Anatomic Variance of the Coracoclavicular Ligaments

Total Page:16

File Type:pdf, Size:1020Kb

Anatomic Variance of the Coracoclavicular Ligaments Anatomic variance of the coracoclavicular ligaments Richard I. Harris, BSc(Hons), Dzung H. Vu, MBBS, MD, David H. Sonnabend, BSc(Med), MBBS, Jerome A. Goldberg, MBBS, and William R. Walsh, PhD, Sydney, Australia The coracoclavicular ligaments vary widely in morphology joint range from cartilaginous extensions of the conoid and anatomic descriptions. Few authors have adequately tubercle of the clavicle to the presence of synovial cap- described the coracoclavicular ligaments’ anatomy, and a sules and articular disks intervening across the space. number of discrepancies exist in the anatomy literature. Lewis,4 in describing the presence of 3 coracoclavicular This study examines the complex anatomy of the coraco- bursae, postulated that a coracoclavicular joint can be clavicular ligaments and their relationships to clinically defined as a spectrum of features from a bursa to a well- developed articulation, and the form warranting descrip- important bony landmarks. The geometric dimensions of 24 tion as a joint is a matter of opinion. Textbooks and coracoclavicular ligament specimens from fresh human anatomic studies differ widely in their representations of cadaveric shoulders were examined and quantified with 13 the course and attachments of the coracoclavicular liga- different measurements. Particular attention was given to ments—the conoid and trapezoid. The complex topog- any inter-specimen anatomic variance. The coracoid inser- raphy of the coracoid process and the irregular shapes tions of the conoid ligaments displayed high variance, with of the conoid and trapezoid ligaments often complicate 33% (8/24) being confluent with the lateral fibers of the descriptions and 2-dimensional drawings. Furthermore, superior transverse scapular ligament. A further 15% there are few geometric data that quantify the ligament (3/24) presented an additional lateral fascicle. The dis- dimensions and bony relationships of the region. tance from the lateral trapezoid ligament to the distal clavi- Mechanical studies have only recently examined the cle averaged 15.3 mm. Three distinct and previously unre- function of the conoid and trapezoid ligaments in human cadaveric models.2,3,5 Although the true func- ported conoid ligament variants lend themselves to an tion of these ligaments is still unknown, the complex as anatomic classification (types I, II, and III). A safety margin a whole provides clinically important structural support of 15 mm is suggested for distal clavicle resection in incom- for the acromioclavicular joint. This study examines the plete acromioclavicular joint injuries to preserve the intact morphology of the coracoclavicular ligaments and coracoclavicular ligament. (J Shoulder Elbow Surg revisits their complex anatomy. 2001;10:585-8.) MATERIALS AND METHODS INTRODUCTION Nineteen fresh-frozen and 5 embalmed shoulder spec- imens were dissected free of all nonligamentous soft tissue The coracoclavicular region varies greatly in devel- and examined macroscopically. All donors were white opment and its described anatomy. Much of the varia- persons with a mean age of 70 years (range, 55-90 tion described in the literature relates to the presence years) and were free of musculoskeletal disease. Anatom- ic examination included 13 different geometric measure- and form of articular facets and synovial structures with- ments (Figure 1), mapping of the coracoid and clavicular in the coracoclavicular ligaments, sometimes forming attachment areas, and a description of the anatomic well-developed diarthrodial articulations or a coraco- courses and relationships of the conoid and trapezoid clavicular joint. Several authors have cited the presence components. and incidence of coracoclavicular joints in various pop- All measurements were taken with the clavicle and ulations and racial groups.1,4,6,7,9,11 Definitions of the scapula aligned anatomically, with the tension on the cora- coclavicular ligaments estimated to be as close to equal as From Orthopaedic Research Laboratories, Prince of Wales Hos- possible. To simulate resting in vivo loading conditions, the pital, and the School of Anatomy, University of New South scapula was suspended by gravity from the clavicle, ensur- Wales, Sydney, Australia. ing that the acromioclavicular joint was approximated and Reprint requests: Associate Professor William R. Walsh, PhD, uniform tension on both the conoid and trapezoid liga- Director, Orthopaedic Research Laboratories, Department of ments could be palpated. Specific bone-ligament insertion Orthopaedic Surgery, High Street, Randwick, Sydney, NSW, landmarks were defined on the coracoid and clavicle to 2031, Australia (E-mail: [email protected]). serve as boundary markers of ligament borders. Ligament Copyright © 2001 by Journal of Shoulder and Elbow Surgery boundaries and the axes along which they were measured Board of Trustees. are described in Figure 1. All geometric measurements 1058-2746/2001/$35.00 + 0 32/1/118480 were recorded 3 times with Vernier calipers accurate to doi:10.1067/mse.2001.118480 0.1 mm. A fourth measurement was performed by an 585 586 Harris et al J Shoulder Elbow Surg November/December 2001 Table Mean, range, and SD of averaged geometric measurements Dimension (mm) Mean Range SD 1. Medial conoid length 19.4 13.5-27.3 4.8 2. Anterior trapezoid length 19.3 15.0-23.0 2.6 3. Conoid clavicular width 20.6 15.5-25.0 3.6 4. Conoid coracoid width 10.6 7.0-12.5 2.0 5. Trapezoid clavicular width 21.7 16.5-29.5 4.0 6. Trapezoid coracoid width 14.0 10.5-18.0 2.8 7. Conoid thickness a. Superior 8.6 5.7-10.5 1.6 b. Middle 5.9 3.8-7.1 1.1 c. Inferior 4.4 3.2-5.2 0.7 8. Trapezoid thickness a. Superior 16.0 12.2-20.5 3.1 b. Middle 5.5 3.1-8.9 1.9 c. Inferior 4.8 3.8-5.6 0.6 9. Distal clavicle 15.3 11.0-22.8 3.8 Medial conoid length, Distance between coracoid and clavicular insertions along medial border; Anterior trapezoid length, dis- tance between coracoid and clavicular insertions along anterior border; Conoid clavicular width, greatest distance between medial and lateral clavicular insertion borders; Conoid coracoid width, greatest distance between medial and lateral coracoid Figure 1 The 13 measured ligament dimensions. 1, Medial insertion borders; Trapezoid clavicular width, distance between conoid length; 2, anterior trapezoid length; 3, conoid clavicular anterior and posterior clavicular insertion points; Trapezoid width; 4, conoid coracoid width; 5, trapezoid clavicular width; 6, conoid width, distance between anterior and posterior conoid trapezoid coracoid width; 7, conoid thickness (a, superior; b, middle; c, inferior); 8, trapezoid thickness (a, superior; b, middle; insertion points; Conoid thickness: Superior, distance between c, inferior); 9, distal clavicle. anterior and posterior aspect at clavicle insertion; Middle, dis- tance between anterior and posterior aspect at midpoint between clavicle and coracoid; Inferior, distance between anteri- or and posterior aspect at coracoid insertion; Trapezoid thick- independent recorder for precision. The 4 values were ness: Superior, distance between medial and lateral aspect at averaged. Ligament attachment areas were mapped by clavicle insertion; Middle, distance between medial and lateral transecting ligaments close to their insertions, leaving only aspect at midpoint between clavicle and coracoid; Inferior, dis- remnants of fibers. Inter-specimen variation in anatomic tance between medial and lateral aspect at coracoid insertion; course and relationships of the conoid and trapezoid liga- Distal clavicle, distance from lateral-most clavicular attachment of ments were also recorded. trapezoid ligament to distal border of superior clavicle. RESULTS A summary of the geometric parameters measured is The trapezoid ligament’s clavicular attachment area listed in the Table. In all 24 specimens, the conoid and was typically oval-shaped, encircling the trapezoid trapezoid ligaments originated from a broad area on ridge and an extensive area medial to it. In some spec- the clavicle and tapered cephalocaudally to a smaller imens the shape of the attachment area was narrower insertion area on the coracoid. The conoid ligament’s and more oblong than oval. Regardless of the shape, clavicular insertion was approximately twice as wide the trapezoid ridge served as the lateral limit of the (medial to lateral) and thick (anterior to posterior) as its trapezoid ligament’s attachment area. The trapezoid coracoid insertion, giving rise to its inverted cone shape. ligament’s coracoid insertion covered the majority of The trapezoid ligament was more than 3 times thicker at the posterior half of the coracoid dorsum, with the its clavicular end than at its coracoid end, but its width exception of the posterior-most limit near the angle of narrowed to a lesser extent than the conoid ligament. the coracoid (the point at which the horizontal plateau The free edges of the conoid and trapezoid ligaments drops off steeply). were nearly identical in length (superior to inferior), The clavicular attachment area of the conoid liga- despite the much shorter appearance of the conoid lig- ment was limited by the conoid tubercle posteriorly and ament when it is viewed anteriorly. Distal clavicle mea- extended into an oval-shaped area anterior to it. This surements (ie, the inferior portion of distal clavicle not area lay directly adjacent to the attachment of the covered by the trapezoid ligament) averaged 15.3 mm. trapezoid ligament. The attachments of the 2 ligaments Some specimens were as close as 11 mm. were
Recommended publications
  • Suprascapular Nerve Lesions at the Spinoglenoid Notch: Report of Three Cases and Review of the Literature 243
    Journal ofNeurology, Neurosurgery, and Psychiatry 1991;54:241-243 241 Suprascapular nerve lesions at the spinoglenoid J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.54.3.241 on 1 March 1991. Downloaded from notch: report of three cases and review of the literature Jay A Liveson, Michael J Bronson, Michael A Pollack Abstract of root involvement (cervical pain, and change Lesions of the suprascapular nerve can from Valsalva's manoeuvre). His past medical occur at the supraspinatus notch (SSN) history was negative. On physical examination or at the spinoglenoid notch (SGN). Elec- cranial nerves were normal. No weakness was tromyographic (EMG), evaluation of the detected on careful manual muscle examin- infraspinatus, and especially the supra- ation. Sensation was intact. Deep tendon spinatus muscles distinguishes SGN reflexes were active and symmetrical with no from SSN lesions. Three cases of SGN pathological reflexes. There was no Homer's lesions, which are more common than sign. SSN lesions, are presented. The patient gave up weight lifting and started a programme of physiotherapy. His shoulder ache resolved rapidly, but his muscle Entrapment of the suprascapular nerve at the bulk did not return to normal for another 12 suprascapular notch (SSN) was first described months. He reported completely normal func- in 1963 by Kopell and Thompson.' No alter- tion. native entrapment site was recognised until 1981 when the first case of spinoglenoid notch Case 2 (SGN) entrapmnt was described by Ganzhorn A 22 year old right handed male was skeet et al.2 Since then nine additional cases of SGN shooting, a month before his examination.
    [Show full text]
  • Arthroscopic Decompression of the Suprascapular Nerve at the Spinoglenoid Notch and Suprascapular Notch Through the Subacromial Space
    Technical Note Arthroscopic Decompression of the Suprascapular Nerve at the Spinoglenoid Notch and Suprascapular Notch Through the Subacromial Space Neil Ghodadra, M.D., Shane J. Nho, M.D., M.S., Nikhil N. Verma, M.D., Stefanie Reiff, B.A., Dana P. Piasecki, M.D., Matthew T. Provencher, M.D., and Anthony A. Romeo, M.D. Abstract: Suprascapular nerve entrapment can cause disabling shoulder pain. Suprascapular nerve release is often performed for compression neuropathy and to release pressure on the nerve associated with arthroscopic labral repair. This report describes a novel all-arthroscopic technique for decom- pression of the suprascapular nerve at the suprascapular notch or spinoglenoid notch through a subacromial approach. Through the subacromial space, spinoglenoid notch cysts can be visualized between the supraspinatus and infraspinatus at the base of the scapular spine. While viewing the subacromial space through the lateral portal, the surgeon can use a shaver through the posterior portal to decompress a spinoglenoid notch cyst at the base of the scapular spine. To decompress the suprascapular nerve at the suprascapular notch, a shaver through the posterior portal removes the soft tissue on the acromion and distal clavicle to expose the coracoclavicular ligaments. The medial border of the conoid ligament is identified and followed to its coracoid attachment. The supraspinatus muscle is retracted with a blunt trocar placed through an accessory Neviaser portal. The transverse scapular ligament, which courses inferior to the suprascapular artery, is sectioned with arthroscopic scissors, and the suprascapular nerve is decompressed. Key Words: Arthroscopy—Suprascapular nerve—Transverse scapular ligament—Suprascapular notch—Rotator cuff—Shoulder.
    [Show full text]
  • Suprascapular Nerve Entrapment: Technique for Arthroscopic Release
    Techniques in Shoulder and Elbow Surgery 7(2):000–000, 2006 Ó 2006 Lippincott Williams & Wilkins, Philadephia | REVIEW | Suprascapular Nerve Entrapment: Technique for Arthroscopic Release Peter J. Millett, MD, MSc Steadman Hawkins Clinic, Vail, CO Harvard Medical School Boston, MA R. Shane Barton, MD, Iva´n H. Pacheco, MD, and Reuben Gobezie, MD Harvard Shoulder Service Harvard Medical School Brigham and Women’s Hospital Massachusetts General Hospital Boston, MA | ABSTRACT with suprascapular nerve palsy may present with an often vague range of symptoms or even be asympto- Suprascapular neuropathy can be caused by a variety of matic.3 Pain over the posterolateral shoulder or easy anatomic and pathologic entities as the nerve courses fatigability with overhead activities may be reported, or from the brachial plexus through the suprascapular and painless weakness of external rotation with or without spinoglenoid notches to innervate the supraspinatus and spinatus muscle atrophy may be noted. Compression of infraspinatus muscles. We describe techniques for arthro- the nerve at both the suprascapular and spinoglenoid scopically accessing the nerve at both the suprascapular notches are commonly reported mechanisms of injury and spinoglenoid notches and decompressing structural and will be discussed in detail. lesions that may be contributing to the neuropathy. The physical examination plays a critical role in Keywords: suprascapular neuropathy, suprascapular discerning the site of suprascapular nerve injury. notches, spinoglenoid notches, cyst decompression, arthro- Clinical observation of the patient’s shoulder girdle is scopic release important. More proximal injury, as seen with supra- | HISTORICAL PERSPECTIVE scapular notch compression, may result in atrophy of both the supraspinatus and infraspinatus, whereas more Isolated injury to the suprascapular nerve has long been distal compression at the spinoglenoid notch will result recognized as an etiologic entity producing shoulder pain in isolated infraspinatus weakness and atrophy (Fig.
    [Show full text]
  • Bone Limb Upper
    Shoulder Pectoral girdle (shoulder girdle) Scapula Acromioclavicular joint proximal end of Humerus Clavicle Sternoclavicular joint Bone: Upper limb - 1 Scapula Coracoid proc. 3 angles Superior Inferior Lateral 3 borders Lateral angle Medial Lateral Superior 2 surfaces 3 processes Posterior view: Acromion Right Scapula Spine Coracoid Bone: Upper limb - 2 Scapula 2 surfaces: Costal (Anterior), Posterior Posterior view: Costal (Anterior) view: Right Scapula Right Scapula Bone: Upper limb - 3 Scapula Glenoid cavity: Glenohumeral joint Lateral view: Infraglenoid tubercle Right Scapula Supraglenoid tubercle posterior anterior Bone: Upper limb - 4 Scapula Supraglenoid tubercle: long head of biceps Anterior view: brachii Right Scapula Bone: Upper limb - 5 Scapula Infraglenoid tubercle: long head of triceps brachii Anterior view: Right Scapula (with biceps brachii removed) Bone: Upper limb - 6 Posterior surface of Scapula, Right Acromion; Spine; Spinoglenoid notch Suprspinatous fossa, Infraspinatous fossa Bone: Upper limb - 7 Costal (Anterior) surface of Scapula, Right Subscapular fossa: Shallow concave surface for subscapularis Bone: Upper limb - 8 Superior border Coracoid process Suprascapular notch Suprascapular nerve Posterior view: Right Scapula Bone: Upper limb - 9 Acromial Clavicle end Sternal end S-shaped Acromial end: smaller, oval facet Sternal end: larger,quadrangular facet, with manubrium, 1st rib Conoid tubercle Trapezoid line Right Clavicle Bone: Upper limb - 10 Clavicle Conoid tubercle: inferior
    [Show full text]
  • Trapezius Origin: Occipital Bone, Ligamentum Nuchae & Spinous Processes of Thoracic Vertebrae Insertion: Clavicle and Scapul
    Origin: occipital bone, ligamentum nuchae & spinous processes of thoracic vertebrae Insertion: clavicle and scapula (acromion Trapezius and scapular spine) Action: elevate, retract, depress, or rotate scapula upward and/or elevate clavicle; extend neck Origin: spinous process of vertebrae C7-T1 Rhomboideus Insertion: vertebral border of scapula Minor Action: adducts & performs downward rotation of scapula Origin: spinous process of superior thoracic vertebrae Rhomboideus Insertion: vertebral border of scapula from Major spine to inferior angle Action: adducts and downward rotation of scapula Origin: transverse precesses of C1-C4 vertebrae Levator Scapulae Insertion: vertebral border of scapula near superior angle Action: elevates scapula Origin: anterior and superior margins of ribs 1-8 or 1-9 Insertion: anterior surface of vertebral Serratus Anterior border of scapula Action: protracts shoulder: rotates scapula so glenoid cavity moves upward rotation Origin: anterior surfaces and superior margins of ribs 3-5 Insertion: coracoid process of scapula Pectoralis Minor Action: depresses & protracts shoulder, rotates scapula (glenoid cavity rotates downward), elevates ribs Origin: supraspinous fossa of scapula Supraspinatus Insertion: greater tuberacle of humerus Action: abduction at the shoulder Origin: infraspinous fossa of scapula Infraspinatus Insertion: greater tubercle of humerus Action: lateral rotation at shoulder Origin: clavicle and scapula (acromion and adjacent scapular spine) Insertion: deltoid tuberosity of humerus Deltoid Action:
    [Show full text]
  • Coracoid Process Anatomy: a Cadaveric Study of Surgically Relevant Structures Jorge Chahla, M.D., Ph.D., Daniel Cole Marchetti, B.A., Gilbert Moatshe, M.D., Márcio B
    Quantitative Assessment of the Coracoacromial and the Coracoclavicular Ligaments With 3-Dimensional Mapping of the Coracoid Process Anatomy: A Cadaveric Study of Surgically Relevant Structures Jorge Chahla, M.D., Ph.D., Daniel Cole Marchetti, B.A., Gilbert Moatshe, M.D., Márcio B. Ferrari, M.D., George Sanchez, B.S., Alex W. Brady, M.Sc., Jonas Pogorzelski, M.D., M.H.B.A., George F. Lebus, M.D., Peter J. Millett, M.D., M.Sc., Robert F. LaPrade, M.D., Ph.D., and CAPT Matthew T. Provencher, M.D., M.C., U.S.N.R. Purpose: To perform a quantitative anatomic evaluation of the (1) coracoid process, specifically the attachment sites of the conjoint tendon, the pectoralis minor, the coracoacromial ligament (CAL), and the coracoclavicular (CC) ligaments in relation to pertinent osseous and soft tissue landmarks; (2) CC ligaments’ attachments on the clavicle; and (3) CAL attachment on the acromion in relation to surgically relevant anatomic landmarks to assist in planning of the Latarjet procedure, acromioclavicular (AC) joint reconstructions, and CAL resection distances avoiding iatrogenic injury to sur- rounding structures. Methods: Ten nonpaired fresh-frozen human cadaveric shoulders (mean age 52 years, range 33- 64 years) were included in this study. A 3-dimensional coordinate measuring device was used to quantify the location of pertinent bony landmarks and soft tissue attachment areas. The ligament and tendon attachment perimeters and center points on the coracoid, clavicle, and acromion were identified and subsequently dissected off the bone. Coordinates of points along the perimeters of attachment sites were used to calculate areas, whereas coordinates of center points were used to determine distances between surgically relevant attachment sites and pertinent bony landmarks.
    [Show full text]
  • Reconstructing Pectoral Appendicular Muscle Anatomy in Fossil Fish and Tetrapods Over the Fins-To-Limbs Transition
    Biol. Rev. (2017), pp. 000–000. 1 doi: 10.1111/brv.12386 Reconstructing pectoral appendicular muscle anatomy in fossil fish and tetrapods over the fins-to-limbs transition Julia L. Molnar1,∗ , Rui Diogo2, John R. Hutchinson3 and Stephanie E. Pierce4 1Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, Old Westbury, NY, U.S.A. 2Department of Anatomy, Howard University College of Medicine, 520 W St. NW, Numa Adams Building, Washington, DC 20059, U.S.A. 3Structure and Motion Lab, Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire AL9 7TA, UK 4Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, U.S.A. ABSTRACT The question of how tetrapod limbs evolved from fins is one of the great puzzles of evolutionary biology. While palaeontologists, developmental biologists, and geneticists have made great strides in explaining the origin and early evolution of limb skeletal structures, that of the muscles remains largely unknown. The main reason is the lack of consensus about appendicular muscle homology between the closest living relatives of early tetrapods: lobe-finned fish and crown tetrapods. In the light of a recent study of these homologies, we re-examined osteological correlates of muscle attachment in the pectoral girdle, humerus, radius, and ulna of early tetrapods and their close relatives. Twenty-nine extinct and six extant sarcopterygians were included in a meta-analysis using information from the literature and from original specimens, when possible. We analysed these osteological correlates using parsimony-based character optimization in order to reconstruct muscle anatomy in ancestral lobe-finned fish, tetrapodomorph fish, stem tetrapods, and crown tetrapods.
    [Show full text]
  • Breathing and Locomotion in Birds
    Breathing and locomotion in birds. A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Life Sciences. 2010 Peter George Tickle Contents Abstract 4 Declaration 5 Copyright Statement 6 Author Information 7 Acknowledgements 9 Organisation of this PhD thesis 10 Chapter 1 General Introduction 13 1. Introduction 14 1.1 The Avian Respiratory System 14 1.1.1 Structure of the lung and air sacs 16 1.1.2 Airflow in the avian respiratory system 21 1.1.3 The avian aspiration pump 25 1.2 The uncinate processes in birds 29 1.2.1 Uncinate process morphology and biomechanics 32 1.3 Constraints on breathing in birds 33 1.3.1 Development 33 1.3.2 Locomotion 35 1.3.2.1 The appendicular skeleton 35 1.3.2.2 Overcoming the trade-off between breathing 36 and locomotion 1.3.2.3 Energetics of locomotion in birds 38 1.4 Evolution of the ventilatory pump in birds 41 1.5 Overview and Thesis Aims 42 2 Chapter 2 Functional significance of the uncinate processes in birds. 44 Chapter 3 Ontogenetic development of the uncinate processes in the 45 domestic turkey (Meleagris gallopavo). Chapter 4 Uncinate process length in birds scales with resting metabolic rate. 46 Chapter 5 Load carrying during locomotion in the barnacle goose (Branta 47 leucopsis): The effect of load placement and size. Chapter 6 A continuum in ventilatory mechanics from early theropods to 48 extant birds. Chapter 7 General Discussion 49 References 64 3 Abstract of a thesis by Peter George Tickle submitted to the University of Manchester for the degree of PhD in the Faculty of Life Sciences and entitled ‘Breathing and Locomotion in Birds’.
    [Show full text]
  • Some Notes on the Diverse Brachiosaurid Sauropods of the Late Jurassic of North America, Europe and Africa
    Some Notes on the Diverse Brachiosaurid Sauropods of the Late Jurassic of North America, Europe and Africa GREGORY S. PAUL 3109 N. Calvert St. Baltimore, Maryland 21218 USA [email protected] June 2012 Abstract: The unusual placement of the parapophyses on elongotated peduncles further distinguishes Brachiosaurus from other brachiosaurid genera including Giraffatitan. Late Jurassic brachiosaurid taxonomy is probably more complex than has been realized, in part because of evolution over the considerable periods of times recorded in the Morrison and Tendaguru formations. The presence of reduced tails on late Jurassic brachiosaurids is confirmed. INTRODUCTION It was long assumed that the brachiosaurid material found in the Late Jurassic Morrison, Tendaguru, and Lourinha Formations from three continents belonged to the genus Brachiosaurus (as per Janensch 1950, 1961, Lapparent and Zbyszewski 1957, Jensen 1987) until Paul (1988) noted significant differences between the type species B. altithorax (Fig. 1A) from North America and the African B. brancai (Fig. 1B) indicated at least a subgeneric separation, and Taylor (2009) formally separated the sauropods, leaving much of the Tendaguru brachiosaurids material titled Giraffatitan brancai; the generic separation has been tentatively questioned (Chure et al. 2010). In addition European B. alatalaiensis has been retitled Lusotitan alatalaiensis (Antunes and Mateus 2003), and a dwarf brachiosaur from the European Mittlere Kimmeridge-Stufe deposits has been designated Europasaurus holgeri (Sander et al. 2006). Institutional Abbreviations: AMNH, American Museum of Natural History, New York; BYU, Brigham Young University, Provo; FMNH, Field Museum of Natural History, Chicago; HMN, Humboldt Museum fur Naturkunde, Berlin; NHMUK, Natural History Museum, London; USNM, United States Natural History Museum, Washington DC.
    [Show full text]
  • Rehabilitation Guidelines for Latarjet/Coracoid Process Transfer Josef K
    Rehabilitation Guidelines for Latarjet/Coracoid Process Transfer Josef K. Eichinger, MD Shoulder instability may be caused from congenital deformity, recurrent overuse activity, and/or traumatic dislocation. Surgical stabilization of the glenohumeral joint is indicated after conservative treatment fails and recurrent instability/subluxation continues. A number of different surgical procedures may be indicated in this situation, often divided into soft tissue or bony procedures. Shoulder Instability – Soft Tissue: Surgical reconstruction targeting the glenohumeral joint’s soft tissues for shoulder instability, typically involves labral repairs, the most common being the Bankart repair. A Bankart lesion typically occurs from an anterior-inferior dislocation of the humerus, tearing the labrum from it’s attachment to the glenoid, thereby detaching the inferior gleno-humeral ligament (IGHL). Surgical management of this revolves around labral repair to reattach the IGHL under appropriate tension. This may be accomplished either arthroscopically or through an open approach.1 Most traumatic glenohumeral dislocations may not only cause a Bankart lesion, but may create impression fractures in the postero-superior humeral head termed Hill-Sachs lesions.2 An adverse effect from this procedure includes suturing the capsule too tightly, causing a shortening of the capsule, and thus decreasing the external rotation allowed at the glenohumeral joint. Other complications are extremely rare, but may include axillary nerve damage, subscapularis rupture (seen only in open repairs performed with subscapularis detachment and repair), and recurrent instability. If there is bony deficiency in the glenoid, which represents 20% or more of the antero-inferior glenoid, it is biomechanically impossible to restore the same stability and is therefore more prone to recurrent instability and failure.
    [Show full text]
  • Coracoid Fractures and Dislocations
    Coracoid Fractures and Dislocations Brett Gartrell Wildbase, Institute of Veterinary, Animal and Biomedical Sciences Massey University, Palmerston North, New Zealand ABSTRACT The treatment of coracoid dislocations and fractures in the New Zealand native wood pigeon (kereru; Hemiphaga novaeseelandiae), undertaken at the Wildbase Hospital at Massey University from 2002‐ 2012. After briefly reviewing the functional anatomy of the coracoid bones, the results of research on the nature of collisions that cause such injuries are reviewed. A comparative assessment of the relative force of collisions dependent on the body size of the bird is presented. The complications of coracoid fractures and dislocations including pulmonary haemorrhage, aspergillosis, cardiac contusions and rhythm disturbances is discussed. A new technique for the repair of coracoid dislocations from the keel and intramedullary pinning for repair of coracoid fractures are outlined. The merits of surgical versus conservative treatment of these injuries are discussed. ANATOMY The coracoid bones are essential to flight in birds and a reduced version of them is present in avian ancestors including Archaeopteryx, the earliest known flying bird from the Late Jurassic period (Figure 1) (Baier et al., 2007). Figure 1. Diagrammatic reconstruction of Archaeopteryx skeleton showing the modified coracoid bone (arrow) attached to the limited keel. Image modified from (Rowe, 2011). The function of the avian shoulder in flight is a complex interplay of forces from muscles, tendons and ligaments acting on the structural skeletal framework of coracoids, scapula, clavicles, humerus and keel. The coracoid bones are strut‐like support bones running from the shoulder to the keel, whose function is to resist the compressive forces of the pectoral muscle contraction (Figure 2).
    [Show full text]
  • Suprascapular Nerve Entrapment Isolated to the Spinoglenoid Notch: Surgical Technique and Results of Open Decompression
    J Shoulder Elbow Surg (2013) 22, e1-e8 www.elsevier.com/locate/ymse Suprascapular nerve entrapment isolated to the spinoglenoid notch: surgical technique and results of open decompression Nathan A. Mall, MD*, James E. Hammond, DO, Brett A. Lenart, MD, Daniel J. Enriquez, MA, Stacy L. Twigg, PA-C, Gregory P. Nicholson, MD Department of Orthopaedic Surgery, Division of Sports Medicine and Shoulder and Elbow Surgery, Rush University Medical Center, St Louis, MO, USA Background: Entrapment of the suprascapular nerve (SSN) at the spinoglenoid notch (SGN) specifically affects the infraspinatus, and isolated external rotation (ER) weakness can result. We describe the tech- nique of open SSN decompression at the SGN for infraspinatus involvement and report the results of a consecutive series. Materials and methods: Twenty-nine shoulders underwent SSN decompression at the SGN. The mean age was 44 years (range, 15-69 years), and the mean follow-up was 4.3 years (range, 1-7 years). On manual muscle testing, ER strength was abnormal in all patients: 2/5 in 3, 3/5 in 21, and 4/5 in 5. The mean preop- erative American Shoulder and Elbow Surgeons (ASES) score was 48 (range, 23-83). Atrophy of the infra- spinatus was visible or palpable in 72% of shoulders. Magnetic resonance imaging showed ganglion cysts at the SGN in only 20.7% of shoulders. Results: Of the patients, 19 (66%) regained full ER strength, 9 (31%) improved to 4/5, and 1 (3%) had ER strength of 3/5. The mean ASES score improved to 75 (range, 60-100) (P < .05).
    [Show full text]