Structures and Crystal Chemhstry of Wollastonite and Pectolite

Total Page:16

File Type:pdf, Size:1020Kb

Structures and Crystal Chemhstry of Wollastonite and Pectolite STRUCTURES AND CRYSTAL CHEMHSTRY OF WOLLASTONITE AND PECTOLITE by CHARLES THOMPSON PREWITT S.B., Massachusetts Institute of Technology (1955) S.M., Massachusetts Institute of Technology (1960) SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY September, 1962 Signature of Author . ... .. ... .. ... ... ... - Department of Geology and Geophysics, August 20, 1962 Certified by. .-.-.-. Thesis Supervisor Accepted by..-.-- Chairman, Departmental Committee on Graduate Students Structures and crystal chemistry of wollastonite and pectolLte by Charles T. Prewitt Submitted to the Department of Geology and Geophysics on August 20, 1962, in partial fulfillment of the requirement for the degree of Doctor of Philosophy. ABSTRAC T Wollastonite, CaSi.O3 , and pectolite, Ca 2NaHSi30 9 have similar triclinic cells; because of this and their analogous chemical compositions, they have been regarded as belonging to the same mineral family. An examination of the results of least-squares' refinement of three-dimensional x-ray diffraction data reveals that although the structures contain similar metasilicate chains, .they are not as closely isotypic as had been supposed. The principle differ- ences are in the coordinations of calcium and sodium and in the way these atoms share oxygens with the silicon atoms. The final R-factors for wollastonite and pectolite are, respectively, 0.089 and 0.075. The structures of both wollastonite and pectolite contain pseudomonoclinic subcells which are joined together on (100) to give an overall symmetry different from that of the subcell. The geome- tries of these sabcells and the possibility of their being joined in different ways are important in explaining the types of twinning which occur in wollastonite and pectolite. Twinning which produces an overall crystal symmetry different from some subcell, known as space group twinning, probably occurs in many types of silicate minerals. Programs written for the IBM 7090 digital computer, including full-matrix crystallographic least-squares refinement and diffracto- meter settings programs, are included as part of a system designed for automated crystal structure solution and refinement. Such a system is not available at present but should be ready within two years. Thesis Supervisor: Martin J. Buerger Title: Institute Professor -.--. U - , Preface This thesis is divided into three parts, A, B, and C. Part A consists of four chapters, each of which is intended for publication. Part B contains an account of work which was done during the thesis period and which is not intended for publication in its present form. There is, however, a possibility that some of this material will be used as a base for future publication. Part C contains four appen- dices, the first three of which are descriptions and listings of computer programs written during the period of thesis research. It is hoped that these programs will be of use to 6thers doing crystal structure work, and that they will eventually be incorporated into a complete system for crystal structure investigations. The fourth appendix contains observed and calculated structure factor data on wollastonite and pectolite. Acknowledgements The author gratefully acknowledges the advice and support of Professor M. J. Buerger in this work on wollastonite and pectolite. Crystals of wollastonite, pectolite, and larsenite were kindly provided by Professor Clifford Frondel of Harvard University. Mr. Alden Carpenter of Harvard loaned several specimens of parawollastonite. Pectolite and wollastonite were obtained from Dr. George Switzer and Mr. Roy S. Clarke of the U. S. National Museum. The author would like to especially thank Professor A. Pabst of the University of California for sending oscillation photographs and specimens of Crestmore parawollastonite and for his comments on parawollastonite. Dr. Waldemar Schaller of the U. S. Geological Survey gave valuable advice on the pectolite-schizolite-serandite series. Many useful and informative discussions with Mr. Donald Peacor have contributed greatly to the successful completion of this work, particularly in connection with his investigations of bustamite and rhodonite. Mrs. Hilda Cid-Dresdner, Mr. Bernhardt Wuensch, and Mr. Wayne Dollase are thanked for their interest and help throughout the period of investigation. Many conversations with Dr. Charles Burnham about computing were especially useful. Miss Gay Lorraine and Mrs. Shirley Veale contributed greatly through their typing of the entire thesis. Particular thanks are due Miss Lorraine for proofreading and for her advice on the format of the final draft. My wife, Gretchen, helped greatly through her moral support and through the preparation of many of the illustrations. Finally, the support of the National Science Foundation through part-time Research Ass istantships, and the M. I. T. Computation Center through the use of the IBM 709 and 7090 computers is gratefully acknowledged. Table of Contents Title page i Abstract LL Preface tiL Acknowledgements iv Table of Contents v List of Tables x List of Figures xi Part A Chapter I. Crystal structures of wollastonite and pectolite 1 Attempts to solve the wollastonite structure from Patterson projections 2 New diffractometer data 3 The three-dimensional Patterson function and its solution 3 Refinement of the wollastonite structure 5 Attempt to fit pectolite into a wollastonite pattern 7 Preliminary refinement of the pectolite structure 8 Comparison of the pectolite and wollastonite structures 9 Chapter II. Comparison of the crystal structures of wollastoniteand pectolite 14 Abstract 14 Introduction 15 Confirmation of the structure 16 Comparison of structures 18 Pseudomonoclinic symmetry 27 Distribution of Ca and Na 35 Interatomic distances and interbond angles 40 Twinning 48 Conclusions 56 Acknowledgements 57 ---- 7- - Vi Chapter 111. Drilling coordinates for crystal structure models 58 Abstract 58 Introduction 59 Coordinate systems 59 Calculation of p and < 63 Discussion 66 Acknowledgements 67 References 68 Chapter IV. Refinement of pectolite 69 Introduction 69 Selection of material 69 Unit cell data 71 Space group 73 Intensity collection 73 Refinement 75 Evaluation of the structure 78 Conclusions 87 References 88 Part B Chapter V. Review of the crystallographic investiga- tion of metasilicates 91 Status of structural work 93 Future possibilities for ino-metasilicate investigations 95 References 97 Chapter VI. Twinning in silicate crystallography 99 Structure and space group twinning 99 101 Implications of space group twinning 111 Energy relations in parawollastonite and bustamite 112 Space group twinning in other silicates 115 References Chapter VII. Crystal structures related to wollastonite and pectolite 116 Status of structural information 116 Pseudowollastonite 118 Hydrated calcium silicates 120 References 122 Chapter VIII. Crystal structure of larsenite, PbZnSLO 124 Experimental work 124 Occurrence 124 Unit cell and space group 125 Intensity cellection 125 Solution of the structure 126 Refinement 131 Discussion of results 133 Oxygen packing 133 Substructures and heavy atoms 134 Direct methods 135 References 136 Chapter IX. Automatic crystal structure analysis 137 Present capabilities 137 Future capabilities 138 Expected results of automated crystal structure analysis 140 Part C Appendices 142 Appendix I. SFLSQ3, a structure factor and least- squares refinement program for the IBM 7090 digital computer 143 Introduction 143 Common storage 145 Sense indicators 145 Tape usage 145 Punched output 150 Description of the main program and its subroutines 151 MAIN 151 READI 154 READ2 154 READ3 155 SET 155 LOOKUP 155 WEIGHT 155 SPGRP 156 REJECT 166 STAT 167 PRSF 167 STMAT 169 PRST 169 CHLNK3 169 TEST 172 CARD 173 DIST 173 Running the program 173 Data deck 173 Submitting a run 180 References 181 Program listing 183 Appendix II. Program for computation of drilling coordinates for crystal structure models 209 Directions for running the program DRILL 210 Data cards for DRILL 210 Description of data deck 211 Description of output 212 Program listing 213 Appendix III. Computation of diffractometer settings 215 Program description 215 DFSET 215 INDEXI 216 INDEX2 216 OUTPUT 217 MIFLIP 217 TERM 217 Speed of computation 217 Running the program 218 Data de ck 218 References 222 Program listing 223 Appendix IV. Observed and calculated structure factors for wollastonite and pectolite 235 Wollastonite structure factors 235 Pectolite structure factors 264 Biographical note 290 List of Tables Chapter I 1. Refined coordinates of atoms in wollastonite and pectolite, all referred to pectolite origin 10 Chapter II 1. Unit cells of wollastonite, NaAsO 3 , and pectolite 17 2. Atom coordinates for wollastonite and pectolite 23 3. Atom coordinates of wollastonite and pectolite referred to a pseudomonoclinic cell P2,/n (origin at 1) 33 4. Interatomic distances and Interbond angles in wollastonite and pectolite 41 5. Coordination of oxygens in wollastonite and pectolite 45 Chapter IV 1. Compositions of two pectolites and the hypothetical composition computed from Ca 2NaHSi 0 72 2. Results of least-squares refinement ofpectolite cell constants 74 3. Refined coordinates for pectolite 79 4. Interatomic distances in pectolite 82 5. Oxygen coordination in pectolite 86 Chapter V 1. List of crystallographically interesting metasilicates 92 Chapter VII 1. Classification of compounds with formula ABX3 117 Chapter VIII 1. Comparison
Recommended publications
  • X-Ray Rietveld and 57Fe Mössbauer Study of Babingtonite from Kouragahana, Shimane Peninsula, Japan
    Journal of MineralogicalBabingtonite and from Petrological Kouragahana, Sciences, Shimane Volume Peninsula, 108, pageJapan 121─ 130, 2013 121 X-ray Rietveld and 57Fe Mössbauer study of babingtonite from Kouragahana, Shimane Peninsula, Japan * * ** Masahide AKASAKA , Takehiko KIMURA and Mariko NAGASHIMA *Department of Geoscience, Graduate School of Science and Engineering, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan **Department of Earth Science, Graduate School of Science and Engineering, Yamaguchi University, Yamaguchi 753-8512, Japan Babingtonite from Kouragahana, Shimane Peninsula, Japan, was investigated using electron microprobe, X-ray Rietveld, and 57Fe Mössbauer spectral analyses to characterize its chemical compositions, crystal structure, oxi- dation state of Fe, and distribution of Fe between two crystallographically independent octahedral Fe1 and Fe2 sites. _ The_ Kouragahana babingtonite occurs as single parallelohedrons with {100}, {001}, {001}, {111}, {110}, and {101} and sometimes shows penetration twinning. Both normal and sector-zoned crystals occur. Babing- tonite crystals with sector zoning consist of sectors relatively enriched in Fe and of sectors enriched in Mg, Mn, and Al. Babingtonite also shows compositional zoning with higher Fe2+ and Al core and higher Fe3+ and Mn 2+ rim. The average Fe content of the babingtonite without sector zoning is similar to the Fe -rich sector of the sector-zoned babingtonite. The chemical formula based on the average composition of all analytical data (n = 2+ 3+ - 193) is [Na0.01(2)Ca2.01(2)] [Mg0.11(4)Mn0.09(3)Fe0.76(7)Fe_ 0.93(5)Ti0.01(1)Al0.06(5)]Si5.01(4)O14(OH). X ray Rietveld refinement was carried out using a model of space group P1.
    [Show full text]
  • Washington State Minerals Checklist
    Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Wollastonite–A Versatile Industrial Mineral
    Industrial Minerals of the United States Wollastonite–A Versatile Industrial Mineral What is Wollastonite? Wollastonite is a chemically simple mineral named in honor of English mineralogist and chemist Sir W.H. Wollaston (1766–1828). It is composed of calcium (Ca) and silicon and oxygen (SiO2, silica) with the chemical formula CaSiO3. Although much wollastonite is relatively pure CaSiO3, it can contain some iron, magnesium, (Above and right) Hand specimens of manganese, aluminum, potassium, wollastonite showing acicular crystal clusters. sodium, or strontium substituting for calcium in the mineral structure. Pure wollastonite is bright white; the geologic conditions during formation What Makes Wollastonite and host rock composition. The type and amount of impurities can Useful? produce gray, cream, brown, pale- Lewis Deposit, mined by NYCO green, or red colors. Minerals, Inc., in the Adirondack Wollastonite has several physical Mountains in Essex County, was properties that make it useful as an formed by the recrystallization of industrial mineral: Geology of U.S. Precambrian carbonate rocks inter- Wollastonite Deposits layered with high-grade metamor- ∑ Wollastonite is largely inert, phic rocks. Nearby reserves are although it will dissolve in concen- Wollastonite is formed by two contained in the Oak Hill and trated hydrochloric acid. It will not processes. The first occurs when Deerhead deposits. The ore bodies react with other components of silica and limestone are raised to a consist of the minerals wollastonite, manufactured products either during temperature of 400°–450°C, either garnet, and diopside with as much as or after the manufacturing process. because of deep burial (regional 60 percent of the bodies being ∑ During crushing, wollastonite metamorphism) or by being baked wollastonite.
    [Show full text]
  • Charlesite, a New Mineral of the Ettringite Group, from Franklin, New Jersey
    American Mineralogist, Volume 68, pages 1033-1037,1983 Charlesite, a new mineral of the ettringite group, from Franklin, New Jersey PBre J. DuxN Department of Mineral Sciences SmithsonianInstitution, Washington,D. C. 20560 DoNero R. Peecon Department of GeologicalSciences University of Michigan, Ann Arbor, Michigan 48109 PBrnn B. LBavBNs Departmentof Geology Universityof Delaware, Newark, Delaware l97ll eNo JonN L. Beuu Franklin Mineral Museum Franklin. New Jersey 07416 Abstract Charlesite,ideally C4(AI,Si)z(SO4)2(B(OH)4)(OH,O)r2.26H2Ois a member of the ettrin- gite group from Franklin, New Jersey, and is the Al analogueof sturmanite. Chemical analysisyielded CaO27.3, Al2O3 5.1, SiO2 3.1, SO3 12.8,B2o33.2, H2O 48.6, sum : 100.1 percent.-Charlesiteis hexagonal,probable spacegroup P3lc, with a = ll.16(l), c = 21.21(2)4. The strongest lines in the X-ray powder difraction pattern (d, IlIo, hkl) are: 9.70,100, 100;5.58, 80, 110;3.855,80, ll4;2.749,70,304;2.538,70,126;2.193,70,2261 404. Charlesite occurs as simple hexagonal crystals tabular on {0001} and has a perfect {10T0}cleavage. The densityis 1.77glcm3 (obs.) and 1.79glcms (calc.). Optically, charlesite is uniaxial( -) with a : | .492(3)and e : 1.475(3).It occurswith clinohedrite,ganophyllite, xonotlite, prehnite, roeblingite and other minerals in severalparageneses at Franklin, New Jersey. Charlesite is named in honor of the late Professor Charles Palache. Introduction were approved, prior to publication, by the Commission Minerals and Mineral Names. I. M. A. The An ettringite-like mineral was first described from on New specimenwas divided into three portions.
    [Show full text]
  • List of New Mineral Names: with an Index of Authors
    415 A (fifth) list of new mineral names: with an index of authors. 1 By L. J. S~v.scs~, M.A., F.G.S. Assistant in the ~Iineral Department of the,Brltish Museum. [Communicated June 7, 1910.] Aglaurito. R. Handmann, 1907. Zeita. Min. Geol. Stuttgart, col. i, p. 78. Orthoc]ase-felspar with a fine blue reflection forming a constituent of quartz-porphyry (Aglauritporphyr) from Teplitz, Bohemia. Named from ~,Xavpo~ ---- ~Xa&, bright. Alaito. K. A. ~Yenadkevi~, 1909. BuU. Acad. Sci. Saint-P6tersbourg, ser. 6, col. iii, p. 185 (A~am~s). Hydrate~l vanadic oxide, V205. H~O, forming blood=red, mossy growths with silky lustre. Founi] with turanite (q. v.) in thct neighbourhood of the Alai Mountains, Russian Central Asia. Alamosite. C. Palaehe and H. E. Merwin, 1909. Amer. Journ. Sci., ser. 4, col. xxvii, p. 899; Zeits. Kryst. Min., col. xlvi, p. 518. Lead recta-silicate, PbSiOs, occurring as snow-white, radially fibrous masses. Crystals are monoclinic, though apparently not isom0rphous with wol]astonite. From Alamos, Sonora, Mexico. Prepared artificially by S. Hilpert and P. Weiller, Ber. Deutsch. Chem. Ges., 1909, col. xlii, p. 2969. Aloisiite. L. Colomba, 1908. Rend. B. Accad. Lincei, Roma, set. 5, col. xvii, sere. 2, p. 233. A hydrated sub-silicate of calcium, ferrous iron, magnesium, sodium, and hydrogen, (R pp, R',), SiO,, occurring in an amorphous condition, intimately mixed with oalcinm carbonate, in a palagonite-tuff at Fort Portal, Uganda. Named in honour of H.R.H. Prince Luigi Amedeo of Savoy, Duke of Abruzzi. Aloisius or Aloysius is a Latin form of Luigi or I~ewis.
    [Show full text]
  • Alphab Etical Index
    ALPHAB ETICAL INDEX Names of authors are printed in SMALLCAPITALS, subjects in lower-case roman, and localities in italics; book reviews are placed at the end. ABDUL-SAMAD, F. A., THOMAS, J. H., WILLIAMS, P. A., BLASI, A., tetrahedral A1 in alkali feldspar, 465 and SYMES, R. F., lanarkite, 499 BORTNIKOV, N. S., see BRESKOVSKA, V. V., 357 AEGEAN SEA, Santorini I., iron oxide mineralogy, 89 Boulangerite, 360 Aegirine, Scotland, in trachyte, 399 BRAITHWAITE, R. S. W., and COOPER, B. V., childrenite, /~kKERBLOM, G. V., see WILSON, M. R., 233 119 ALDERTON, D. H. M., see RANKIN, A. H., 179 Braunite, mineralogy and genesis, 506 Allanite, Scotland, 445 BRESKOVSKA, V. V., MOZGOVA, N. N., BORTNIKOV, N. S., Aluminosilicate-sodalites, X-ray study, 459 GORSHKOV, A. I., and TSEPIN, A. I., ardaite, 357 Amphibole, microstructures and phase transformations, BROOKS, R. R., see WATTERS, W. A., 510 395; Greenland, 283 BULGARIA, Madjarovo deposit, ardaite, 357 Andradite, in banded iron-formation assemblage, 127 ANGUS, N. S., AND KANARIS-SOTIRIOU, R., autometa- Calcite, atomic arrangement on twin boundaries, 265 somatic gneisses, 411 CANADA, SASKATCHEWAN, uranium occurrences in Cree Anthophyllite, asbestiform, morphology and alteration, Lake Zone, 163 77 CANTERFORD, J. H., see HILL, R. J., 453 Aragonite, atomic arrangements on twin boundaries, Carbonatite, evolution and nomenclature, 13 265 CARPENTER, M. A., amphibole microstructures, 395 Ardaite, Bulgaria, new mineral, 357 Cassiterite, SW England, U content, 211 Arfvedsonite, Scotland, in trachyte, 399 Cebollite, in kimberlite, correction, 274 ARVlN, M., pumpellyite in basic igneous rocks, 427 CHANNEL ISLANDS, Guernsey, meladiorite layers, 301; ASCENSION ISLAND, RE-rich eudialyte, 421 Jersey, wollastonite and epistilbite, 504; mineralization A TKINS, F.
    [Show full text]
  • Clinohedrite Caznsio4 ² H2O C 2001 Mineral Data Publishing, Version 1.2 ° Crystal Data: Monoclinic
    Clinohedrite CaZnSiO4 ² H2O c 2001 Mineral Data Publishing, version 1.2 ° Crystal Data: Monoclinic. Point Group: m: Crystals typically prismatic or tabular, to 4 mm; may be wedge-shaped re°ecting the domatic class in which the species crystallizes. Physical Properties: Cleavage: Perfect on 010 . Hardness = 5.5 D(meas.) = 3.28{3.335 D(calc.) = [3.32] Strongly pyroelectric. f g Optical Properties: Transparent to translucent. Color: Amethystine, colorless to white. Luster: Brilliant, glassy; pearly on 010 . f g Optical Class: Biaxial ({). Orientation: Z = b; Y c = 28±. ® = 1.662 ¯ = 1.667 ° = 1.669 2V(meas.) = Large. ^ Cell Data: Space Group: Cc: a = 5.090{5.131 b = 15.829{15.928 c = 5.386{5.422 ¯ = 103:39± 103:43± Z = 4 ¡ X-ray Powder Pattern: Franklin, New Jersey, USA. (ICDD 17-214). 2.76 (100), 3.23 (70), 2.50 (60), 7.81 (50), 3.97 (50), 2.36 (50), 2.47 (40) Chemistry: (1) (2) (3) SiO2 27.22 26.73 27.87 (Fe; Al)2O3 0.28 0.37 MnO 0.50 1.11 ZnO 37.44 37.13 37.76 MgO 0.07 CaO 26.25 26.25 26.01 + H2O 8.56 8.09 8.36 Total 100.32 99.68 100.00 (1) Franklin, New Jersey, USA; average of two analyses. (2) Do. (3) CaZnSiO4 ² H2O: Occurrence: In a metamorphosed stratiform zinc orebody (Franklin, New Jersey, USA). Association: Hancockite, nasonite, glaucochroite, roeblingite, calcite, willemite, axinite, larsenite, hodgkinsonite, franklinite (Franklin, New Jersey, USA); stringhamite, kinoite, apophyllite (Christmas mine, Arizona, USA). Distribution: From Franklin, Sussex Co., New Jersey; in the Christmas mine, Gila Co., Arizona, USA.
    [Show full text]
  • Canadian Mineralogist, 51
    785 The Canadian Mineralogist Vol. 51, pp. 785-800 (2013) DOI : 10.3749/canmin.51.5.785 A COMBINED GEOCHEMICAL AND GEOCHRONOLOGICAL INVESTIGATION OF NIOCALITE FROM THE OKA CARBONATITE COMPLEX, CANADA WEI CHEN§, ANTONIO SIMONETTI, AND PETER C. BURNS* Department of Civil & Environmental Engineering & Earth Sciences, 156 Fitzpatrick Hall, University of Notre Dame, Notre Dame IN, 46556 USA ABSTRACT This study is the first to report a detailed geochemical investigation and in situ U-Pb ages for niocalite, which occurs within carbonatite from the Bond Zone area of the Oka Carbonatite Complex (Canada). Niocalite is a Nb-disilicate member of the låvenite−cuspidine group. The major element composition of the niocalite studied here is relatively homogeneous with the average formula of: (Na0.34Fe0.06Mn0.19Mg0.09Ca13.40REE0.15Ti0.02)Σ14.25Nb2.12Ta0.06(Si2O7)4O7.65F2.44. Niocalite is enriched in minor and trace elements [i.e., Ta, Ti, and rare earth elements (REEs) up to 4.35 wt.%], with double- and triple-valenced elements (i.e., Sr, Y, REEs) substituting at different Ca-occupied lattice sites. The chondrite-normalized REE patterns for niocalite are LREE-enriched (~104 times chondrite) and negatively sloped. In addition, niocalite has higher HREE contents compared to those for co-existing apatite from the identical carbonatite sample. This result is expected based on bond valence data because of differing cation sizes. In situ U-Pb ages for niocalite from three carbonatite samples obtained by LA-ICP-MS define a wide range of ages, between ~111 and ~133 Ma. Niocalite from one carbonatite sample yields a bimodal distribution with weighted mean 206Pb/238U ages of 110.1 ± 5.0 Ma and 133.2 ± 6.1 Ma, and overlap those of co-existing apatite for the same sample.
    [Show full text]
  • Wollastonite
    Strictly private and confidential Wollastonite A versatile mineral which can support sustainable farming 07 June 2019 Business Risk Analysis – Visionary Execution Strictly private and confidential 2 Disclaimer & Forward-Looking Statements Cautionary Statement on Forward-Looking Information & Statements: This presentation contains certain forward-looking information and statements which may not be based on fact, including without limitation, statements regarding the Company’s expectations in respect of its future financial position, business strategy, future exploration and production, mineral resource potential, exploration drilling, permitting, access to capital, events or developments that the Company expects to take place in the future. All statements, other than statements of historical facts, are forward-looking information and statements. The words “believe”, “expect”, “anticipate”, “contemplate”, “target”, “plan”, “intends”, “continue”, “budget”, “estimate”, “may”, “will”, “aim”, “goal” and similar expressions identify forward-looking information and statements. In addition to the forward-looking information and statements noted above, this presentation includes those that relate to: the expected results of exploration activities; the estimation of mineral resources; the ability to identify new mineral resources and convert mineral resources into mineral reserves; ability to raise additional capital and complete future financings; capital expenditures and costs, including forecasted costs; the ability of the Company to comply with
    [Show full text]
  • Crystal Structure of Protoamphibole
    Mineral. Soc. Amer. Spec. Pap. 2, 101-109 (1969). CRYSTAL STRUCTURE OF PROTOAMPHIBOLE G. V. GIBBS Department of Geological Sciences, Virginia Polytechnic Institute Blacksburg, Virginia 24061 ABSTRACT The structure proposed for protoamphibole (Gibbs et al., 1960) has been verified and refined by three-dimensional Fourier and least-squares methods using data collected with a Weissenberg single crystal counter-diffractometer. The symmetry is Pnmn with a = 9.330, b = 17.879 and c = 5.288 A and the unit-cell content is 2(Nao.03Li",oMg, ••) (Si r. ,.Alo.040,1.71) (OHo.15F,.14). The structure consists of layers of interlocking chains of fluorine-centered hexagonal rings of SiO. groups. The layers are bound together by Mg.Li cations which are coordinated between the chains, the coordination being effected by a ~(cI3) stagger between adjacent layers. An additional stagger of ~(-cI3) in the sequence along a gives an overall displacement of zero between alternate layers, accounting for the 9.33 A a cell edge and the orthogonal geometry. The direction of stagger can be related to the placement of the cations in the octahedral layer. The M -cation coordination groups are nearly regular octahedra with the exception of M(4) which is similar to Mg(l) in protoenstatite. The M(3), M(1) and M(2) sites are occupied principally by Mg. In addition to being randomly distributed around the cavity walls of the A-site, Li ions are also segregated in about 25% of the M(4) sites, the others being occupied by Mg ions. The individual Si-O bond distances in the chains are consistent with Cruickshank's d-p -n: bonding model: Si-O(non- bridging) bonds [Si(1)-O(1) = 1.592; Si(2)-0(4) = 1.592; Si(2)-0(2) = 1.605 AJ are significantly shorter, on the average, than the Si-O(bridging) bonds [Si(1)-0(5) = 1.616; Si(1)-0(6) = 1.623; Si(1)-0(7) = 1.624; Si(2)-0(5) = 1.626; Si(2)-0(6) = 1.655 AJ.
    [Show full text]
  • THE CRYSTAL STRUCTURE of CAHNITE, Cabaso4 (OH)4
    THE CRYSTAL STRUCTURE OF CAHNITE, CaBAsO4 (OH)4 by Charles T. Prewitt S.B., M.I.T.AAT.rc (1955) SUBMITTED IN PARTIAL YULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY (1960) Signature of Author .,. ..... .. ... .... Department of>Geolgy nd Geophysics, May 20, 1960 Certified by . t -.. 4-w.Vi 4 ... .. ... , . Thesis Supervisor Accepted by . .* . .... ... Chairman, Departmental Committee on Graduate Students THE CRYSTAL STRUCTURE OF CAHNITE, Ca2 BAs04 (OH)4 Charles T. Prewitt Submitted to the Department of Geology on May 20, 1960 in partial fulfillment of the requirements for the degree of Master of Science. Cahnite is one of the few crystals which had been assigned to crystal class 4. A precession study showed that its diffraction sphol is 4/m I-/-, which contains space groups I4, I4E, and14/. Because of the known 4 morphology, it must be assigned to space group I4. The unit cell, whose dimensions are a = 7.11A, o = 6.201, contains two formula weights of Ca BAsO (OH)L. The structure was studied with the aid of in ensity medsurements made with a single-crystal diffractometer. Patterson s ntheses were first made for projections along the c, a, and 110 directions. The atomic numbers of the atoms are in the ratio As:Ca.0:B = 33:20:8:5, so that the Patterson peaks are dominated by the atom pairs containing arsenic as one member of the pair. Since there are only two arsenic atoms in a body-centered cell, one As can be arbitrarily assigned to the origin.
    [Show full text]