Review Werner's Syndrome: from Clinics to Genetics

Total Page:16

File Type:pdf, Size:1020Kb

Review Werner's Syndrome: from Clinics to Genetics REVIEW Review Werner's syndrome / M. Goto Werner’s syndrome: From clinics to genetics M. Goto Makoto Goto, MD, PhD, Director of ABSTRACT stage of their life (1-3). In addition to the Department of Rheumatology, Werner’s syndrome (WS), a representa- their early onset of age-related clinical Tokyo Metropolitan Otsuka Hospital, tive progeroid syndrome with chromo- manifestations and short life span, nu- 2-8-1 Minami-Otsuka, Toshima-ku, somal instability caused by the mutation merous in vitro experiments on progeroid Tokyo 170-0005, Japan. of RecQ type DNA/RNA helicase, mani- syndrome cells (showing a diminished E-mail: m.goto-o@ohtsuka- fests skin changes similar to those ob- replicative life span of skin fibroblasts, hospital.toshima.tokyo.jp served in systemic sclerosis (SSc). In ad- accelerated telomere shortening, increas- Clin Exp Rheumatol 2000; 18: 760-766. dition, patients with WS show a variety ed chromosomal instability and decreas- Received on August 3, 2000; accepted of the signs and symptoms of normal age- ed immune function) and on body fluids on August 21, 2000. ing at an early stage of their life; gray (showing increased levels of serum © Copyright CLINICAL AND hair, alopecia, muscle atrophy, osteopor- fibronectin, serum and urinary hyaluro- EXPERIMENTAL RHEUMATOLOGY 2000. osis, cataracts, hypogonadism, diabetes nan, and serum autoantibodies) have mellitus, hyperlipidemia, atherosclero- suggested their striking similarity to nor- Key words: Chromosomal instability, sis, malignancy, brain atrophy, and se- mal ageing. helicase, progeroid syndrome, system- nile dementia. Although no direct evi- Despite the fact that much attention has ic sclerosis, Werner’s syndrome. dence has been presented linking RecQ been paid to these unique syndromes, the type DNA/RNA helicase dysfunction with rarity of the patients and the reduced pro- the occurrence of premature ageing liferative potentials of their cells have symptoms in WS, WS may give us a severely limited their study. Here I will unique model to analyze the skin chan- review the clinical and genetical char- ges and the mechanisms of fibrosis in acteristics of a representative progeroid SSc. syndrome, Werner’s syndrome, and dis- cuss the differences between WS and Introduction autoimmune systemic sclerosis (sclero- Werner’s syndrome (WS; MIM#27770), derma, SSc). characterized by scleroderma and juve- nile cataracts, is an autosomal recessive- Historical background of Werner’s ly-inherited progeroid syndrome. WS syndrome research has been recognized as a representative Otto Werner, a medical student in the natural model of human ageing (1). Ophthalmology Clinic at the Royal Al- Other progeroid syndromes or premature brecht University of Kiel, described four ageing syndromes include Cockayne’s siblings with scleroderma and juvenile syndrome (MIM#21640, autosomal re- cataracts living in a small Alpine valley cessive), ataxia telangiectasia (Louis-Bar as his doctoral thesis in 1904 (4). He syndrome) (MIM#20890, autosomal re- pointed out the possible genetic back- cessive), Rothmund-Thomson syndrome ground of the condition and referred to (MIM#26840, autosomal recessive) and the progeric features of this syndrome. progeria (Hutchinson-Gilford progeria Oppenheimer and Kugel drew attention syndrome) (MIM#17667, autosomal to the disorder and coined the term "Wer- dominant ?), in addition to chromosome ner’s syndrome" (5, 6). 21-trisomy Down’s syndrome. Extensive clinical and epidemiological Patients with these progeroid syndromes studies by Epstein et al. (2) and Goto et manifest relatively uniform signs and al. (3, 7) confirmed the clinical entity of symptoms of a variety of elderly phe- this syndrome and the presence of an nomenon (gray hair, alopecia, cataract, autosomal recessive inheritance. A strik- hoarseness, skin atrophy, hyper- or hypo- ing diminution in the growth potential pigmentation, diabetes mellitus, oste- of cultured skin fibroblasts from patients oporosis, osteoarthritis, hypogonadism, with WS was confirmed by Goldstein et brain atrophy, senile dementia, athero- al. (8) and Martin et al. (9), which sug- sclerosis and malignancy) at an early gested an acceleration of the replicative 760 Werner's syndrome / M. Goto REVIEW lifespan of the cultured skin fibroblasts the age of 35 is generally based on the litus, hypogonadism, thyroid dysfunc- in this unique syndrome. In clinical stud- presence of 4 out of the 5 following cri- tion, hyperuricemia, and hyperlipide- ies Tokunaga et al. (10) and Goto et al. teria (3, 12, 15): consanguinity; a char- mia). In addition, in more than two stud- (11) reported an excessive excretion of acteristic bird-like or a mask-like appear- ies over 100 WS patients were further urinary hyaluronan and named this find- ance and body habitus (short stature with examined for the presence of the WRN ing "hyaluronuria". Hyaluronuria and the a stocky trunk and very thin extremities; mutation (12, 14, 16), hyaluronuria (10, diminished cultured lifespan of skin fi- Cushingoid appearance); premature se- 11, 17), decreased replicative lifespan of broblasts represent the in vitro hallmarks nescence (gray hair, alopecia, cataracts, skin fibroblasts, autoantibodies (18, 19, of WS. hoarseness, osteoporosis, arteriosclero- 20), and decreased natural killer cell ac- The clinical identification of WS as a sis, and malignancy); scleroderma-like tivity (21). genetic disorder transmitted by a single skin changes (atrophic skin, skin sclero- The hierarchical deterioration in the cli- gene prompted us to proceed with a link- sis, skin ulcer, hyperkeratosis, hyper- or nical hallmarks of the patient with WS age analysis (12), followed by the suc- hypopigmentation, subcutaneous calci- is shown in Figure 1. After a relatively cessful cloning of the gene (WRN) in fication, and telangiectasia); and endo- normal infancy, by the age of 18 they 1996 (13, 14). This gene encodes a type crine-metabolic disorders (diabetes mel- have failed to manifest the normal pre- of RecQ DNA/RNA helicase (WRN). An extensive functional characterization of WRN has been conducted since then. Sequential appearance of clinical symtoms in Werner's syndrome Clinical characteristics of Werner’s syndrome Since the first description of WS by Otto Werner in 1904, case reports have accu- mulated, to a total of 1,250 worldwide as of 1997 (3). About 80% of the patients are of Japanese origin, and no Oriental patients other than Japanese have ever been reported in the English literature. About 70% of the patients represent the offspring of marriages between first cou- sins. As patients with WS show a wide vari- ety of clinical manifestations, case re- ports have arrived from virtually all areas of medicine - from neurosurgery (men- ingioma) and psychiatry (schizophrenia) to ophthalmology (cataracts) and derma- tology (skin sclerosis and melanoma). As a consequence, the depth and breadth of the clinical descriptions of the patients has varied depending upon the clinician’s speciality and interest. In addition, in- formation regarding the signs and symp- toms observed in the patients has often been subjective, retrospective, and sub- ject to error (2). However, with recent improvements in clinical laboratory tech- niques, a variety of clinical and labora- tory examinations have become avail- able to detect subtle physiologic changes. This review is mainly based on case re- ports published in Japan ever since WS was first described in 1917. The percent- ages of the respective clinical signs and symptoms should be taken into account as a somewhat rough estimate. Fig. 1. Sequential appearance of the typical clinical symptoms of Werner’s syndrome. The average age ± SE at which each manifestation is observed is indicated. The diagnosis of WS in patients under 761 REVIEW Werner's syndrome / M. Goto Fig. 2. The typical Cushingoid appearance in a 42-year-old male patient with Werner’s syndrome: a stocky trunk with thin extremities. The patient also had testicular atrophy with gynecomastia, and intractable skin ulcers on both heels. He was totally bald and in this picture is shown wearing a wig. He died of renal failure due to atherosclerosis of the renal arteries at the age of 43. pubertal growth spurt. This is followed by failures in 4 major body systems, ap- pearing sequentially as summarized be- low. Among the major clinical signs and symptoms observed in this unique syn- Fig. 3. The "bird-like" or "mask-like" face typical of Werner's syndrome in the same patient shown at drome, the characteristic habitus and sta- different ages, as indicated. He had the typical pinched nose with adhesive ears at age 39. ture, scleroderma, gray hair, osteoporo- sis (22, 23), hyaluronuria (10, 11, 17) and nervous system-based clinical manifes- senescent phenotypes observed in nor- cataracts may be classified as connec- tations (incidence: 50% at age 40.1 ± 9.8 mal ageing and also the skin changes tive tissue system-based manifestations y.o.), respectively. Thereafter, disorders characteristic of SSc. Patients with WS (incidence: 100% at age 27 ± 10.4 y.o.). involving more than one system ensue, are usually recognized by their lack of a Diabetes mellitus, hypogonadism, thy- including atherosclerosis-related disor- teenage growth spurt; short stature (141.5 roid dysfunction, hyperlipidemia (24), ders at age 40, and a variety of malig- ± 21.8 cm) and low body weight (35.7 ± and hyperuricemia (25) may be classi- nancies at an average age of 41 followed 17.9 kg). Basically, all WS patients show fied as endocrine-metabolic
Recommended publications
  • De Barsy Syndrome: Orthopedic Case Report and Literature Review
    MOJ Orthopedics & Rheumatology De Barsy Syndrome: Orthopedic Case report and Literature Review Introduction Case Report Volume 7 Issue 5 - 2017 This condition was first described in 1968 by De Barsy who and degeneration of the elastic tissue of the cornea and skin, Jose de Jesus Guerra Jasso1*, Douglas reported a case of a patient with progeria, dwarfism, oligofrenia and since then, it is known as Barsy Syndrome or Barsy- Colmenares Bonilla2 and Loreett Ocampo Perez3 of progeroid aspect, cutis laxa, corneal opacity, intrauterine 1Pediatric Orthopedics, Hospital Regional de Alta Especialidad growthMoens-Dierckx retardation Syndrome. and severe This ismental defined retardation as the combination (although del Bajio, Mexico some will learn to speak, intelligence is less than normal) [1]. 2Pediatric Orthopedic Service, Hospital regional de alta especialidad del bajio The orthopedic manifestations are dysplasia of hip development, 3Fellow of Pediatric Orthopedics, Hospital Regional de Alta hyper laxity of severe joints, athetoid movements, scoliosis and Especialidad del Bajio, Mexico severe deformities of the foot. Epidemiology in Latin America is unknown because of its underdiagnosis and when confused *Corresponding author: Jesus Guerra Jasso, Hospital with other connective tissue pathologies (Hutchinson-Gilford Regional de Alta Especialidad del Bajio, Boulevard Milenio No. 130. Col, San Carlos la Roncha, C.P. 37660, Guanajuato, syndrome, gerodermic osteodiplasia, even Ehlers-Danlos), the Mexico, Tel: 477-267 2000; Ext-1403; life expectancy of these patients varies according to the degree of Email: penetrance and in the world literature, there are very few reports (about 50), so the diagnosis requires a challenge [2]. Received: January 13, 2017 | Published: March 21, 2017 Clinical Case and thick clamp.
    [Show full text]
  • DNA Damage in the Oligodendrocyte Lineage and Its Role in Brain Aging
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Mech Ageing Manuscript Author Dev. Author Manuscript Author manuscript; available in PMC 2018 January 01. Published in final edited form as: Mech Ageing Dev. 2017 January ; 161(Pt A): 37–50. doi:10.1016/j.mad.2016.05.006. DNA damage in the oligodendrocyte lineage and its role in brain aging Kai-Hei Tse1,2 and Karl Herrup1 1 Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Abstract Myelination is a recent evolutionary addition that significantly enhances the speed of transmission in the neural network. Even slight defects in myelin integrity impair performance and enhance the risk of neurological disorders. Indeed, myelin degeneration is an early and well-recognized neuropathology that is age associated, but appears before cognitive decline. Myelin is only formed by fully differentiated oligodendrocytes, but the entire oligodendrocyte lineage are clear targets of the altered chemistry of the aging brain. As in neurons, unrepaired DNA damage accumulates in the postmitotic oligodendrocyte genome during normal aging, and indeed may be one of the upstream causes of cellular aging - a fact well illustrated by myelin co-morbidity in premature aging syndromes arising from deficits in DNA repair enzymes. The clinical and experimental evidence from Alzheimer's disease, progeroid syndromes, ataxia-telangiectasia and other conditions strongly suggest that oligodendrocytes may in fact be uniquely vulnerable to oxidative DNA damage. If this damage remains unrepaired, as is increasingly true in the aging brain, myelin gene transcription and oligodendrocyte differentiation is impaired. Delineating the relationships between early myelin loss and DNA damage in brain aging will offer an additional dimension outside the neurocentric view of neurodegenerative disease.
    [Show full text]
  • The Progeria Syndrome Fact Sheet
    HUTCHINSON-GILFORD PROGERIA SYNDROME FREQUENTLY ASKED QUESTIONS WHAT IS PROGERIA? Hutchinson-Gilford Progeria Syndrome “Progeria” or “HGPS” is a rare, fatal genetic condition characterized by an appearance of accelerated aging in children. Its name is derived from the Greek and means "prematurely old." While there are different forms of Progeria*, the classic type is Hutchinson- Gilford Progeria Syndrome, which was named after the doctors who first described it in England: in 1886 by Dr. Jonathan Hutchinson, and in 1897 by Dr. Hastings Gilford. HOW COMMON IS PROGERIA? Progeria affects approximately 1 in 4 - 8 million newborns. It affects both sexes equally and all races. In the past 15 years, children with Progeria have been reported all over the world , including in: Algeria Cuba Ireland Peru Sweden Argentina Denmark Israel Philippines Switzerland Australia Dominican Italy Poland Turkey Austria Republic Japan Portugal United States Belgium Egypt Libya Puerto Rico Venezuela Brazil England Mexico Romania Vietnam Canada France Morocco South Africa Yugoslavia China Germany Netherlands South Korea Columbia India Pakistan Spain WHAT ARE THE FEATURES OF PROGERIA? Although they are born looking healthy, most children with Progeria begin to display many characteristics of Progeria within the first year of life. Progeria signs include growth failure, loss of body fat and hair, aged-looking skin, stiffness of joints, hip dislocation, generalized atherosclerosis, cardiovascular (heart) disease and stroke. The children have a remarkably similar appearance, despite differing ethnic backgrounds. Children with Progeria die of atherosclerosis (heart disease) at an average age of thirteen years (with a range of about 8 – 21 years). WHAT DOES PROGERIA HAVE TO DO WITH AGING? Children with Progeria are genetically predisposed to premature, progressive heart disease.
    [Show full text]
  • Atypical Progeroid Syndrome ID: 20-0188; April 2021 (P.E262K LMNA) DOI: 10.1530/EDM-20-0188
    ID: 20-0188 -20-0188 M Yukina and others Atypical progeroid syndrome ID: 20-0188; April 2021 (p.E262K LMNA) DOI: 10.1530/EDM-20-0188 Atypical progeroid syndrome (p.E262K LMNA mutation): a rare cause of short stature and osteoporosis Correspondence Marina Yukina, Nurana Nuralieva, Ekaterina Sorkina, Ekaterina Troshina, should be addressed Anatoly Tiulpakov, Zhanna Belaya and Galina Melnichenko to E Sorkina Email Endocrinology Research Centre, Moscow, Russia [email protected] Summary Lamin A/C (LMNA) gene mutations cause a heterogeneous group of progeroid disorders, including Hutchinson–Gilford progeria syndrome, mandibuloacral dysplasia, atypical progeroid syndrome (APS) and generalized lipodystrophy- associated progeroid syndrome (GLPS). All of those syndromes are associated with some progeroid features, lipodystrophyandmetaboliccomplicationsbutvarydifferentlydependingonaparticularmutationandevenpatients carrying the same gene variant are known to have clinical heterogeneity. We report a new 30-year-old female patient from Russia with an APS and generalized lipodystrophy (GL) due to the heterozygous de novo LMNA p.E262K mutation and compare her clinical and metabolic features to those of other described patients with APS. Despite many health issues, short stature, skeletal problems, GL and late diagnosis of APS, our patient seems to be relatively metabolically healthy for her age when compared to previously described patients with APS. Learning points: • Atypicalprogeroidsyndromes(APS)arerareandheterogenicwithdifferentageofonsetanddegreeofmetabolic
    [Show full text]
  • Neurodegeneration in Accelerated Aging
    DOCTOR OF MEDICAL SCIENCE DANISH MEDICAL JOURNAL Neurodegeneration in Accelerated Aging Morten Scheibye-Knudsen This review has been accepted as a thesis together with 7 previously published pa- pers by the University of Copenhagen, October 16, 2014 and defended on January 14, 2016 Official opponents: Alexander Bürkle, University of Konstanz Lars Eide, University of Oslo Correspondence: Center for Healthy Aging, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen E-mail: [email protected] Dan Med J 2016;63(11):B5308 INTRODUCTION The global elderly population has been progressively increasing throughout the 20th century and this growth is projected to per- sist into the late 21st century resulting in 20% of the total world population being aged 65 or more by the year 2100 (Figure 1). 80% of the total cost of health care is accrued after 40 years of Figure 2. The phenotype of human aging. age where chronic diseases become prevalent [1, 2]. With an ex- that appear to regulate the aging process [4,5]. These include the ponential increase in health care costs, it follows that the chronic insulin and IGF-1 signaling cascades [4], protein synthesis and diseases that accumulate in an aging population poses a serious quality control [6], regulation of cell proliferation through factors socioeconomic problem. Finding treatments to age related dis- such as mTOR [7], stem cell maintenance 8 as well as mitochon- eases, therefore becomes increasingly more pertinent as the pop- drial preservation [9]. Most of these pathways are conserved ulation ages. Even more so since there appears to be a continu- through evolution and appear to regulate aging in many lower or- ous increase in the prevalence of chronic diseases in the aging ganisms.
    [Show full text]
  • Trichothiodystrophy
    Trichothiodystrophy Author: Doctor Alfredo Rossi1 and Doctor C. Cantisani. Creation date: June 2004 Scientific Editor: Prof Antonella Tosti 1Dipartimento di Malattie Cutanee-Veneree Chirurgia Plastica-Ricostruttiva, Università degli studi di Roma “La Sapienza” Abstract Keywords Definition Epidemiology Etiology Clinical description Diagnostic methods Prenatal diagnosis Management References Abstract Trichothiodystrophy (TTD) is a rare autosomal recessive genetic disorder characterized by abnormal synthesis of the sulphur containing keratins and consequently hair dysplasia, associated with numerous symptoms affecting mainly organs derived from the neuroectoderm. This phenotypic aspect is due to mutations in the DNA-dependent ATPase/helicase subunit of TFIIH, XPB and XPD. Abnormalities in excision repair of ultraviolet (UV)-damaged DNA are recognized in about half of the patients. The clinical appearance is characterized by brittle and fragile hair, congenital ichthyosis, nail and dental dysplasias, cataract, progeria-like face, growth and mental retardation. The abnormalities are usually obvious at birth, with variable clinical expression. The variants of TTD, depending on their different associations, are known by the initials BIDS, IBIDS, PIBIDS, SIBIDS, ONMRS, as well as the eponyms of the Pollit, Tay, Sabinas syndromes or Amish brittle hair. The exact prevalence of TTD is unknown, but appears to be rather uncommon. About 20 cases of PIBI(D)S have been reported in the literature. Up to 1991, clinical data of 15 cases with IBIDS were published. Prenatal diagnostic of TTD is available. There is no specific treatment. Keywords Brittle hair, photosensitivity, ichthyosis, BIDS, IBIDS, PIBIDS, SIBIDS, ONMRS, Tay-syndrome Definition tail pattern). They named it Trichothiodystrophy, Trichothiodystrophy (TTD) is a group of rare noticing also an increased Photosensitivity and autosomal recessive disorders with heterogenic Ichthyosis in these patients (PIBIDS).
    [Show full text]
  • Molecular Basis of Progeroid Syndromes–S–S– the Wwthe Erner Andanderner Hutchinson-Gilford Syndromes
    Proc. Indian natn Sci Acad. B69 No. 4 pp 625-640 (2003) Molecular Basis of Progeroid Syndromes–s–s– the WWthe erner andanderner Hutchinson-Gilford Syndromes JUNKO OSHIMA*, NANCY B HANSON and GEORGE M MARTIN Department of Pathology, University of W ashington, Seattle, WA 98195, USA (Received on 17 July 2003; Accepted after r evision on 6 August 2003) Segmental progeroid syndromes are members of a group of disorders in which affected individuals present various featur es suggestive of accelerated aging. The two best-known examples are the Werner syndro m e (WS; “Progeria of the adult”) and the Hutchinson-Gilford Progeria syndrome (HGPS; “Progeria of child- hood”). The gene responsible for WS, WRN, was identified in 1996 and encodes a multifunctional nuclear protein with exonuclease and helicase domains. WS patients and cells isolated from the WS patients show various genomic instability phenotypes, including an incr eased incidence of cancer. The WRN protein is thought to play a crucial role in optimizing the regulation of DNA repair processes. Recently, a novel r ecurr ent mutation in the LMNA gene has been shown to be responsible for HGPS. LMNA encodes nuclear intermediate filaments, lamins A and C; mutant lamins are thought to result in nuclear fragility. Ther e ar e at least six other disor ders caused by LMNA mutations, most of which affect cells and tissues of mesenchymal origins, including atypical forms of WS. The pathophysiologies of these and certain other progeroid syndromes indicate an important role for DNA damage in the genesis of common age- related disorders. Key WWKey ords: WWords: erner syndrome, WRN, RecQ, Hutchinson-Gilford Progeria syndrome, LMNA, Lamin, Genomic instability, Aging, Human Introduction of WS, previously based upon clinical criteria, can Segmental progeroid syndromes encompass a now be confirmed by molecular biological methods.
    [Show full text]
  • Download PDF (1878K)
    2018, 65 (2), 227-238 Note Definitive diagnosis of mandibular hypoplasia, deafness, progeroid features and lipodystrophy (MDPL) syndrome caused by a recurrent de novo mutation in the POLD1 gene Haruka Sasaki1), 2), Kumiko Yanagi3) *, Satoshi Ugi4), Kunihisa Kobayashi1), Kumiko Ohkubo5), Yuji Tajiri6), Hiroshi Maegawa4), Atsunori Kashiwagi7) and Tadashi Kaname3) * 1) Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Chikushino, Fukuoka 818-8502, Japan 2) Division of Diabetic Medicine, Bunyukai Hara Hospital, Ohnojo, Fukuoka 816-0943, Japan 3) Department of Genome Medicine, National Research Institute for Child Health, Setagaya, Tokyo 157-8535, Japan 4) Department of Medicine, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan 5) Department of Laboratory Medicine, School of Medicine, Fukuoka University, Jonan-ku, Fukuoka 814-0180, Japan 6) Division of Endocrinology and Metabolism, Kurume University School of Medicine, Kurume, Fukuoka 830-0111, Japan 7) Diabetes Center, Seikokai Kusatsu General Hospital, Kusatsu, Shiga 525-8585, Japan Abstract. Segmental progeroid syndromes with lipodystrophy are extremely rare, heterogeneous, and complex multi-system disorders that are characterized by phenotypic features of premature aging affecting various tissues and organs. In this study, we present a “sporadic/isolated” Japanese woman who was ultimately diagnosed with mandibular hypoplasia, deafness, progeroid features, and progressive lipodystrophy (MDPL) syndrome (MIM #615381) using whole exome sequencing analysis. She had been suspected as having atypical Werner syndrome and/or progeroid syndrome based on observations spanning a 30-year period; however, repeated genetic testing by Sanger sequencing did not identify any causative mutation related to various subtypes of congenital partial lipodystrophy (CPLD) and/or mandibular dysplasia with lipodystrophy (MAD).
    [Show full text]
  • 1. Progeria 101: Frequently Asked Questions
    1. PROGERIA 101: FREQUENTLY ASKED QUESTIONS 1. Progeria 101: Frequently Asked Questions What is Hutchinson-Gilford Progeria Syndrome? What is PRF’s history and mission? What causes Progeria? How is Progeria diagnosed? Are there different types of Progeria? Is Progeria contagious or inherited? What is Hutchinson-Gilford Progeria Syndrome (HGPS or Progeria)? Progeria is also known as Hutchinson-Gilford Progeria Syndrome (HGPS). Genetic testing for It was first described in 1886 by Dr. Jonathan Hutchinson and in 1897 by Progeria can be Dr. Hastings Gilford. Progeria is a rare, fatal, “premature aging” syndrome. It’s called a syndrome performed from a because all the children have very similar symptoms that “go together”. The small sample of blood children have a remarkably similar appearance, even though Progeria affects children of all different ethnic backgrounds. Although most babies with (1-2 tsp) or sometimes Progeria are born looking healthy, they begin to display many characteristics from a sample of saliva. of accelerated aging by 18-24 months of age, or even earlier. Progeria signs include growth failure, loss of body fat and hair, skin changes, stiffness of joints, hip dislocation, generalized atherosclerosis, cardiovascular (heart) disease, and stroke. Children with Progeria die of atherosclerosis (heart disease) or stroke at an average age of 13 years (with a range of about 8-21 years). Remarkably, the intellect of children with Progeria is unaffected, and despite the physical changes in their young bodies, these extraordinary children are intelligent, courageous, and full of life. 1.2 THE PROGERIA HANDBOOK What is PRF’s history and mission? The Progeria Research Foundation (PRF) was established in the United States in 1999 by the parents of a child with Progeria, Drs.
    [Show full text]
  • Human Radiosensitivity and Radiosusceptibility: What Are the Differences?
    International Journal of Molecular Sciences Review Human Radiosensitivity and Radiosusceptibility: What Are the Differences? Laura El-Nachef 1, Joelle Al-Choboq 1, Juliette Restier-Verlet 1, Adeline Granzotto 1, Elise Berthel 1,2, Laurène Sonzogni 1,Mélanie L. Ferlazzo 1, Audrey Bouchet 1 , Pierre Leblond 3, Patrick Combemale 3, Stéphane Pinson 4, Michel Bourguignon 1,5 and Nicolas Foray 1,* 1 Inserm, U1296 unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France; [email protected] (L.E.-N.); [email protected] (J.A.-C.); Juliette.Restier–[email protected] (J.R.-V.); [email protected] (A.G.); [email protected] (E.B.); [email protected] (L.S.); [email protected] (M.L.F.); [email protected] (A.B.); [email protected] (M.B.) 2 Neolys Diagnostics, 67960 Entzheim, France 3 Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France; [email protected] (P.L.); [email protected] (P.C.) 4 Hospices Civils de Lyon, Quai des Célestins, 69002 Lyon, France; [email protected] 5 Université Paris Saclay Versailles St Quentin en Yvelines, 78035 Versailles, France * Correspondence: [email protected]; Tel.: +33-4-78-78-28-28 Abstract: The individual response to ionizing radiation (IR) raises a number of medical, scientific, and societal issues. While the term “radiosensitivity” was used by the pioneers at the beginning Citation: El-Nachef, L.; Al-Choboq, of the 20st century to describe only the radiation-induced adverse tissue reactions related to cell J.; Restier-Verlet, J.; Granzotto, A.; death, a confusion emerged in the literature from the 1930s, as “radiosensitivity” was indifferently Berthel, E.; Sonzogni, L.; Ferlazzo, used to describe the toxic, cancerous, or aging effect of IR.
    [Show full text]
  • Werner and Hutchinson–Gilford Progeria Syndromes: Mechanistic Basis of Human Progeroid Diseases
    REVIEWS MECHANISMS OF DISEASE Werner and Hutchinson–Gilford progeria syndromes: mechanistic basis of human progeroid diseases Brian A. Kudlow*¶, Brian K. Kennedy* and Raymond J. Monnat Jr‡§ Abstract | Progeroid syndromes have been the focus of intense research in part because they might provide a window into the pathology of normal ageing. Werner syndrome and Hutchinson–Gilford progeria syndrome are two of the best characterized human progeroid diseases. Mutated genes that are associated with these syndromes have been identified, mouse models of disease have been developed, and molecular studies have implicated decreased cell proliferation and altered DNA-damage responses as common causal mechanisms in the pathogenesis of both diseases. Progeroid syndromes are heritable human disorders with therefore termed segmental, as opposed to global, features that suggest premature ageing1. These syndromes progeroid syndromes. Among the segmental progeroid have been well characterized as clinical disease entities, syndromes, the syndromes that most closely recapitu- and in many instances the associated genes and causative late the features of human ageing are Werner syndrome mutations have been identified. The identification of (WS), Hutchinson–Gilford progeria syndrome (HGPS), genes that are associated with premature-ageing-like Cockayne syndrome, ataxia-telangiectasia, and the con- syndromes has increased our understanding of molecu- stitutional chromosomal disorders of Down, Klinefelter lar pathways that protect cell viability and function, and
    [Show full text]
  • Diabetes Mellitus Coexisted with Progeria: a Case Report of Atypical Werner Syndrome with Novel LMNA Mutations and Literature Review
    2019, 66 (11), 961-969 Original Diabetes mellitus coexisted with progeria: a case report of atypical Werner syndrome with novel LMNA mutations and literature review Guangyu He, Zi Yan, Lin Sun, You Lv, Weiying Guo, Xiaokun Gang* and Guixia Wang* The First Hospital of Jilin University, Changchun Jilin, 130021, China Abstract. Werner syndrome (WS) is a rare, adult-onset progeroid syndrome. Classic WS is caused by WRN mutation and partial atypical WS (AWS) is caused by LMNA mutation. A 19-year-old female patient with irregular menstruation and hyperglycemia was admitted. Physical examination revealed characteristic faces of progeria, graying and thinning of the hair scalp, thinner and atrophic skin over the hands and feet, as well as lipoatrophy of the extremities, undeveloped breasts at Tanner stage 3, and short stature. The patient also suffered from severe insulin-resistant diabetes mellitus, hyperlipidemia, fatty liver, and polycystic ovarian morphology. Possible WS was considered and both WRN and LMNA genes were analyzed. A novel missense mutation p.L140Q (c.419T>A) in the LMNA gene was identified and confirmed the diagnosis of AWS. Her father was a carrier of the same mutation. We carried out therapy for lowering blood glucose and lipid and improving insulin resistance, et al. The fasting glucose, postprandial glucose and triglyceride level was improved after treatment for 9 days. Literature review of AWS was performed to identify characteristics of the disease. Diabetes mellitus is one of the clinical manifestations of WS and attention must give to the differential diagnosis. Gene analysis is critical in the diagnosis of WS. According to the literature, classic and atypical WS differ in incidence, pathogenic gene, and clinical manifestations.
    [Show full text]