What Is Working Memory and How Does It Affect Learning?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Compare and Contrast Two Models Or Theories of One Cognitive Process with Reference to Research Studies
! The following sample is for the learning objective: Compare and contrast two models or theories of one cognitive process with reference to research studies. What is the question asking for? * A clear outline of two models of one cognitive process. The cognitive process may be memory, perception, decision-making, language or thinking. * Research is used to support the models as described. The research does not need to be outlined in a lot of detail, but underatanding of the role of research in supporting the models should be apparent.. * Both similarities and differences of the two models should be clearly outlined. Sample response The theory of memory is studied scientifically and several models have been developed to help The cognitive process describe and potentially explain how memory works. Two models that attempt to describe how (memory) and two models are memory works are the Multi-Store Model of Memory, developed by Atkinson & Shiffrin (1968), clearly identified. and the Working Memory Model of Memory, developed by Baddeley & Hitch (1974). The Multi-store model model explains that all memory is taken in through our senses; this is called sensory input. This information is enters our sensory memory, where if it is attended to, it will pass to short-term memory. If not attention is paid to it, it is displaced. Short-term memory Research. is limited in duration and capacity. According to Miller, STM can hold only 7 plus or minus 2 pieces of information. Short-term memory memory lasts for six to twelve seconds. When information in the short-term memory is rehearsed, it enters the long-term memory store in a process called “encoding.” When we recall information, it is retrieved from LTM and moved A satisfactory description of back into STM. -
Dissociation Between Declarative and Procedural Mechanisms in Long-Term Memory
! DISSOCIATION BETWEEN DECLARATIVE AND PROCEDURAL MECHANISMS IN LONG-TERM MEMORY A dissertation submitted to the Kent State University College of Education, Health, and Human Services in partial fulfillment of the requirements for the degree of Doctor of Philosophy By Dale A. Hirsch August, 2017 ! A dissertation written by Dale A. Hirsch B.A., Cleveland State University, 2010 M.A., Cleveland State University, 2013 Ph.D., Kent State University, 2017 Approved by _________________________, Director, Doctoral Dissertation Committee Bradley Morris _________________________, Member, Doctoral Dissertation Committee Christopher Was _________________________, Member, Doctoral Dissertation Committee Karrie Godwin Accepted by _________________________, Director, School of Lifespan Development and Mary Dellmann-Jenkins Educational Sciences _________________________, Dean, College of Education, Health and Human James C. Hannon Services ! ""! ! HIRSCH, DALE A., Ph.D., August 2017 Educational Psychology DISSOCIATION BETWEEN DECLARATIVE AND PROCEDURAL MECHANISMS IN LONG-TERM MEMORY (66 pp.) Director of Dissertation: Bradley Morris The purpose of this study was to investigate the potential dissociation between declarative and procedural elements in long-term memory for a facilitation of procedural memory (FPM) paradigm. FPM coupled with a directed forgetting (DF) manipulation was utilized to highlight the dissociation. Three experiments were conducted to that end. All three experiments resulted in facilitation for categorization operations. Experiments one and two additionally found relatively poor recognition for items that participants were told to forget despite the fact that relevant categorization operations were facilitated. Experiment three resulted in similarly poor recognition for category names that participants were told to forget. Taken together, the three experiments in this investigation demonstrate a clear dissociation between the procedural and declarative elements of the FPM task. -
Working Memory and Cued Recall Max V
Georgia Southern University Digital Commons@Georgia Southern University Honors Program Theses 2016 Working memory and cued recall Max V. Fey 8602950 Karen Naufel Georgia Southern University Lawrence Locker Georgia Southern University Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/honors-theses Part of the Cognitive Psychology Commons Recommended Citation Fey, Max V. 8602950; Naufel, Karen; and Locker, Lawrence, "Working memory and cued recall" (2016). University Honors Program Theses. 220. https://digitalcommons.georgiasouthern.edu/honors-theses/220 This thesis (open access) is brought to you for free and open access by Digital Commons@Georgia Southern. It has been accepted for inclusion in University Honors Program Theses by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact [email protected]. 1 Working Memory and Cued Recall Working Memory and Cued Recall An Honors Thesis submitted in partial fulfillment of the requirements for Honors in the Department of Psychology. By Maximilian Fey Under the mentorship of Dr. Karen Naufel ABSTRACT Previous research has found that individuals with high working memory have greater recall capabilities than those with low working memory (Unsworth, Spiller, & Brewers, 2012). Research did not test the extent to which cues affect one’s recall ability in relation to working memory. The present study will examine this issue. Participants completed a working memory measure. Then, they were provided with cued recall tasks whereby they recalled Facebook friends. The cues varied to be no cues, ambiguous cues high in imageability, and cues directly related to Facebook. The results showed that there was no difference between individual’s ability to recall their Facebook friends and their working memory scores. -
Impacts of Training and Medication on Working Memory in Children with ADHD
APPLIED COGNITIVE PSYCHOLOGY Appl. Cognit. Psychol. (2009) Published online in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/acp.1589 Working Memory Deficits can be Overcome: Impacts of Training and Medication on Working Memory in Children with ADHD JONI HOLMES1*, SUSAN E. GATHERCOLE2, MAURICE PLACE3, DARREN L. DUNNING2, KERRY A. HILTON4 and JULIAN G. ELLIOTT4 1University of Northumbria, UK 2University of York, UK 3Hartlepool Child and Adolescent Mental Health Services, UK 4Durham University, UK SUMMARY This study evaluated the impact of two interventions—a training program and stimulant medi- cation—on working memory (WM) function in children with attention deficit hyperactivity disorder (ADHD). Twenty-five children aged between 8 and 11 years participated in training that taxed WM skills to the limit for a minimum of 20 days, and completed other assessments of WM and IQ before and after training, and with and without prescribed drug treatment. While medication significantly improved visuo-spatial memory performance, training led to substantial gains in all components of WM across untrained tasks. Training gains associated with the central executive persisted over a 6- month period. IQ scores were unaffected by either intervention. These findings indicate that the WM impairments in children with ADHD can be differentially ameliorated by training and by stimulant medication. Copyright # 2009 John Wiley & Sons, Ltd. INTRODUCTION Working memory (WM), the cognitive system responsible for the temporary storage and manipulation of information, is crucial for maintaining focused behaviour in practical situations (Kane, Brown, McVay Silvia, Myin-Germeys, & Kwapil, 2007). Deficits in WM are typical among individuals with attention deficit hyperactivity disorder (ADHD) (Barkley, 1997; Martinussen, Hayden, Hogg-Johnson, & Tannock, 2005). -
Cognitive Training with Healthy Older Adults: Investigating the Effectiveness of the Brain Age Software for Nintendo DS
Marquette University e-Publications@Marquette Dissertations, Theses, and Professional Dissertations (1934 -) Projects Cognitive Training With Healthy Older Adults: Investigating the Effectiveness of the Brain Age Software for Nintendo DS Shaun Michael English Marquette University Follow this and additional works at: https://epublications.marquette.edu/dissertations_mu Part of the Psychiatry and Psychology Commons Recommended Citation English, Shaun Michael, "Cognitive Training With Healthy Older Adults: Investigating the Effectiveness of the Brain Age Software for Nintendo DS" (2012). Dissertations (1934 -). 226. https://epublications.marquette.edu/dissertations_mu/226 COGNITIVE TRAINING WITH HEALTHY OLDER ADULTS: INVESTIGATING THE EFFECTIVENESS OF THE BRAIN AGETM SOFTWARE FOR NINTENDO By Shaun M. English, M.S. A Dissertation Submitted to the Faculty of the Graduate School, Marquette University, In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Milwaukee, Wisconsin October 2012 ABSTRACT COGNITIVE TRAINING WITH HEALTHY OLDER ADULTS: INVESTIGATING THE EFFECTIVENESS OF THE BRAIN AGETM SOFTWARE FOR NINTENDO Shaun M. English, M.S. Marquette University, 2012 An increasing number of empirical studies have demonstrated the effectiveness of cognitive training (CT) with healthy, cognitively intact older adults. Less is known regarding the effectiveness of commercially available “brain training” programs. The current study investigated the impact of daily CT presented via the Brain Age® software for Nintendo DS on neurocognitive abilities in a sample of healthy, community-dwelling older adults. Over the six-week study, participants in the CT group completed training activities and were compared to an active control group who played card games on the Nintendo DS. At pre-test and post-test, a wide range of empirically validated neuropsychological outcome measures was administered to examine the proximal and distal transfer effects of training. -
Presentation on Working Memory
Executive Function: Working Memory Working Function: Executive Executive Function Skills: Working Memory Kris Baker [email protected] Imitation Game Working Memory: Explanations and Examples and Explanations Memory: Working Example: The ability to store and manage Recalling what you have just read and how it applies to what you are currently reading or being asked to do. information in one’s mind for a short period of time. Example: The manipulation of information Recalling the sequence in which a project, task or that short-term memory stores. activity needs to be completed. (Morin, 2016). Example: Remembering a phone The ability to keep one piece of number when trying to dial it. information in mind while working on or with something else (Smyth/Myles, 2016). In fact, most of the “work” in the memory system occurs in “working” memory where information is managed, manipulated and transformed (Can Learn, 2013). Struggles with Working Memory • Recalling sounds letters make when decoding a word (Smyth/Myles, 2016). • Recalling the meaning behind (the comprehension) of what you are reading when you are primarily focused on decoding or reading the words (learning to read vs reading to learn) • Slow retrieval of information (Can Learn, 2016). • Hold few pieces of information in their mind at a given moment in time: • “They hear what you said, or see what is presented, but as more information overwhelms their memory system they lose previous information needed to successfully complete the task. Once information is lost it is not likely to be retrieved. It is easy to see how the student can become frustrated and consequently stop paying attention.” (Can Learn, 2016). -
Working Memory and the Organization of Brain Systems
4818 • The Journal of Neuroscience, April 30, 2008 • 28(18):4818–4822 Behavioral/Systems/Cognitive Working Memory and the Organization of Brain Systems Yael Shrager,1 Daniel A. Levy,2 Ramona O. Hopkins,3 and Larry R. Squire4 1University of California, San Diego, La Jolla, California 92093, 2Weizmann Institute of Science, Rechovot 76100, Israel, 3Brigham Young University, Provo, Utah 84602, and 4Veterans Affairs Healthcare System, San Diego, California 92161 Working memory has historically been viewed as an active maintenance process that is independent of long-term memory and indepen- dent of the medial temporal lobe. However, impaired performance across brief time intervals has sometimes been described in amnesic patients with medial temporal lobe damage. These findings raise a fundamental question about how to know when performance depends on working memory and when the capacity for working memory has been exceeded and performance depends on long-term memory. We describe a method for identifying working memory independently of patient performance. We compared patients with medial temporal lobe damage to controls who were given either distraction or no distraction between study and test. In four experiments, we found concordance between the performance of patients and the effect of distraction on controls. The patients were impaired on tasks in which distraction had minimal effect on control performance, and the patients were intact on tasks in which distraction disrupted control performance. We suggest that the patients were impaired when the task minimally depended on working memory (and instead depended substantially on long-term memory), and they performed well when the task depended substantially on working memory. -
Improving Working Memory
Improving Working Memory Philip Levin, PhD Program Director The Help Group/UCLA Neuropsychology Program Outline • Define the term working memory – Brain structures involved in working memory • How to assess working memory • Define the effects of working memory deficits on learning • What types of improvement to expect from working memory programs • What can be done to improve working memory Outline • Define the term working memory – Brain structures involved in working memory • How to assess working memory • Define the effects of working memory deficits on learning • What types of improvement to expect from working memory programs • What can be done to improve working memory The Memory Systems Atkinson & Shiffrin, 1971 Environment/working memory/ long term memory • Working Memory is finite • Long Term Memory is close to infinite Memory Capacity If the brain were a computer Current Esmates are that the brain could hold 2.5 Petabytes of informaon Paul Reiber, Scienfic America, April, 2010 Working Memory Models • Alan Baderly (1974) – keep informaon “in mind” – a system for both temporary storage and manipulaon of informaon, which is necessary for a wide range of cognive tasks – might be the single most important factor in determining general intelligence Parts of the brain involved in working memory The Phonological Loop This system was proposed to give an account of the substantial evidence that had already accumulated concerning short-term verbal memory, typically involving the classic digit span procedure. The articulatory loop was assumed to comprise two components, a phonological store and an articulatory rehearsal system. Traces within the store were assumed to decay over a period of about two seconds unless refreshed by rehearsal, a process akin to subvocalization and one that is dependent on the second component, the articulatory system ( Baddeley & Hitch, 1974). -
Working Memory Performance, Learning and Study Strategies and Learning Styles of Dyslexic and Non Dyslexic Adult Learners
Working Memory Performance, Learning and Study Strategies and Learning Styles of Dyslexic and Non Dyslexic Adult Learners Kartini Abd Ghani PhD University of York Psychology December 2013 Abstract Past research has shown that working memory is a good predictor of learning performance. The working memory processes determine an individuals’ learning ability and capability. The current study was conducted to examine the: (a) differences in the working memory performance of dyslexic students in postsecondary institutions, (b) differences in dyslexic students’ study strategies and learning styles, (c) differences in the working memory profiles of non-dyslexic university students based on their disciplines (science versus humanities), (d) differences between non-dyslexic science and humanities students in their study strategies and learning styles, (e) relationship between working memory and study skills and (f) hypothesised memory models that best fit the actual data gathered using structured equation modelling technique. Two separate studies were performed to address these aims. For Study 1, a group of 26 dyslexic individuals along with a group of 32 typical non-dyslexic students were assessed for their working memory and study skills performances. A significant difference in working memory was found between the two groups. The dyslexic group showed weaker performance in the verbal working memory tasks which concurs with previous findings. The result also provides support that weakness in the verbal working memory of dyslexic individuals still exist and persist into adulthood. Significant differences in the students’ study skills were also identified. Dyslexic students reported to be more anxious and concerned about their academic tasks, lack in concentration and attention, less effective in selecting important materials during reading, using less test taking and time management strategies. -
Working Memory
Working Memory Chapter 4 1 Working Memory Some memories are very fragile and go into oblivion very quickly. Working memory is one such memory. 1. Try this. Do this mentally. Write your answers on paper. a. 7 X 9 = 63 b. 74 X 9 = 666 c. 74 X 96 = 7104 2 Working Memory (WM) 1. We know attention is limited. So information that gets to memory is also limited. Thus capacity of working memory is limited. 2. Working memory is brief, immediate memory we use for current information. A portion of working memory coordinates ongoing mental activities. 3. Working memory has been known as short-term memory, and is contrasted from long-term. Some investigators believe the two are the same (Nairne, 2002). 3 1 Classic Research on Working Memory (Short-term Memory) 4 Short-term Memory In the 19th century, Sir George Hamilton discovered that he could accurately store about 7 items (marbles) in memory if he glanced at the items quickly. If the items were more than 7 his accuracy decreased. Sir George Hamilton 5 Short-term Memory 1. Miller (1956) wrote, “The magical number seven plus or minus two: some limits on our capacity for processing information”. 2. Miller suggested that the capacity of our short-term memory was small. We could store about 5-9 items in it. 3. He also showed that items could be “chunked”, which would increase our memory capacity. George Miller 6 2 Try This ! C T A I I L T C S F R O R E C A L L ! F R A C T O L I S T I C R E C A L L ! 7 Another Example 870-230-5339 (10 items) 870 + 230 + 5 3 3 9 (1) (1) (4) 2 chunks + 4 items (6 items) Capacity of short-term memory may be increased by a process called “chunking”. -
A Randomized Clinical Trial
Research Original Investigation Academic Outcomes 2 Years After Working Memory Training for Children With Low Working Memory A Randomized Clinical Trial Gehan Roberts, MPH, PhD; Jon Quach, PhD; Megan Spencer-Smith, PhD; Peter J. Anderson, PhD; Susan Gathercole, PhD; Lisa Gold, PhD; Kah-Ling Sia; Fiona Mensah, PhD; Field Rickards, PhD; John Ainley, PhD; Melissa Wake, MBChB, MD, FRACP Supplemental content at IMPORTANCE Working memory training may help children with attention and learning jamapediatrics.com difficulties, but robust evidence from population-level randomized controlled clinical trials is lacking. OBJECTIVE To test whether a computerized adaptive working memory intervention program improves long-term academic outcomes of children 6 to 7 years of age with low working memory compared with usual classroom teaching. DESIGN, SETTING, AND PARTICIPANTS Population-based randomized controlled clinical trial of first graders from 44 schools in Melbourne, Australia, who underwent a verbal and visuospatial working memory screening. Children were classified as having low working memory if their scores were below the 15th percentile on either the Backward Digit Recall or Mister X subtest from the Automated Working Memory Assessment, or if their scores were below the 25th percentile on both. These children were randomly assigned by an independent statistician to either an intervention or a control arm using a concealed computerized random number sequence. Researchers were blinded to group assignment at time of screening. We conducted our trial from March 1, 2012, to February 1, 2015; our final analysis was on October 30, 2015. We used intention-to-treat analyses. INTERVENTION Cogmed working memory training, comprising 20 to 25 training sessions of 45 minutes’ duration at school. -
Sleep Problems Across Development: a Pathway to Adolescent Risk Taking Through Working Memory
J Youth Adolescence DOI 10.1007/s10964-014-0179-7 EMPIRICAL RESEARCH Sleep Problems Across Development: A Pathway to Adolescent Risk Taking Through Working Memory April Gile Thomas • Kathryn C. Monahan • Angela F. Lukowski • Elizabeth Cauffman Received: 22 April 2014 / Accepted: 23 August 2014 Ó Springer Science+Business Media New York 2014 Abstract Problematic sleep can be detrimental to the middle childhood to adolescence. Although sleep problems development of important cognitive functions, such as in infancy, early childhood, and middle childhood were not working memory, and may have the potential for negative directly related to adolescent working memory, sleep behavioral consequences, such as risk-taking. In this way, problems during adolescence were associated with poorer sleep problems may be particularly harmful for youth— adolescent working memory. In turn, these deficits in whose cognitive abilities are still developing and who are working memory were related to greater risk taking in late more susceptible to risky behavior. Using data from a large, adolescence. In summary, the present results suggest that national, longitudinal study, continuity and change in sleep sleep problems in earlier periods are indicative of risk for problems were examined from 2 to 15 years of age and sleep problems later in development, but that sleep problems associated with deficits in working memory at age 15 and in adolescence contribute uniquely to deficits in working risk taking behaviors at age 18. Participants (N = 1,364 memory that, in turn, lead to risky behavior during late children; 48.3 % female) were assessed for sleep problems adolescence. (parent-report), working memory (behavioral task), and risk taking behavior (youth self-report).