consequences, including the de- somes and is essential for the trafficking of TLR4 into the Rab11a+ velopment of immunopathological conditions, such as autoim- endocytic recycling compartment (14). Although these GTPase mune diseases and lethal Gram-negative septic shock (5, 6). Rabs facilitate vesicle intracellular trafficking, little is known about Accordingly, much attention has focused on investigating how the surrounding cytoskeletal proteins that regulate endosomal traf- to negatively regulate TLR4-signaling pathways (7). Although ex- ficking and the degradation pathway of the TLR4 receptor. tensive studies revealed that the negative regulation of TLR4 Glia maturation factor-g (GMFG), a newly recognized actin signaling occurs through various mechanisms (8), regulation of depolymerization factor/cofilin superfamily protein, is not in- the fine-tuning of TLR4-induced signaling by endocytosis and the volved in the development of glia or the formation of gliomas; factors that restrict these processes remain largely unclear. rather, it is predominantly expressed in inflammatory cells and Endocytic trafficking in the TLR4-signaling pathway recently microendothelial cells (15). GMF is a highly conserved protein emerged as a key feature of TLR4 function. Upon LPS stimulation, throughout the eukaryotes from yeast to mammals, with two TLR4 initiates the first MyD88-dependent signaling pathway at isoforms being expressed in mammals: GMFB and GMFG. Our the plasma membrane and is subsequently internalized, along with previous study (16) and other investigators (17) suggested that GMFG mediates neutrophil and T lymphocyte migration via regu- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Insti- lation of actin cytoskeletal reorganization. Functional studies of tute, National Institutes of Health, Bethesda, MD 20892 Saccharomyces cerevisiae showed that yeast GMF promotes Received for publication November 2, 2012. Accepted for publication April 9, 2013. debranching of actin filaments and inhibits new actin assembly This work was supported by the Intramural Research Program of the National Insti- through binding of the Arp2/3 complex (18). Recent studies dem- tute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health. onstrated that the Arp2/3 complex and its regulating factors are Address correspondence and reprint requests to Dr. Griffin P. Rodgers, Molecular and involved in endosomal dynamics, as well as intracellular protein Clinical Hematology Branch, National Institutes of Health, Building 10, Room 9N- 113A, Bethesda, MD 20892. E-mail address: [email protected] trafficking (19, 20). Abbreviations used in this article: GMFG, glia maturation factor-g; Q-PCR, quanti- In the current study, we examined the role of GMFG in LPS- tative PCR; siRNA, small interfering RNA. initiated TLR4 signaling in human macrophages. We found that www.jimmunol.org/cgi/doi/10.4049/jimmunol.1203048 6094 GLIA MATURATION FACTOR-g NEGATIVELY REGULATES TLR4 SIGNALING GMFG could serve as a negative regulator of TLR4 signaling in sitometric quantification of signals on blotting membranes was performed macrophages via promoting TLR4 receptor trafficking from early using ImageJ software (National Institutes of Health). endosomes to late endosomes. Flow cytometry analysis To detect cell surface expression of TLR4, PMA-differentiated THP-1 Materials and Methods macrophages were treated or not with 100 ng/ml LPS for 1 h, dissoci- Cells and cultures ated, blocked in 5% BSA for 30 min, stained with FITC-conjugated anti- TLR4 (Imgenex) or IgG2a Ab for 30 min on ice, washed, and analyzed by The human monocytic leukemia cell line THP-1 was obtained from the EPICS ELITE ESP flow cytometry (Beckman Coulter); the data were American Type Culture Collection and cultured in RPMI 1640 with 10% analyzed using CellQuest software (BD Biosciences). Cell surface ex- heat-inactivated FBS, 50 mM 2-ME, and 1% penicillin/streptomycin at pression of TLR4 was quantified as the mean fluorescence intensity of the 37˚C in a humidified atmosphere, consisting of 5% CO ,andpassed 2 FITC+ cells by FACS assay. every 2–3 d to maintain logarithmic growth. THP-1–derived macrophages 5 were obtained by stimulating THP-1 monocytes (5 3 10 /ml) with 100 ng/ Immunofluorescence staining and confocal microscopy ml PMA (Sigma-Aldrich) for 3 d. Human monocytes were isolated from healthy adult donors according to THP-1 macrophages and primary human macrophages were transfected a protocol approved by the Institutional Review Board of the National Heart, with control siRNA or GMFG siRNA for 48 h. The cells were then treated Lung, and Blood Institute, National Institutes for Health, and consistent with 100 ng/ml LPS for the indicated time periods. Following treatment, with federal regulations. Monocytes
Recommended publications
  • The Wiskott-Aldrich Syndrome: the Actin Cytoskeleton and Immune Cell Function
    Disease Markers 29 (2010) 157–175 157 DOI 10.3233/DMA-2010-0735 IOS Press The Wiskott-Aldrich syndrome: The actin cytoskeleton and immune cell function Michael P. Blundella, Austen Wortha,b, Gerben Boumaa and Adrian J. Thrashera,b,∗ aMolecular Immunology Unit, UCL Institute of Child Health, London, UK bDepartment of Immunology, Great Ormond Street Hospital NHS Trust, Great Ormond Street, London, UK Abstract. Wiskott-Aldrich syndrome (WAS) is a rare X-linked recessive primary immunodeficiency characterised by immune dysregulation, microthrombocytopaenia, eczema and lymphoid malignancies. Mutations in the WAS gene can lead to distinct syndrome variations which largely, although not exclusively, depend upon the mutation. Premature termination and deletions abrogate Wiskott-Aldrich syndrome protein (WASp) expression and lead to severe disease (WAS). Missense mutations usually result in reduced protein expression and the phenotypically milder X-linked thrombocytopenia (XLT) or attenuated WAS [1–3]. More recently however novel activating mutations have been described that give rise to X-linked neutropenia (XLN), a third syndrome defined by neutropenia with variable myelodysplasia [4–6]. WASP is key in transducing signals from the cell surface to the actin cytoskeleton, and a lack of WASp results in cytoskeletal defects that compromise multiple aspects of normal cellular activity including proliferation, phagocytosis, immune synapse formation, adhesion and directed migration. Keywords: Wiskott-Aldrich syndrome, actin polymerization, lymphocytes,
    [Show full text]
  • Table 2. Significant
    Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Role of Focal Adhesion Kinase in Small-Cell Lung Cancer and Its Potential As a Therapeutic Target
    cancers Review Role of Focal Adhesion Kinase in Small-Cell Lung Cancer and Its Potential as a Therapeutic Target Frank Aboubakar Nana 1,2 , Marie Vanderputten 1 and Sebahat Ocak 1,3,* 1 Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL et Dermatologie (PNEU), Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; [email protected] (F.A.N.); [email protected] (M.V.) 2 Division of Pneumology, Cliniques Universitaires St-Luc, UCL, 1200 Brussels, Belgium 3 Division of Pneumology, CHU UCL Namur (Godinne Site), UCL, 5530 Yvoir, Belgium * Correspondence: [email protected]; Tel.: +32-2-764-9448; Fax: +32-2-764-9440 Received: 15 September 2019; Accepted: 24 October 2019; Published: 29 October 2019 Abstract: Small-cell lung cancer (SCLC) represents 15% of all lung cancers and it is clinically the most aggressive type, being characterized by a tendency for early metastasis, with two-thirds of the patients diagnosed with an extensive stage (ES) disease and a five-year overall survival (OS) as low as 5%. There are still no effective targeted therapies in SCLC despite improved understanding of the molecular steps leading to SCLC development and progression these last years. After four decades, the only modest improvement in OS of patients suffering from ES-SCLC has recently been shown in a trial combining atezolizumab, an anti-PD-L1 immune checkpoint inhibitor, with carboplatin and etoposide, chemotherapy agents. This highlights the need to pursue research efforts in this field. Focal adhesion kinase (FAK) is a non-receptor protein tyrosine kinase that is overexpressed and activated in several cancers, including SCLC, and contributing to cancer progression and metastasis through its important role in cell proliferation, survival, adhesion, spreading, migration, and invasion.
    [Show full text]
  • Ubiquitin in Influenza Virus Entry and Innate Immunity
    viruses Review Ubiquitin in Influenza Virus Entry and Innate Immunity Alina Rudnicka 1 and Yohei Yamauchi 1,2,3,* 1 Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland; [email protected] 2 School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK 3 Structural Biology Research Center, Department of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan * Correspondence: [email protected]; Tel.: +44-117-331-2067 Academic Editors: Eric Freed and Thomas Klimkait Received: 14 September 2016; Accepted: 14 October 2016; Published: 24 October 2016 Abstract: Viruses are obligatory cellular parasites. Their mission is to enter a host cell, to transfer the viral genome, and to replicate progeny whilst diverting cellular immunity. The role of ubiquitin is to regulate fundamental cellular processes such as endocytosis, protein degradation, and immune signaling. Many viruses including influenza A virus (IAV) usurp ubiquitination and ubiquitin-like modifications to establish infection. In this focused review, we discuss how ubiquitin and unanchored ubiquitin regulate IAV host cell entry, and how histone deacetylase 6 (HDAC6), a cytoplasmic deacetylase with ubiquitin-binding activity, mediates IAV capsid uncoating. We also discuss the roles of ubiquitin in innate immunity and its implications in the IAV life cycle. Keywords: ubiquitin; unanchored ubiquitin; HDAC6; aggresome processing; influenza virus; virus entry; virus uncoating; innate immunity; virus–host interactions 1. Ubiquitin and Ubiquitination Ubiquitin is a small, 8.5 kDa protein composed of 76 amino acids expressed in different tissues and present in different subcellular compartments.
    [Show full text]
  • Role and Regulation of the Actin-Regulatory Protein Hs1 in Tcr Signaling
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations Fall 2009 Role and Regulation of the Actin-Regulatory Protein Hs1 in Tcr Signaling Esteban Carrizosa University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Cell Biology Commons, and the Immunology and Infectious Disease Commons Recommended Citation Carrizosa, Esteban, "Role and Regulation of the Actin-Regulatory Protein Hs1 in Tcr Signaling" (2009). Publicly Accessible Penn Dissertations. 91. https://repository.upenn.edu/edissertations/91 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/91 For more information, please contact [email protected]. Role and Regulation of the Actin-Regulatory Protein Hs1 in Tcr Signaling Abstract Numerous aspects of T cell function, including TCR signaling, migration, and execution of effector functions, depend on the actin cytoskeleton. Cytoskeletal rearrangements are driven by the action of actin-regulatory proteins, which promote or antagonize the assembly of actin filaments in esponser to external cues. In this work, we have examined the regulation and function of HS1, a poorly-understood actin regulatory protein, in T cells. This protein, which becomes tyrosine phosphorylated upon T cell activation, is thought to function primarily by stabilizing existing branched actin filaments. Loss of HS1 results in unstable actin responses upon TCR engagement and defective Ca2+ responses, leading to poor activation of the IL2 promoter. TCR engagement leads to phosphorylation of HS1 at Tyr 378 and Tyr 397, creating binding sites for SH2 domain-containing proteins, including Vav1 and Itk. Phosphorylation at these residues is required for Itk-dependent recruitment of HS1 to the IS, Vav1 IS localization, and HS1-dependent actin reorganization and IL2 production.
    [Show full text]
  • Hax-1 Is Required for Rac1-Cortactin Interaction and Ovarian Carcinoma Cell Migration
    www.impactjournals.com/Genes & Cancer/ Genes & Cancer, Vol. 5 (3-4), March 2014 Hax-1 is required for Rac1-Cortactin interaction and ovarian carcinoma cell migration Rohini Gomathinayagam1,*, Muralidharan Jayaraman1,*, Ji Hee Ha1,*, Lakshmi Varadarajalu1, and Danny N. Dhanasekaran1 1 Stephenson Cancer Center and Department of Cell Biology, The University of Oklahoma Health Sciences Center, OK * These Authors contributed equally to this work Correspondence to: Danny N. Dhanasekaran, email: [email protected] Keywords: Hax-1, Rac1, cortactin, cell migration, Metastasis, Ovarian Cancer Received: April 11, 2014 Accepted: May 14, 2014 Published: May 14, 2014 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Hax-1 is a multifunctional protein, which is involved in diverse cellular signaling pathways including tumor cell survival and migration. We have shown previously that cell migration stimulated by the oncogenic G protein, G13, requires Hax-1 for the formation of a functional complex involving Gα13, Rac1, and cortactin. However, the role of Hax-1 in cancer cell migration or its role in Rac1-cortactin complex formation, which is known to be required for such migration remains to be characterized. Results focused on resolving the role of Hax-1 in ovarian cancer pathophysiology indicate that Hax-1 is overexpressed in ovarian cancer cells and the silencing of Hax-1 inhibits lysophosphatidic acid (LPA)- or fetal bovine serum-stimulated migration of these cells. In addition, silencing of Hax-1 greatly reduces Rac1-cortactin interaction and their colocalization in SKOV3 cells.
    [Show full text]
  • Cortactin: Coupling Membrane Dynamics to Cortical Actin Assembly
    Oncogene (2001) 20, 6418 ± 6434 ã 2001 Nature Publishing Group All rights reserved 0950 ± 9232/01 $15.00 www.nature.com/onc Cortactin: coupling membrane dynamics to cortical actin assembly Scott A Weed*,1 and J Thomas Parsons2 1Department of Craniofacial Biology, University of Colorado Health Sciences Center, Denver, Colorado, CO 80262, USA; 2Department of Microbiology, Health Sciences Center, University of Virginia, Charlottesville, Virginia, VA 22903, USA Exposure of cells to a variety of external signals causes consists of a highly organized meshwork of ®lamentous rapid changes in plasma membrane morphology. Plasma (F-) actin closely associated with the overlying plasma membrane dynamics, including membrane rue and membrane (Small et al., 1995). In motile cells, F-actin microspike formation, fusion or ®ssion of intracellular underlies two main types of protrusive membranes; vesicles, and the spatial organization of transmembrane lamellipodia, which contain short ®laments of F-actin proteins, is directly controlled by the dynamic reorgani- linked into orthogonal arrays and ®lopodia, comprised zation of the underlying actin cytoskeleton. Two of bundled, crosslinked actin ®laments (Rinnerthaler et members of the Rho family of small GTPases, Cdc42 al., 1988). Work within the last decade has demon- and Rac, have been well established as mediators of strated that Rac and Cdc42, two members of the Rho extracellular signaling events that impact cortical actin family of small GTPases, govern lamellipodia and organization. Actin-based signaling through Cdc42 and ®lopodia formation (Hall, 1998). Cdc42 and Rac play a Rac ultimately results in activation of the actin-related pivotal role in the transmission of extracellular signals protein (Arp) 2/3 complex, which promotes the forma- that induce cortical cytoskeletal rearrangement (Zig- tion of branched actin networks.
    [Show full text]
  • Cortactin Overexpression Inhibits Ligand-Induced Down-Regulation of the Epidermal Growth Factor Receptor
    Research Article Cortactin Overexpression Inhibits Ligand-Induced Down-regulation of the Epidermal Growth Factor Receptor Paul Timpson,1 Danielle K. Lynch,1 Daniel Schramek,1 Francesca Walker,2 and Roger J. Daly1 1Cancer Research Program, Garvan Institute of Medical Research, St. Vincent’s Hospital, Sydney, New South Wales and 2Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Royal Melbourne Hospital, Victoria, Australia Abstract factor receptor signaling, thereby avoiding aberrant cellular Ligand-induced receptor down-regulation by endocytosis is a stimulation (3, 4). In brief, ligand-induced activation of the EGFR critical process regulating the intensity and duration of leads to the assembly of protein signaling complexes that relay receptor tyrosine kinase signaling. Ubiquitylation of specific various biological signals. Concomitantly, recruitment of the receptor tyrosine kinases, for example, the epidermal growth endocytic machinery occurs and subsequently leads to endosomal factor receptor (EGFR) by the E3 ubiquitin ligase c-Cbl, sorting which can result in lysosomal degradation of the receptor provides a sorting signal for lysosomal degradation and leads and termination of the signal or recycling of the receptor back to to termination of receptor signaling. Cortactin, which couples the cell surface (5–8). The relative efficiency of lysosomal the endocytic machinery to dynamic actin networks, is degradation versus recycling determines the potency of EGFR signaling (9). encoded by EMS1, a gene commonly amplified in breast and head and neck cancers. One mechanism whereby cortactin The recruitment of c-Cbl, a ubiquitin ligase that directs activated overexpression contributes to tumor progression is by receptor tyrosine kinases to lysosomal degradation by tagging them enhancing tumor cell invasion and metastasis.
    [Show full text]
  • Nck Adaptor Proteins Link Tks5 to Invadopodia Actin Regulation and ECM Degradation
    Research Article 2727 Nck adaptor proteins link Tks5 to invadopodia actin regulation and ECM degradation Stanley S. Stylli1, Stacey T. T. I1, Anne M. Verhagen2, San San Xu1, Ian Pass3, Sara A. Courtneidge3 and Peter Lock1,*,‡ 1Department of Surgery, University of Melbourne, Level 5, Clinical Sciences Building, Royal Melbourne Hospital, Parkville, Victoria 3052, Australia 2Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia 3Burnham Institute for Medical Research, Torrey Pines Road, La Jolla, CA 92037, USA *Present address: Biochemistry Department, La Trobe University, Victoria 3086, Australia ‡Author for correspondence (e-mail: [email protected]) Accepted 5 May 2009 Journal of Cell Science 122, 2727-2740 Published by The Company of Biologists 2009 doi:10.1242/jcs.046680 Summary Invadopodia are actin-based projections enriched with overexpression and inhibited by Nck1 depletion. We show that proteases, which invasive cancer cells use to degrade the clustering at the plasma membrane of the Tks5 inter-SH3 region extracellular matrix (ECM). The Phox homology (PX)-Src containing Y557 triggers phosphorylation at this site, facilitating homology (SH)3 domain adaptor protein Tks5 (also known as Nck recruitment and F-actin assembly. These results identify a SH3PXD2A) cooperates with Src tyrosine kinase to promote Src-Tks5-Nck pathway in ECM-degrading invadopodia that invadopodia formation but the underlying pathway is not clear. shows parallels with pathways linking several mammalian and Here we show that Src phosphorylates Tks5 at Y557, inducing pathogen-derived proteins to local actin regulation. it to associate directly with the SH3-SH2 domain adaptor proteins Nck1 and Nck2 in invadopodia.
    [Show full text]
  • Supplementary Table 3 Gene Microarray Analysis: PRL+E2 Vs
    Supplementary Table 3 Gene microarray analysis: PRL+E2 vs. control ID1 Field1 ID Symbol Name M Fold P Value 69 15562 206115_at EGR3 early growth response 3 2,36 5,13 4,51E-06 56 41486 232231_at RUNX2 runt-related transcription factor 2 2,01 4,02 6,78E-07 41 36660 227404_s_at EGR1 early growth response 1 1,99 3,97 2,20E-04 396 54249 36711_at MAFF v-maf musculoaponeurotic fibrosarcoma oncogene homolog F 1,92 3,79 7,54E-04 (avian) 42 13670 204222_s_at GLIPR1 GLI pathogenesis-related 1 (glioma) 1,91 3,76 2,20E-04 65 11080 201631_s_at IER3 immediate early response 3 1,81 3,50 3,50E-06 101 36952 227697_at SOCS3 suppressor of cytokine signaling 3 1,76 3,38 4,71E-05 16 15514 206067_s_at WT1 Wilms tumor 1 1,74 3,34 1,87E-04 171 47873 238623_at NA NA 1,72 3,30 1,10E-04 600 14687 205239_at AREG amphiregulin (schwannoma-derived growth factor) 1,71 3,26 1,51E-03 256 36997 227742_at CLIC6 chloride intracellular channel 6 1,69 3,23 3,52E-04 14 15038 205590_at RASGRP1 RAS guanyl releasing protein 1 (calcium and DAG-regulated) 1,68 3,20 1,87E-04 55 33237 223961_s_at CISH cytokine inducible SH2-containing protein 1,67 3,19 6,49E-07 78 32152 222872_x_at OBFC2A oligonucleotide/oligosaccharide-binding fold containing 2A 1,66 3,15 1,23E-05 1969 32201 222921_s_at HEY2 hairy/enhancer-of-split related with YRPW motif 2 1,64 3,12 1,78E-02 122 13463 204015_s_at DUSP4 dual specificity phosphatase 4 1,61 3,06 5,97E-05 173 36466 227210_at NA NA 1,60 3,04 1,10E-04 117 40525 231270_at CA13 carbonic anhydrase XIII 1,59 3,02 5,62E-05 81 42339 233085_s_at OBFC2A oligonucleotide/oligosaccharide-binding
    [Show full text]
  • Cortactin Contributes to Activity-Dependent Modulation of Spine Actin Dynamics and Spatial Memory Formation
    cells Article Cortactin Contributes to Activity-Dependent Modulation of Spine Actin Dynamics and Spatial Memory Formation Jonas Cornelius 1 , Klemens Rottner 2,3 , Martin Korte 1,4 and Kristin Michaelsen-Preusse 1,* 1 Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, 38106 Braunschweig, Germany; [email protected] (J.C.); [email protected] (M.K.) 2 Research Group Molecular Cell Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; [email protected] 3 Division of Molecular Cell Biology, Zoological Institute, TU Braunschweig, 38106 Braunschweig, Germany 4 Research Group Neuroinflammation and Neurodegeneration, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany * Correspondence: [email protected] Abstract: Postsynaptic structures on excitatory neurons, dendritic spines, are actin-rich. It is well known that actin-binding proteins regulate actin dynamics and by this means orchestrate structural plasticity during the development of the brain, as well as synaptic plasticity mediating learning and memory processes. The actin-binding protein cortactin is localized to pre- and postsynaptic structures and translocates in a stimulus-dependent manner between spines and the dendritic compartment, thereby indicating a crucial role for synaptic plasticity and neuronal function. While it is known that cortactin directly binds F-actin, the Arp2/3 complex important for actin nucleation and branching as well as other factors involved in synaptic plasticity processes, its precise role in modulating actin remodeling in neurons needs to be deciphered. In this study, we characterized the general Citation: Cornelius, J.; Rottner, K.; neuronal function of cortactin in knockout mice. Interestingly, we found that the loss of cortactin Korte, M.; Michaelsen-Preusse, K.
    [Show full text]