Descent by Modification Darwin
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cultural Group Selection Plays an Essential Role in Explaining Human Cooperation: a Sketch of the Evidence
BEHAVIORAL AND BRAIN SCIENCES (2016), Page 1 of 68 doi:10.1017/S0140525X1400106X, e30 Cultural group selection plays an essential role in explaining human cooperation: A sketch of the evidence Peter Richerson Emily K. Newton Department of Environmental Science and Policy, University of California– Department of Psychology, Dominican University of California, San Rafael, CA Davis, Davis, CA 95616 94901 [email protected] [email protected] http://emilyknewton.weebly.com/ www.des.ucdavis.edu/faculty/richerson/richerson.htm Nicole Naar Ryan Baldini Department of Anthropology, University of California–Davis, Graduate Group in Ecology, University of California–Davis, Davis, CA 95616 Davis, CA 95616 [email protected] https://sites.google.com/site/ryanbaldini/ [email protected] Adrian V. Bell Lesley Newson Department of Anthropology, University of Utah, Salt Lake City, UT 84112 Department of Environmental Science and Policy, University of California– [email protected] http://adrianbell.wordpress.com/ Davis, Davis, CA 95616 [email protected] [email protected] Kathryn Demps https://www.researchgate.net/profile/Lesley_Newson/ Department of Anthropology, Boise State University, Boise, ID 83725 [email protected] Cody Ross http://sspa.boisestate.edu/anthropology/faculty-and-staff/kathryn- Santa Fe Institute, Santa Fe, NM 87501 demps/ [email protected] http://scholar.google.com/citations?user=xSugEskAAAAJ Karl Frost Graduate Group in Ecology, University of California–Davis, Davis, CA 95616 Paul E. Smaldino [email protected] https://sites.google.com/site/karljosephfrost/ Department of Anthropology, University of California–Davis, Davis, CA 95616 [email protected] http://www.smaldino.com/ Vicken Hillis Department of Environmental Science and Policy, University of California– Timothy M. -
Introduction to Darwin's Theory
plenty of clues. Scientists from many different concepts. We’ll introduce them here, and examine fields try to piece these clues together to come them in more detail later on. In the Origin of up with possible explanations. Darwin, himself, Species, Charles Darwin formulated a theory with looked at many different lines of evidence as he two main claims. constructed his theory. He considered biogeog- The first claim became known as the Theory raphy (how organisms were distributed over the of Universal Common Descent.3 This is the idea Earth’s surface). He also looked at comparative that every creature on Earth is ultimately descend- anatomy (how species resembled each other) and ed from a single common ancestor somewhere in embryology (how organisms develop). Darwin the distant past. This theory paints a picture of also examined fossils—the mineralized remains the history of life on earth—a picture of a great of once-living organisms. branching tree. Darwin envisioned this “Tree of Using the clues from each of these areas, Life” beginning as a simple one-celled organism Darwin formulated his theory. that gradually developed and changed over many generations into new and more complex living Introduction to Darwin’s Theory forms. The first one-celled organism represented To understand this book and the issues involved the root or trunk of the Tree of Life; the new in the discussion, you’ll need to know a few key forms that developed from it were the branches. The theory’s second main claim has to do with the biological process he thought was responsible for this branching pattern. -
A Group Selection Perspective on Economic Behavior, Institutions and Organizations Jeroen C.J.M
A Group Selection Perspective on Economic Behavior, Institutions and Organizations Jeroen C.J.M. van den Bergh, John M. Gowdy To cite this version: Jeroen C.J.M. van den Bergh, John M. Gowdy. A Group Selection Perspective on Economic Behavior, Institutions and Organizations. Journal of Economic Behavior and Organization, Elsevier, 2009, 72 (1), pp.1. 10.1016/j.jebo.2009.04.017. hal-00695532 HAL Id: hal-00695532 https://hal.archives-ouvertes.fr/hal-00695532 Submitted on 9 May 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Title: A Group Selection Perspective on Economic Behavior, Institutions and Organizations Authors: Jeroen C.J.M. van den Bergh, John M. Gowdy PII: S0167-2681(09)00125-5 DOI: doi:10.1016/j.jebo.2009.04.017 Reference: JEBO 2384 To appear in: Journal of Economic Behavior & Organization Received date: 8-4-2008 Revised date: 30-4-2009 Accepted date: 30-4-2009 Please cite this article as: van den Bergh, J.C.J.M., Gowdy, J.M., A Group Selection Perspective on Economic Behavior, Institutions and Organizations, Journal of Economic Behavior and Organization (2008), doi:10.1016/j.jebo.2009.04.017 This is a PDF file of an unedited manuscript that has been accepted for publication. -
Persistent Misunderstandings of Inclusive Fitness and Kin Selection Park, Justin H
University of Groningen Persistent misunderstandings of inclusive fitness and kin selection Park, Justin H. Published in: Evolutionary Psychology DOI: 10.1177/147470490700500414 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2007 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Park, J. H. (2007). Persistent misunderstandings of inclusive fitness and kin selection: Their ubiquitous appearance in social psychology textbooks. Evolutionary Psychology, 5(4), 860 - 873. https://doi.org/10.1177/147470490700500414 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. -
Darwin's “Tree of Life”
Icons of Evolution? Why Much of What Jonathan Wells Writes about Evolution is Wrong Alan D. Gishlick, National Center for Science Education DARWIN’S “TREE OF LIFE” mon descent. Finally, he demands that text- books treat universal common ancestry as PHYLOGENETIC TREES unproven and refrain from illustrating that n biology, a phylogenetic tree, or phyloge- “theory” with misleading phylogenies. ny, is used to show the genealogic relation- Therefore, according to Wells, textbooks Iships of living things. A phylogeny is not should state that there is no evidence for com- so much evidence for evolution as much as it mon descent and that the most recent research is a codification of data about evolutionary his- refutes the concept entirely. Wells is complete- tory. According to biological evolution, organ- ly wrong on all counts, and his argument is isms share common ancestors; a phylogeny entirely based on misdirection and confusion. shows how organisms are related. The tree of He mixes up these various topics in order to life shows the path evolution took to get to the confuse the reader into thinking that when current diversity of life. It also shows that we combined, they show an endemic failure of can ascertain the genealogy of disparate living evolutionary theory. In effect, Wells plays the organisms. This is evidence for evolution only equivalent of an intellectual shell game, put- in that we can construct such trees at all. If ting so many topics into play that the “ball” of evolution had not happened or common ances- evolution gets lost. try were false, we would not be able to discov- THE CAMBRIAN EXPLOSION er hierarchical branching genealogies for ells claims that the Cambrian organisms (although textbooks do not general- Explosion “presents a serious chal- ly explain this well). -
Kin Selection, Group Selection, and the Varieties of Population Structure
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PhilSci Archive Kin Selection, Group Selection, and the Varieties of Population Structure Jonathan Birch Abstract: Various results show the ‘formal equivalence’ of kin and group selec- tionist methodologies, but this does not preclude there being a real and useful distinction between kin and group selection processes. I distinguish individual- and population-centred approaches to drawing such a distinction, and I proceed to develop the latter. On the account I advance, the differences between kin and group selection are differences of degree in the structural properties of popula- tions. A spatial metaphor (‘K-G space’) provides a useful framework for thinking about these differences: kin and group selection may be conceptualized as large, overlapping regions of K-G space. I then consider some implications of the ac- count, defend it from possible objections, and further argue that the structural features characteristic of both kin and group selection may recur at multiple levels of biological organization. 1 Introduction 2 2 Equivalence Results and Their Limitations 3 2.1 An example of an equivalence result . 3 2.2 Limitations . 6 3 Individual- and Population-Centred Approaches 8 4 Two Influences: Hamilton and Godfrey-Smith 11 5 K and G 14 5.1 K ..................................... 15 5.2 G ..................................... 16 5.3 K-G space . 18 6 The rb , 0 Requirement 20 1 7 Levels of Organization 23 8 The Key Substantive Questions 24 1 Introduction The relationship between kin selection and group (or multi-level) selection is a longstanding source of controversy in the social evolution literature. -
An Illusion of Common Descent Peer Terborg
Papers An illusion of common descent Peer Terborg One of the activities of evolutionary biologists is modeling ‘trees of life’. Before the advent of molecular biology such trees were predominantly based on morphological characteristics and ontogenetic traits. Nowadays, most modeling is based on molecular biology data. One of the surprises is that the well-known ‘Darwinian trees of descent’ are often not recapitulated by the genetic data. A Google search using the terms ‘comparative genomics’ and ‘unexpected’ resulted in over 60,000 hits, indicating that we can learn something unforeseen about the nature of mutations from comparative genomics. Since many mutations have been found in DNA ‘hot spots’, evolutionary trees are actually a byproduct, or artifact; a result of common design and the non-random nature of mutations. This novel view is supported by recent observations and provides an explanation for two phenomena associated with molecular phylogeny: homoplasy and nested hierarchy. utations that spontaneously and randomly appear in Let’s critically analyze whether Futuyma’s view can Mthe germ line can be passed on from one generation to stand in the light of current biology. To a certain extent the next and can be followed in time. The current consensus Futuyma may be right. For instance, we may not be able to is that mutations in a DNA sequence are introduced at predict which gene will mutate. Or, whether advantageous random and occur only once—except in some ‘hot spots’. mutations are deliberately induced as an adaptive response This view is summarized by Futuyma in an evolutionary to the environment of the organism.2 textbook as follows: There may be another aspect, however, that determines “Mutation is random in two senses. -
An Introduction to Sociobiology: Inclusive Fitness and the Core Genome Herbert Gintis
An Introduction to Sociobiology: Inclusive Fitness and the Core Genome Herbert Gintis June 29, 2013 The besetting danger is ...mistaking part of the truth for the whole...in every one of the leading controversies...both sides were in the right in what they affirmed, though wrong in what they denied John Stuart Mill, On Coleridge, 1867 A Mendelian populationhas a common gene pool, whichis itscollective or corporate genotype. Theodosius Dobzhansky, Cold Springs Harbor Symposium, 1953. The interaction between regulator and structural genes... [reinforces] the concept that the genotype of the individual is a whole. Ernst Mayr, Populations, Species and Evolution, 1970 Abstract This paper develops inclusive fitness theory with the aim of clarifying its appropriate place in sociobiological theory and specifying the associated principles that render it powerful. The paper introduces one new concept, that of the core genome. Treating the core genome as a unit of selection solves problems concerning levels of selection in evolution. 1 Summary Sociobiology is the study of biological interaction, both intragenomic, among loci in the genome, and intergenomic, among individuals in a reproductive popula- tion (Gardner et al. 2007). William Hamilton (1964) extended the theory of gene frequencies developed in the first half of the Twentieth century (Crow and I would like to thank Samuel Bowles, Eric Charnov, Steven Frank, Michael Ghiselin, Peter Godfrey-Smith, David Haig, David Queller, Laurent Lehmann, Samir Okasha, Peter Richerson, Joan Roughgarden, Elliot Sober, David Van Dyken, Mattijs van Veelen and Edward O. Wilson for advice in preparing this paper. 1 Kimura 1970, B¨urger 2000, Provine 2001) to deal with such behavior. -
Answers to Common Misconceptions About Biological Evolution Leah M
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers in Evolution Papers in the Biological Sciences 5-2017 Answers to common misconceptions about biological evolution Leah M. Abebe University of Nebraska-Lincoln Blake Bartels University of Nebraska-Lincoln Kaitlyn M. Caron University of Nebraska-Lincoln Adam M. Gleeson University of Nebraska-Lincoln Samuel N. Johnson University of Nebraska-Lincoln See next page for additional authors Follow this and additional works at: http://digitalcommons.unl.edu/bioscievolution Part of the Evolution Commons Abebe, Leah M.; Bartels, Blake; Caron, Kaitlyn M.; Gleeson, Adam M.; Johnson, Samuel N.; Kluza, Tyler J.; Knopik, Nicholas W.; Kramer, Kristen N.; Maza, Masiel S.; Stava, Kaitlyn A.; Sullivan, Kaitlyn; Trimble, Jordan T.; and Zink, Robert M. , editor, "Answers to common misconceptions about biological evolution" (2017). Papers in Evolution. 4. http://digitalcommons.unl.edu/bioscievolution/4 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Evolution by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Leah M. Abebe; Blake Bartels; Kaitlyn M. Caron; Adam M. Gleeson; Samuel N. Johnson; Tyler J. Kluza; Nicholas W. Knopik; Kristen N. Kramer; Masiel S. Maza; Kaitlyn A. Stava; Kaitlyn Sullivan; Jordan T. Trimble; and Robert M. Zink , editor This article is available at DigitalCommons@University of Nebraska - Lincoln: http://digitalcommons.unl.edu/bioscievolution/4 Answers to common misconceptions about biological evolution Class of BIOS 472, University of Nebraska, Lincoln, Spring 2017 Students: Leah M. Abebe, Blake Bartels, Kaitlyn M. -
The Evolution of Extreme Cooperation Via Shared Dysphoric Experiences
The Evolution of Extreme Cooperation via Shared Dysphoric Experiences Whitehouse, H., Jong, J., Buhrmester, M. D., Gomez, A., Bastian, B., Kavanagh, C. M., Newson, M., Matthews, M., Lanman, J. A., McKay, R., & Gavrilets, S. (2017). The Evolution of Extreme Cooperation via Shared Dysphoric Experiences. Nature Scientific Reports, 7, 1-10. [44292]. https://doi.org/10.1038/srep44292 Published in: Nature Scientific Reports Document Version: Publisher's PDF, also known as Version of record Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights © The Author(s) 2017 This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. -
PHYLOGENETIC SYSTEMATICS OR NELSON's VERSION of CLADISTICS? Kevin De Queiroz''^ and Michael J. Donoghue^ ^Department of Zoology
FORUM Cladistics (1990)6:61-75 PHYLOGENETIC SYSTEMATICS OR NELSON'S VERSION OF CLADISTICS? Kevin de Queiroz''^ and Michael J. Donoghue^ ^Department of Zoology and Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, U.S.A. '^Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, U.S.A. In as much as our paper (de Queiroz and Donoghue, 1988) was intended to be a contribution to, rather than a criticism of, phylogenetic systematics, it seems odd that Nelson (1989: 277) views our efforts as being "potentially destructive to the independence of cladistics". On closer inspection, however, Nelson's reaction is understandable as a manifestation of fundamental differences between what he means by "cladistics" and what we mean by "phylogenetic systematics". Here we argue that (1) contrary to the impression given by Nelson, his version of cladistics is no more independent of a "model", as he terms it, than is phylogenetic systematics; (2) the tenet (model) underlying phylogenetic systematics has greater explanatory power than that underlying what Nelson calls "cladistics"; (3) while Nelson's version of cladistics may "not yet have found a comfortable home within one or another of the. .. metatheories of biology" (Nelson, 1989: 275), phylogenetic systematics is secure within the two general disciplines from which it derives its name; and (4) the perspective of phylogenetic systematics clarifies or provides deeper insight into several issues raised by Nelson, including the antagonism over paraphyletic taxa that developed between gradists and cladists, the primacy of common ancestry over characters, and the generality of the concept of monophyly and, consequently, of phylogenetic analysis. -
Hamilton's Model of Kin Selection*
Heredity (1982), 49(2), 163—169 0018-067X/82/05140163$02.OO 1982. The Genetical Society of Great Britain ADDITIVEPOLYGENIC FORMULATION OF HAMILTON'S MODEL OF KIN SELECTION* KENICHI AOKI National Institute of Genetics, Mishima, Shizuoka -ken 411, Japan Received16.iii.82 SUMMARY Hamilton's condition for the evolution of altruism by kin selection is rederived on an additive polygenic model. The approach uses intraclass correlation. It is then shown that the mean inclusive fitness is non-decreasing. The differences between and the relative efficacy of kin and group selection are discussed. 1. INTRODUCTION HAMILTON (1964) generalized Fisher's (1930) and Haldane's (1955) seminal argument to show heuristically that altruism between same-gener- ation kin would evolve if the following approximate inequality were satisfied: br>c. (1) Here, r is the correlation between the additive genotypic values of the interacting kin as evaluated from the pedigree. In Hamilton's model of benefit dispensation, an altruist suffers a cost in fitness c while donating a total benefit b, which is distributed evenly among the recipients. A recipient experiences its share of the benefit as an increment to its fitness; the total benefit to a recipient is the sum of increments received from all sources. Inequality (1) was first proposed to hold in a random mating population with discrete non-overlapping generations (Hamilton, 1964), and then extended to accommodate inbreeding (Hamilton, 1971, 1972). For sym- metrical relationships, which we alone consider in this paper, r is equal to 2f/(1 +fo), where fo is the inbreeding coefficient, and fi is the coefficient of consanguinity of the interacting kin (Wright, 1922).