Conditions for Passenger Aircraft Minimum Fuel Consumption, Direct Operating Costs and Environmental Impact”
Total Page:16
File Type:pdf, Size:1020Kb
1 Master Thesis Conditions for Passenger Aircraft Minimum Fuel Consumption, Direct Operating Costs and Environ- mental Impact Author: Brecht Caers Supervisor: Prof. Dr.-Ing. Dieter Scholz, MSME Submitted: 2019-07-28 Faculty of Engineering and Computer Science Department of Automotive and Aeronautical Engineering DOI: https://doi.org/10.15488/9323 URN: https://nbn-resolving.org/urn:nbn:de:gbv:18302-aero2019-07-28.013 Associated URLs: https://nbn-resolving.org/html/urn:nbn:de:gbv:18302-aero2019-07-28.013 © This work is protected by copyright The work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License: CC BY-NC-SA https://creativecommons.org/licenses/by-nc-sa/4.0 Any further request may be directed to: Prof. Dr.-Ing. Dieter Scholz, MSME E-Mail see: http://www.ProfScholz.de This work is part of: Digital Library - Projects & Theses - Prof. Dr. Scholz http://library.ProfScholz.de Published by Aircraft Design and Systems Group (AERO) Department of Automotive and Aeronautical Engineering Hamburg University of Applied Science This report is deposited and archived: Deutsche Nationalbiliothek (https://www.dnb.de) Repositorium der Leibniz Universität Hannover (https://www.repo.uni-hannover.de) Internet Archive (https://archive.org) Item: https://archive.org/details/TextCaers.pdf This report has associated published data in Harvard Dataverse: https://doi.org/10.7910/DVN/DLZSDK 3 Abstract Purpose – Find optimal flight and design parameters for three objectives: minimum fuel con- sumption, Direct Operating Costs (DOC), and environmental impact of a passenger jet air- craft. Approach – Combining multiple models (this includes aerodynamics, specific fuel consump- tion, DOC, and equivalent CO2 mass) into one generic model. In this combined model, each objective’s importance is determined by a weighting factor. Additionally, the possibility of further optimizing this model by altering an aircraft’s wing loading is analyzed. Findings – When optimizing for a compromise between economic and ecologic benefits, the general outcome is a reduction in cruise altitude and an unaltered cruise Mach number com- pared to common practice. Decreasing cruise speed would benefit the environmental impact but has a negative effect on seat-mile cost. An increase in wing loading could further optimize the general outcome. Albeit at the cost of a greater required landing distance, therefore limit- ing the operational opportunities of this aircraft. Research limitations – Most models use estimating equations based on first principles and statistical data. Practical implications – The optimal cruise altitude and speed for a specific objective can be approximated for any passenger jet aircraft. Social implications – By using a simple approach, the discussion of optimizing aircraft opens up to a level where everyone can participate. Value – To find a general answer on how to optimize aviation, operational and design-wise, by using a simple approach. 4 Table of Contents 1 Introduction ......................................................................................................... 13 1.1 Motivation ............................................................................................................. 13 1.2 Title Terminology .................................................................................................. 13 1.3 Objectives .............................................................................................................. 14 1.4 Previous Research ................................................................................................. 14 1.5 Structure of the Work ............................................................................................ 15 2 Literature Review ................................................................................................ 17 2.1 Cruise Speed for Minimum Fuel Consumption .................................................... 17 2.1.1 Analytical Integration ............................................................................................ 18 2.1.2 Maximum Range Cruise Speed ............................................................................. 19 2.1.3 Economy Cruise Speed ......................................................................................... 20 2.1.4 Long-Range Cruise Speed ..................................................................................... 20 2.1.5 Comparison ........................................................................................................... 21 2.2 Cruise Altitude for Minimum Fuel Consumption ................................................. 21 2.3 Direct Operating Costs .......................................................................................... 22 2.4 Environmental Impact ........................................................................................... 23 2.4.1 Resource Depletion ............................................................................................... 23 2.4.2 Aviation and the Global Atmosphere .................................................................... 23 2.4.3 Contrails and Aviation-Induced Cirrus Clouds ..................................................... 26 3 Fundamental Models ........................................................................................... 30 3.1 Aerodynamics ........................................................................................................ 30 3.1.1 Drag Coefficient .................................................................................................... 30 3.1.2 Zero Lift Drag Coefficient .................................................................................... 31 3.1.3 Wave Drag Increment ........................................................................................... 31 3.1.4 Oswald Factor ........................................................................................................ 33 3.2 Thrust Specific Fuel Consumption ........................................................................ 33 3.3 Direct Operating Costs .......................................................................................... 35 3.4 Atmosphere ........................................................................................................... 36 3.5 Equivalent CO2 Mass ............................................................................................ 38 4 Excel Tool ............................................................................................................. 41 4.1 General .................................................................................................................. 41 4.2 Case Study: Airbus A320-200 ............................................................................... 41 4.3 Macro for Calculation ........................................................................................... 41 4.4 Inputs and Outputs ................................................................................................. 42 4.5 Fuel ........................................................................................................................ 44 4.6 DOC ....................................................................................................................... 44 5 4.7 Environmental ....................................................................................................... 44 4.8 Flight Time ............................................................................................................ 45 4.9 Extra Information .................................................................................................. 46 5 Flight Parameter Optimization: Minimum Fuel Consumption ...................... 47 5.1 General .................................................................................................................. 47 5.2 Important Parameters ............................................................................................ 49 5.2.1 Speed of Sound ...................................................................................................... 50 5.2.2 Aerodynamic Efficiency ........................................................................................ 50 5.2.3 Mach Number ........................................................................................................ 51 5.2.4 Specific Fuel Consumption ................................................................................... 51 5.3 Results Fuel Consumption ..................................................................................... 51 5.3.1 TSFC ..................................................................................................................... 52 5.3.2 Aerodynamic Efficiency ........................................................................................ 54 5.3.3 Fuel Consumption ................................................................................................. 58 5.4 Conclusion Fuel Consumption .............................................................................. 60 6 Flight Parameter Optimization: DOC ............................................................... 62 6.1 General .................................................................................................................. 62 6.2 Important Parameters ............................................................................................ 62 6.2.1 DOC Range ..........................................................................................................