Confabulation: Connections Between Brain Damage, Memory, and Testimony
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Assessment of Confabulation in Patients RENSON Publishedonline11sepetember2015 GREEN
King’s Research Portal DOI: 10.1080/13854046.2015.1084377 Document Version Peer reviewed version Link to publication record in King's Research Portal Citation for published version (APA): Renson, Y. C. M., Oosterman, J. M., van Damme, J. E., Griekspoor, S. I. A., Wester, A. J., Kopelman, M. D., & Kessels, R. P. C. (2015). Assessment of Confabulation in Patients with Alcohol-Related Cognitive Disorders: The Nijmegen–Venray Confabulation List (NVCL-20). The Clinical Neuropsychologist, 29, 804-823. https://doi.org/10.1080/13854046.2015.1084377 Citing this paper Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publisher's website for any subsequent corrections. General rights Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights. •Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research. •You may not further distribute the material or use it for any profit-making activity or commercial gain •You may freely distribute the URL identifying the publication in the Research Portal Take down policy If you believe that this document breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. -
Compare and Contrast Two Models Or Theories of One Cognitive Process with Reference to Research Studies
! The following sample is for the learning objective: Compare and contrast two models or theories of one cognitive process with reference to research studies. What is the question asking for? * A clear outline of two models of one cognitive process. The cognitive process may be memory, perception, decision-making, language or thinking. * Research is used to support the models as described. The research does not need to be outlined in a lot of detail, but underatanding of the role of research in supporting the models should be apparent.. * Both similarities and differences of the two models should be clearly outlined. Sample response The theory of memory is studied scientifically and several models have been developed to help The cognitive process describe and potentially explain how memory works. Two models that attempt to describe how (memory) and two models are memory works are the Multi-Store Model of Memory, developed by Atkinson & Shiffrin (1968), clearly identified. and the Working Memory Model of Memory, developed by Baddeley & Hitch (1974). The Multi-store model model explains that all memory is taken in through our senses; this is called sensory input. This information is enters our sensory memory, where if it is attended to, it will pass to short-term memory. If not attention is paid to it, it is displaced. Short-term memory Research. is limited in duration and capacity. According to Miller, STM can hold only 7 plus or minus 2 pieces of information. Short-term memory memory lasts for six to twelve seconds. When information in the short-term memory is rehearsed, it enters the long-term memory store in a process called “encoding.” When we recall information, it is retrieved from LTM and moved A satisfactory description of back into STM. -
Dissociation Between Declarative and Procedural Mechanisms in Long-Term Memory
! DISSOCIATION BETWEEN DECLARATIVE AND PROCEDURAL MECHANISMS IN LONG-TERM MEMORY A dissertation submitted to the Kent State University College of Education, Health, and Human Services in partial fulfillment of the requirements for the degree of Doctor of Philosophy By Dale A. Hirsch August, 2017 ! A dissertation written by Dale A. Hirsch B.A., Cleveland State University, 2010 M.A., Cleveland State University, 2013 Ph.D., Kent State University, 2017 Approved by _________________________, Director, Doctoral Dissertation Committee Bradley Morris _________________________, Member, Doctoral Dissertation Committee Christopher Was _________________________, Member, Doctoral Dissertation Committee Karrie Godwin Accepted by _________________________, Director, School of Lifespan Development and Mary Dellmann-Jenkins Educational Sciences _________________________, Dean, College of Education, Health and Human James C. Hannon Services ! ""! ! HIRSCH, DALE A., Ph.D., August 2017 Educational Psychology DISSOCIATION BETWEEN DECLARATIVE AND PROCEDURAL MECHANISMS IN LONG-TERM MEMORY (66 pp.) Director of Dissertation: Bradley Morris The purpose of this study was to investigate the potential dissociation between declarative and procedural elements in long-term memory for a facilitation of procedural memory (FPM) paradigm. FPM coupled with a directed forgetting (DF) manipulation was utilized to highlight the dissociation. Three experiments were conducted to that end. All three experiments resulted in facilitation for categorization operations. Experiments one and two additionally found relatively poor recognition for items that participants were told to forget despite the fact that relevant categorization operations were facilitated. Experiment three resulted in similarly poor recognition for category names that participants were told to forget. Taken together, the three experiments in this investigation demonstrate a clear dissociation between the procedural and declarative elements of the FPM task. -
Psychogenic and Organic Amnesia. a Multidimensional Assessment of Clinical, Neuroradiological, Neuropsychological and Psychopathological Features
Behavioural Neurology 18 (2007) 53–64 53 IOS Press Psychogenic and organic amnesia. A multidimensional assessment of clinical, neuroradiological, neuropsychological and psychopathological features Laura Serraa,∗, Lucia Faddaa,b, Ivana Buccionea, Carlo Caltagironea,b and Giovanni A. Carlesimoa,b aFondazione IRCCS Santa Lucia, Roma, Italy bClinica Neurologica, Universita` Tor Vergata, Roma, Italy Abstract. Psychogenic amnesia is a complex disorder characterised by a wide variety of symptoms. Consequently, in a number of cases it is difficult distinguish it from organic memory impairment. The present study reports a new case of global psychogenic amnesia compared with two patients with amnesia underlain by organic brain damage. Our aim was to identify features useful for distinguishing between psychogenic and organic forms of memory impairment. The findings show the usefulness of a multidimensional evaluation of clinical, neuroradiological, neuropsychological and psychopathological aspects, to provide convergent findings useful for differentiating the two forms of memory disorder. Keywords: Amnesia, psychogenic origin, organic origin 1. Introduction ness of the self – and a period of wandering. According to Kopelman [33], there are three main predisposing Psychogenic or dissociative amnesia (DSM-IV- factors for global psychogenic amnesia: i) a history of TR) [1] is a clinical syndrome characterised by a mem- transient, organic amnesia due to epilepsy [52], head ory disorder of nonorganic origin. Following Kopel- injury [4] or alcoholic blackouts [20]; ii) a history of man [31,33], psychogenic amnesia can either be sit- psychiatric disorders such as depressed mood, and iii) uation specific or global. Situation specific amnesia a severe precipitating stress, such as marital or emo- refers to memory loss for a particular incident or part tional discord [23], bereavement [49], financial prob- of an incident and can arise in a variety of circum- lems [23] or war [21,48]. -
Working Memory and Cued Recall Max V
Georgia Southern University Digital Commons@Georgia Southern University Honors Program Theses 2016 Working memory and cued recall Max V. Fey 8602950 Karen Naufel Georgia Southern University Lawrence Locker Georgia Southern University Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/honors-theses Part of the Cognitive Psychology Commons Recommended Citation Fey, Max V. 8602950; Naufel, Karen; and Locker, Lawrence, "Working memory and cued recall" (2016). University Honors Program Theses. 220. https://digitalcommons.georgiasouthern.edu/honors-theses/220 This thesis (open access) is brought to you for free and open access by Digital Commons@Georgia Southern. It has been accepted for inclusion in University Honors Program Theses by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact [email protected]. 1 Working Memory and Cued Recall Working Memory and Cued Recall An Honors Thesis submitted in partial fulfillment of the requirements for Honors in the Department of Psychology. By Maximilian Fey Under the mentorship of Dr. Karen Naufel ABSTRACT Previous research has found that individuals with high working memory have greater recall capabilities than those with low working memory (Unsworth, Spiller, & Brewers, 2012). Research did not test the extent to which cues affect one’s recall ability in relation to working memory. The present study will examine this issue. Participants completed a working memory measure. Then, they were provided with cued recall tasks whereby they recalled Facebook friends. The cues varied to be no cues, ambiguous cues high in imageability, and cues directly related to Facebook. The results showed that there was no difference between individual’s ability to recall their Facebook friends and their working memory scores. -
What Is It Like to Be Confabulating?
What is it like to be Confabulating? Sahba Besharati, Aikaterini Fotopoulou and Michael D. Kopelman Kings College London, Institute of Psychiatry, London UK Different kinds of confabulations may arise in neurological and psychiatric disorders. This chapter first offers conceptual distinctions between spontaneous and momentary (“provoked”) confabulations, as well as between these types of confabulation and other kinds of false memories. The chapter then reviews current explanatory theories, emphasizing that both neurocognitive and motivational factors account for the content of confabulations. We place particular emphasis on a general model of confabulation that considers cognitive dysfunctions in memory and executive functioning in parallel with social and emotional factors. It is argued that all these dimensions need to be taken into account for a phenomenologically rich description of confabulation. The role of the motivated content of confabulation and the subjective experience of the patient are particularly relevant in effective management and rehabilitation strategies. Finally, we discuss a case example in order to illustrate how seemingly meaningless false memories are actually meaningful if placed in the context of the patient’s own perspective and autobiographical memory. Key words: Confabulation; False memory; Motivation; Self; Rehabilitation. 1 Memory is often subject to errors of omission and commission such that recollection includes instances of forgetting, or distorting past experience. The study of pathological forms of exaggerated memory distortion has provided useful insights into the mechanisms of normal reconstructive remembering (Johnson, 1991; Kopelman, 1999; Schacter, Norman & Kotstall, 1998). An extreme form of pathological memory distortion is confabulation. Different variants of confabulation are found to arise in neurological and psychiatric disorders. -
Functional–Anatomic Correlates of Control Processes in Memory
The Journal of Neuroscience, May 15, 2003 • 23(10):3999–4004 • 3999 Functional–Anatomic Correlates of Control Processes in Memory Randy L. Buckner Department of Psychology, Howard Hughes Medical Institute at Washington University, St. Louis, Missouri 63130 Introduction when memory retrieval requires flexible use of control processes A central role for control processes in long-term memory is ap- (Milner et al., 1985; Schacter, 1987; Shimmamura et al., 1991). In parent when one considers that there is far more information many cases, patients will fail to recall, or sometimes even recog- available in memory than can be accessed at any single moment nize, information (for review, see Wheeler et al., 1995) or inap- (Tulving and Pearlstone, 1966; Koriat, 2000). Much as selective propriately estimate the source or timing, or both, of a past epi- attention operates to focus processing on objects in the environ- sode (for review, see Schacter, 1987). In rare cases, a patient may ment, related control processes are required to constrain and make up episodes from the past while believing they really hap- select from information stored in memory. pened, a phenomenon called “confabulation” (Moscovitch, Neuroimaging studies have expanded our understanding of 1989; Burgess and Shallice, 1996). Unlike purer forms of amnesia, control processes in long-term memory in three important ways. which result from medial temporal and diencephalic lesions First, networks of regions, prominently including specific regions (Scoville and Milner, 1957; Squire, 1992; Cohen and Eichen- in prefrontal cortex, contribute to control processes during baum, 1993), the deficits after frontal damage align more to im- memory retrieval. -
Metamemory and Memory Discrepancies in Directed Forgetting of Emotional Information
Research Reports Metamemory and Memory Discrepancies in Directed Forgetting of Emotional Information Dicle Çapan a, Simay Ikier b [a] Department of Psychology, Koç University, Istanbul, Turkey. [b] Department of Psychology, Bahçeşehir University, Istanbul, Turkey. Europe's Journal of Psychology, 2021, Vol. 17(1), 44–52, https://doi.org/10.5964/ejop.2567 Received: 2019-12-17 • Accepted: 2020-04-23 • Published (VoR): 2021-02-26 Handling Editor: Rhian Worth, University of South Wales, Pontypridd, United Kingdom Corresponding Author: Dicle Çapan, Koç University, Rumelifeneri Mahallesi, Sarıyer Rumeli Feneri Yolu, 34450 Sarıyer Istanbul, Turkey. E-mail: [email protected] Abstract Directed Forgetting (DF) studies show that it is possible to exert cognitive control to intentionally forget information. The aim of the present study was to investigate how aware individuals are of the control they have over what they remember and forget when the information is emotional. Participants were presented with positive, negative and neutral photographs, and each photograph was followed by either a Remember or a Forget instruction. Then, for each photograph, participants provided Judgments of Learning (JOLs) by indicating their likelihood of recognizing that item on a subsequent test. In the recognition phase, participants were asked to indicate all old items, irrespective of instruction. Remember items had higher JOLs than Forget items for all item types, indicating that participants believe they can intentionally forget even emotional information—which is not the case based on the actual recognition results. DF effect, which was calculated by subtracting recognition for Forget items from Remember ones was only significant for neutral items. Emotional information disrupted cognitive control, eliminating the DF effect. -
Working Memory and the Organization of Brain Systems
4818 • The Journal of Neuroscience, April 30, 2008 • 28(18):4818–4822 Behavioral/Systems/Cognitive Working Memory and the Organization of Brain Systems Yael Shrager,1 Daniel A. Levy,2 Ramona O. Hopkins,3 and Larry R. Squire4 1University of California, San Diego, La Jolla, California 92093, 2Weizmann Institute of Science, Rechovot 76100, Israel, 3Brigham Young University, Provo, Utah 84602, and 4Veterans Affairs Healthcare System, San Diego, California 92161 Working memory has historically been viewed as an active maintenance process that is independent of long-term memory and indepen- dent of the medial temporal lobe. However, impaired performance across brief time intervals has sometimes been described in amnesic patients with medial temporal lobe damage. These findings raise a fundamental question about how to know when performance depends on working memory and when the capacity for working memory has been exceeded and performance depends on long-term memory. We describe a method for identifying working memory independently of patient performance. We compared patients with medial temporal lobe damage to controls who were given either distraction or no distraction between study and test. In four experiments, we found concordance between the performance of patients and the effect of distraction on controls. The patients were impaired on tasks in which distraction had minimal effect on control performance, and the patients were intact on tasks in which distraction disrupted control performance. We suggest that the patients were impaired when the task minimally depended on working memory (and instead depended substantially on long-term memory), and they performed well when the task depended substantially on working memory. -
What Is Working Memory and How Does It Affect Learning?
3/16/2016 What is working Do you observe these behaviours? memory and how does Is easily distracted when doing something not highly it affect learning? interesting Has trouble waiting his/her turn Struggles with getting started and completing a task. Watches and depends on friends to remind them of the current task Difficulty organising something with multiple steps… frequently stops, frequently loses their place Often seems restless and on the go Fails to progress despite working hard Quick mental arithmetic What is working memory? Who does it affect? 7 + 9 x 3 –4 = 35 x 9 = 35 x 76 = 1 3/16/2016 How does it differ from short term What is working memory? memory? Repeating multi-part instructions A system for temporary Carrying out instructions storage and manipulation of information, necessary for wide range of cognitive tasks Remembering a street address Following driving directions The ability to keep information Following driving directions as a new driver active in your mind for a short period of time (seconds) keeping it available for further processing Working memory is an essential function Alan Baddeley’s Working Memory Metaphor in every day life Central Executive Processes all stimuli we encounter Delegates it to the different parts of our brain that can take action Allows us to block out unnecessary information Visuo-Spatial Phonological Loop Episodic Buffer It keeps us updated on what’s Sketch Pad happening – and keeps us focused on what matters 2 3/16/2016 Working Memory (WM) Capacity: Storage AND Attention Dependent on Many Variables • WM capacity – affected by deficit: disease, genetics, age….but also fatigue, medication, mood. -
Disordered Memory Awareness: Recollective Confabulation in Two Cases of Persistent Déj`A Vecu
Neuropsychologia 43 (2005) 1362–1378 Disordered memory awareness: recollective confabulation in two cases of persistent dej´ a` vecu Christopher J.A. Moulin a,b,∗, Martin A. Conway b, Rebecca G. Thompson a, Niamh James a, Roy W. Jones a a The Research Institute for the Care of the Elderly, St. Martin’s Hospital, UK b Institute of Psychological Sciences, University of Leeds, Leeds LS2 9JT, UK Received 7 April 2004; received in revised form 10 December 2004; accepted 16 December 2004 Available online 11 March 2005 Abstract We describe two cases of false recognition in patients with dementia and diffuse temporal lobe pathology who report their memory difficulty as being one of persistent dej´ a` vecu—the sensation that they have lived through the present moment before. On a number of recognition tasks, the patients were found to have high levels of false positives. They also made a large number of guess responses but otherwise appeared metacognitively intact. Informal reports suggested that the episodes of dej´ a` vecu were characterised by sensations similar to those present when the past is recollectively experienced in normal remembering. Two further experiments found that both patients had high levels of recollective experience for items they falsely recognized. Most strikingly, they were likely to recollectively experience incorrectly recognised low frequency words, suggesting that their false recognition was not driven by familiarity processes or vague sensations of having encountered events and stimuli before. Importantly, both patients made reasonable justifications for their false recognitions both in the experiments and in their everyday lives and these we term ‘recollective confabulation’. -
Cognitive Functions of the Brain: Perception, Attention and Memory
IFM LAB TUTORIAL SERIES # 6, COPYRIGHT c IFM LAB Cognitive Functions of the Brain: Perception, Attention and Memory Jiawei Zhang [email protected] Founder and Director Information Fusion and Mining Laboratory (First Version: May 2019; Revision: May 2019.) Abstract This is a follow-up tutorial article of [17] and [16], in this paper, we will introduce several important cognitive functions of the brain. Brain cognitive functions are the mental processes that allow us to receive, select, store, transform, develop, and recover information that we've received from external stimuli. This process allows us to understand and to relate to the world more effectively. Cognitive functions are brain-based skills we need to carry out any task from the simplest to the most complex. They are related with the mechanisms of how we learn, remember, problem-solve, and pay attention, etc. To be more specific, in this paper, we will talk about the perception, attention and memory functions of the human brain. Several other brain cognitive functions, e.g., arousal, decision making, natural language, motor coordination, planning, problem solving and thinking, will be added to this paper in the later versions, respectively. Many of the materials used in this paper are from wikipedia and several other neuroscience introductory articles, which will be properly cited in this paper. This is the last of the three tutorial articles about the brain. The readers are suggested to read this paper after the previous two tutorial articles on brain structure and functions [17] as well as the brain basic neural units [16]. Keywords: The Brain; Cognitive Function; Consciousness; Attention; Learning; Memory Contents 1 Introduction 2 2 Perception 3 2.1 Detailed Process of Perception .