An Elusive Blind-Thrust Fault Beneath Metropolitan Los Angeles

Total Page:16

File Type:pdf, Size:1020Kb

An Elusive Blind-Thrust Fault Beneath Metropolitan Los Angeles R EPORTS 5 The intercept of the line with the abscissa yields Di/D 1/4, which is an extreme case, differs only by 36. N. A. Sulpice and R. J. D’Arcy, J. Phys. E 3, 477 (1970). 7% as compared with D 5 0. DV. This geometry-independent constant is i 37. Electrical charging due to the electron beam cannot 31. Microscopy was performed with a Philips CM30 200- account for the effect, because the charge found to characteristic for the specific nanotube under kV high-resolution TEM. reside on the nanotubes is positive rather than neg- investigation and is typically on the order of 32. The ripple mode may be a precursor to buckling, but ative. Furthermore, the amplitude of vibration at several volts. Similarly, attaching nanoscopic it should not be confused with bucking. Buckling (in resonance does not change with electron dose, as it contrast to rippling) is characterized as an instability would if electron beam charging were important. conducting particles to the nanotubes facilitates giving rise to a nonlinear response. It occurs in highly 38. M. Gurgoze, J. Sound Vib. 190, 149 (1996). measurements of their work functions. stressed nanotubes (and beams) and manifests as 39. We thank U. Landman, R. L. Whetten, L. Forro, and A. The methods developed here are also well one or several kinks with very small radii of curvature Zangwill for fruitful discussion and R. Nitsche for his suited to measure masses in the picogram-to- (about 1 to 10 nm). It is accompanied by abrupt analysis of the static bent nanotube. D.U. thanks the change in the effective force constant and may cause Centre Interdepartemental de Microscopy Electronique, femtogram mass range, as demonstrated in Fig. irreversible damage. The observed effect may be Ecole Polytechnique Federale, for the use of the Philips 4A, which shows the resonance of a carbon related to the rippling found in classical beams as a CM30 microscope for Fig. 3, B through D, and the particle that is attached to the end of a nanotube precursor to buckling [see S. Kyriakides and G. T. Ju, Brazilian Council for Scientific and Technological Re- Int. J. Solids Struct. 29, 1117 (1992)]. search. Supported by the Army Research Office, grants (38). The mass of this particle was determined 33. In the bulk, the other elastic moduli are at least a DAAG 55-97-0133 ( W.A.d.H. and P.P.), by NSF9733160 from the resonance frequency of the structure factor of 5 and as much as a factor of 50 smaller than ( Z.L.W.), and by NSFDMR-9971412 (W.A.d.H. and that of C . and was found to be M 5 22 6 6fg(1fg5 11 Z.L.W.) –15 34. D. Ugarte, Nature 352, 707 (1992). 10 g). This value is near that calculated from 35. Lord Kelvin, Philos. Mag. 46, 82 (1898). 4 December 1998; accepted 26 January 1999 the measured geometry, assuming bulk amor- phous carbon density—that is, M ' 30 fg. This nanobalance method can be applied to other particles of similar dimensions, such as viruses. An Elusive Blind-Thrust Fault References and Notes Beneath Metropolitan Los 1. S. Iijima, Nature 354, 56 (1991). 2. J. W. Mintmire, B. I. Dunlap, C. T. White, Phys. Rev. Lett. 68, 631 (1992). Angeles 3. M. S. Dresselhaus, G. Dresselhaus, R. Saito, Carbon 33, 1 2 883 (1995). John H. Shaw * and Peter M. Shearer 4. D. L. Carroll et al., Phys. Rev. Lett. 78, 2811 (1997). 5. T. W. Ebbesen, Phys. Today 49, 26 (1996). Seismic reflection profiles, petroleum wells, and relocated earthquakes reveal the 6. W. A. de Heer, A. Chatelain, D. Ugarte, Science 270, 1179 (1995). presence of an active blind-thrust fault beneath metropolitan Los Angeles. A 7. S. Frank, P. Poncharal, Z. L. Wang, W. A. de Heer, ibid. segment of this fault likely caused the 1987 Whittier Narrows (magnitude 6.0) 280, 1744 (1998). earthquake. Mapped sizes of other fault segments suggest that the system is 8. J. Liu et al., ibid., p. 1253. 9. A. Thess et al., ibid. 273, 483 (1996). capable of much larger (magnitude 6.5 to 7) and more destructive earthquakes. 10. D. H. Robertson, D. W. Brenner, J. W. Mintmire, Phys. Rev. B 45, 12592 (1992). Damages exceeding $35 billion from the 1994 (8–10) in northern Orange County (Fig. 2). 11. R. S. Ruoff and D. C. Lorents, Carbon 33, 925 (1995). Northridge [magnitude (M) 6.7] earthquake (1), These folds grew in the Quaternary while 12. M. M. Treacy, T. W. Ebbesen, J. M. Gibson, Nature 38, combined with recent evidence of larger (.M sediments were deposited above them, yield- 678 (1996). 13. B. I. Yakobson, C. J. Brabec, J. Bernholc, Phys. Rev. Lett. 7) events in the geologic record (2), have fo- ing patterns of deformed strata that record 76, 2511 (1996). cused attention on the hazards posed by thrust fold growth and fault slip (11). These de- 14. M. R. Falvo et al., Nature 389, 582 (1997). faults to metropolitan Los Angeles. Efforts to formed strata are particularly well imaged in 15. J. P. Lu, Phys. Rev. Lett. 79, 1297 (1997). 16. E. Wong, P. Sheehan, C. Lieber, Science 277, 1971 assess and mitigate these hazards are compli- the Santa Fe Springs anticline (Fig. 1). (1997). cated, however, because thrust faults beneath On the basis of fault-related folding theo- 17. C.-H. Kiang et al., Phys. Rev. Lett. 81, 1869 (1998). the city are typically blind, meaning that they ries (11), the shape of the growth fold at 18. W. H. Knechte et al., Appl. Phys. Lett. 73, 1961 lie concealed beneath Earth’s surface (3, 4). Santa Fe Springs suggests that an underlying (1998). 19. S. Iijima, C. Brabeck, A. Maiti, J. Bernholc, J. Chem. Here, we used high-resolution, subsurface im- fault, which we call the Puente Hills thrust, Phys. 104, 2089 (1996). ages acquired by the petroleum industry (Fig. 1) dips to the north and extends upward into the 20. T. Kuzumaki et al., Phil. Mag. A 77, 1461 (1998). and relocated seismicity to map a large blind- Pliocene Fernando Formation. This fault 21. J.-P. Salvetat et al., Adv. Mat., in press. 22. N. Yao and V. Lordi, J. Appl. Phys. 84, 1939 (1998). thrust system lying directly beneath the metro- shape and position are consistent with a 23. G. Gao, T. Cagin, W. A. Goddard, Nanotechnology 9, politan area (Fig. 2). north-dipping reflection beneath the anticline 184 (1998). Many blind thrusts produce near-surface that cuts across bedding. This reflection is 24. B. T. Kelly, Physics of Graphite (Applied Science, Lon- folds that grow during repeated earthquakes observed on more than 10 seismic profiles don, 1981). 25. N. Osakabe et al., Appl. Phys. Lett. 70, 940 (1997). (3–5) in response to motions through bends in and persists through a range of processing 26. T. W. Ebbesen and P. M. Ajayan, Nature 358, 220 fault planes or above propagating fault tips, steps aimed to remove noise and artifacts (1992). We caution that different production recipes and their shapes reflect underlying fault ge- (12). Thus, we interpret this reflection as an can yield different results; in particular, defect densities may vary substantially from one laboratory to the next ometries and slip (6, 7). Seismic reflection image of the fault surface, caused by velocity (as is the case with crystal growing). For example, profiles and information from oil wells reveal and density contrasts that exist across the catalytically grown tubes are usually very defective. In a series of these anticlines extending from fault plane. contrast, the nanotube material used in this work [in- cluding (31)] was from the same stock as was used in downtown Los Angeles to the Coyote Hills Fault-plane reflections in a series of seis- our previous work (6, 7) and was of high quality. mic profiles define an east-west–striking sur- 27. The TEM used was a JEOL 100C (100 kV ) at the face that dips about 27° to the north. We School of Materials Science and Engineering, Georgia 1Department of Earth and Planetary Sciences, Harvard extrapolated beyond the limits of the fault- Institute of Technology. 2 University, Cambridge, MA 02138, USA. Institute of plane reflections, using fold shape, as imaged 28. D. J. Griffiths and Y. Li, Am. J. Phys. 64, 706 (1996). Geophysics and Planetary Physics, Scripps Institute of 29. L. Meirovich, Elements of Vibration Analysis (McGraw- Oceanography, University of California, San Diego, La in the seismic profiles, to predict the fault Hill, New York, ed. 2, 1986). Jolla, CA 92093–0225, USA. shape (6, 11) and map the fault surface (Fig. 30. Di was not measured for all nanotubes, and in those cases it was not included in the calculations. Howev- *To whom correspondence should be addressed. E- 2). The mapped fault extends 40 km along er, the value for E is rather insensitive to Di, because mail: [email protected] strike and includes three distinct geometric 1516 5 MARCH 1999 VOL 283 SCIENCE www.sciencemag.org R EPORTS segments, termed Los Angeles, Santa Fe bounds on these depth estimates are quite model. On the basis of the depths obtained Springs, and Coyote Hills. This fault system small (0.1 to 0.3 km), but these numbers do from the two methods, we estimate that the is distinct from the previously documented not include the uncertainties in the velocity mainshock depth is 13 6 1 km. This earth- Elysian Park fault (10, 13) and thus repre- sents a hazard that has not been previously N Exxon considered.
Recommended publications
  • Report of Geotechnical Investigation Proposed Improvements
    REPORT OF GEOTECHNICAL INVESTIGATION PROPOSED IMPROVEMENTS PROPOSED RIO HONDO SATELLITE CAMPUS EL RANCHO ADULT SCHOOL 9515 HANEY STREET PICO RIVERA, CALIFORNIA Prepared for: RIO HONDO PROGRAM MANAGEMENT TEAM Whittier, California January 20, 2016 Project 4953-15-0302 January 20, 2016 Mr Luis Rojas Rio Hondo Program Management Team c/o Rio Hondo College 3600 Workman Mill Road Whittier, California 90601-1699 Subject: LETTER OF TRANSMITTAL Report of Geotechnical Investigation Proposed Improvements Proposed Rio Hondo Satellite Campus El Rancho Adult School 9515 Haney Street Pico Rivera, California, 90660 Amec Foster Wheeler Project 4953-15-0302 Dear Mr. Rojas: We are pleased to submit the results of our geotechnical investigation for the proposed improvements as part of the proposed Rio Hondo Satellite Campus at the El Rancho Adult School in Pico Rivera, California. This investigation was performed in general accordance with our proposal dated November 24, 2015, which was authorized by e-mail on December 15, 2015. The scope of our services was planned with Mr. Manuel Jaramillo of DelTerra. We have been furnished with a site plan and a general description of the proposed improvements. The results of our investigation and design recommendations are presented in this report. Please note that you or your representative should submit copies of this report to the appropriate governmental agencies for their review and approval prior to obtaining a permit. Correspondence: Amec Foster Wheeler 6001 Rickenbacker Road Los Angeles, California 90040 USA
    [Show full text]
  • STRUCTURAL GEOLOGY and TECTONICS DIVISION Newsletter Volume 13, Number 1 March 1994
    STRUCTURAL GEOLOGY and TECTONICS DIVISION Newsletter Volume 13, Number 1 March 1994 CHAIRPERSON'S MESSAGE Division activities at the annual meeting in Boston were quite successful. John Bartley became the new second vice chair, Ed Beutner moved up to first vice-chair and Art Goldstein is the new secretary-treasurer. We all thank the past secretary-treasurer, Don Secor, for keeping the Division running properly during his record tenure of six years. The papers at Division sessions were excellent, so interesting to me that I spent the meeting in these sessions and missed the exhibits. Thanks to Fred Chester and Ron Bruhn for organizing a really cutting-edge symposium on inferring paleoearthquakes from fault-rock fabrics. It appears that this seemingly intractable problem has some solutions. We can expect some significant publications from the speakers. Terry Engelder, with help from Mike Gross and Mark Fischer presented the Division's short course on fracture mechanics of rock. The course was highly praised by everyone I heard from; thanks guys. As always, it was a pleasure to attend the Division's award ceremony to honor the recipients and to hear the citations and responses. As Darrel Cowan, in his citation of Ben Page for the Career Contribution Award, summarized Ben's significant publications, I was intrigued as I realized that my list would have been as long but different. Such a broad range of important contributions is an excellent qualification for this award. Mark Cloos cited Dan Worrall and Sig Snelson for the best paper award for their 1989 DNAG paper "Evolution of the northern Gulf of Mexico, with emphasis on Cenozoic growth faulting and the role of salt." This paper contains important new insights into regional salt tectonics as well as helps highlight a large region of very active tectonics that misses out on being a classic orogenic belt only because it is not forming mountains.
    [Show full text]
  • 3-8 Geologic-Seismic
    Environmental Evaluation 3-8 GEOLOGIC-SEISMIC Changes Since the Draft EIS/EIR Subsequent to the release of the Draft EIS/EIR in April 2004, the Gold Line Phase II project has undergone several updates: Name Change: To avoid confusion expressed about the terminology used in the Draft EIS/EIR (e.g., Phase I; Phase II, Segments 1 and 2), the proposed project is referred to in the Final EIS/EIR as the Gold Line Foothill Extension. Selection of a Locally Preferred Alternative and Updated Project Definition: Following the release of the Draft EIS/EIR, the public comment period, and input from the cities along the alignment, the Construction Authority Board approved a Locally Preferred Alternative (LPA) in August 2004. This LPA included the Triple Track Alternative (2 LRT and 1 freight track) that was defined and evaluated in the Draft EIS/EIR, a station in each city, and the location of the Maintenance and Operations Facility. Segment 1 was changed to extend eastward to Azusa. A Project Definition Report (PDR) was prepared to define refined station and parking lot locations, grade crossings and two rail grade separations, and traction power substation locations. The Final EIS/EIR and engineering work that support the Final EIS/EIR are based on the project as identified in the Final PDR (March 2005), with the following modifications. Following the PDR, the Construction Authority Board approved a Revised LPA in June 2005. Between March and August 2005, station options in Arcadia and Claremont were added. Changes in the Discussions: To make the Final EIS/EIR more reader-friendly, the following format and text changes have been made: Discussion of a Transportation Systems Management (TSM) Alternative has been deleted since the LPA decision in August 2004 eliminated it as a potential preferred alternative.
    [Show full text]
  • Iv.E Geology
    IV.E GEOLOGY 1.0 INTRODUCTION This section of the Draft Environmental Impact Report (EIR) identifies and evaluates geologic and soils conditions at Loyola Marymount University (LMU) campus that could affect, or be affected by, implementation of the Proposed Project. The information contained in this section is based on a geotechnical evaluation1 prepared by MACTEC Engineering and Consulting, Inc., (MACTEC) prepared in July 2009, which is provided in Appendix IV.E. 2.0 REGULATORY FRAMEWORK 2.1 State and Regional Regulations 2.1.1 Seismic Hazards Mapping Act Under the Seismic Hazards Mapping Act of 1990, the State Geologist is responsible for identifying and mapping seismic hazards zones as part of the California Geological Survey. The Geological Survey provides zoning maps of non-surface rupture earthquake hazards (including liquefaction and seismically induced landslides) to local governments for planning purposes. These maps are intended to protect the public from the risks involved with strong ground shaking, liquefaction, landslides or other ground failure, and other hazards caused by earthquakes. For projects within seismic hazard zones, the Seismic Hazards Mapping Act requires developers to conduct geological investigations and incorporate appropriate mitigation measures into project designs before building permits are issued. Most of the Southern California region has been mapped. Established by the Seismic Safety Commission Act in 1975, the State Seismic Safety Commission’s purpose is to provide oversight, review, and recommendations to the Governor and State Legislature regarding seismic issues. 2.1.2 Alquist-Priolo Earthquake Fault Zoning Act The Alquist-Priolo Earthquake Fault Zoning Act (the Act) (Public Resource Code Section 2621.5) of 1972 was enacted in response to the 1971 San Fernando earthquake, which caused extensive surface fault ruptures that damaged numerous homes, commercial buildings, and other structures.
    [Show full text]
  • The L.A. Earthquake Sourcebook
    THE L.A. EARTHQUAKE SOURCEBOOK Produced by Richard Koshalek and Mariana Amatullo 2/3 Copyright © 2008 Designmatters at Southern California earthquake maps reprinted Art Center College of Design. courtesy of the U. S. Geological Survey. Excerpt from All rights reserved. ISBN 978-0-9618705-0-8 “Los Angeles Days” reprinted with the permission of Simon and Schuster Adult Publishing Group from Design: Sagmeister Inc., NYC After Henry by Joan Didion. Copyright © 1992 by Managing Editor: Gloria Gerace Joan Didion. All rights reserved. Pp. 97–100 from Ask Editor: Alex Carswell The Dust by John Fante. Copyright © 1980 by John Printer: Capital Offset Co. Fante. Reprinted by permission of HarperCollins Publishers. Excerpt from As I Remember by Arnold Genthe. Copyright © 1936 by Reynal & Hitchcock. Reprinted by permission of Ayer Company Publishers. “When Mother Nature Visits Southern California” by David Hernandez, 1998, used by permission of the author. Excerpt from “Assembling California” from Annals of the Former World by John McPhee. Copyright © 1998 by John McPhee. Reprinted by permission of Farrar, Straus and Giroux, LLC. Excerpt from “Folklore of Earthquakes” from Fool’s Paradise: The Carey McWilliams Reader. Reprinted by permission of Harold Ober Associates Incorporated. Copyright © 1933 by Carey McWilliams. First published in American Mercury. “When Living on the Edge Becomes Stark–Naked Reality” originally appeared in the Los Angeles Times. Copyright © 1987 Carolyn See. Used by permission of the author. Excerpt from “The L.A. Quake” © 1994 Lawrence S C C Weschler. Used by permission of the author. The full E essay appeared in the Threepenny Review and is part an NSF+USGS center of Vermeer in Bosnia: Cultural Comedies and Political Tragedies, Pantheon, 2004.
    [Show full text]
  • Abstract the Hazus Challenge
    2016 USEIT: Loss Analysis of Earthquake Sequences Sophia Belvoir1, Vianca Severino2, Jenepher Zamora1, Jadson Silva4, Luis Gomez5, Jozi Pearson6, Mark Benthien6, Thomas Jordan6 1Pasadena City College, 2University of Puerto Rico, Mayagüez, 4University of Brazilia, 5Chaffey College, 6University of Southern California ABSTRACT The 2016 Undergraduate Studies in Earthquake Information Technology (USE-IT) intern research program challenged the Hazard and Risk Visualization Team to illustrate threatening and probable multi-event earthquake scenarios in California using ShakeMaps and risk analysis maps. The interns are implementing FEMA’s Hazards United States (HAZUS) software to estimate and visualize the potential losses including physical damage of infrastructure, economic loss, and social impacts of these mul- ti-earthquake sequences. This is the first time multiple events will be analyzed with HAZUS. As a team based project, USEIT interns depend on collaboration with other working groups within the intern program to identify potential earthquake sequences. The Rate-State earthQuake Simulator (RSQSim) was run on a high performance computer (HPC) to generate catalogs of events. Rupture sequences were then selected to be visualized in SCEC-VDO. Earthquake sequences that were seen as most threatening had ShakeMap files created utilizing seismic hazard analysis (OpenSHA) software. Multiple events were combined as single ShakeMaps and imported into HAZUS for analysis. Ground motion values were combined and calculated in two differ- ent ways for multi-event ShakeMaps: 1) by using the greatest value and 2) sum of the squares, where the maps overlap. The greatest value method proves more appropriate for events that are further apart geographically. The sum of the squares method is ideal for events that are closer together.
    [Show full text]
  • Quaternary Fault and Fold Database of the United States
    Jump to Navigation Quaternary Fault and Fold Database of the United States As of January 12, 2017, the USGS maintains a limited number of metadata fields that characterize the Quaternary faults and folds of the United States. For the most up-to-date information, please refer to the interactive fault map. Lower Elysian Park thrust (Class A) No. 134 Last Review Date: 2017-06-14 citation for this record: Bryant, W.A., compiler, 2017, Fault number 134, Lower Elysian Park thrust, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 12/14/2020 02:13 PM. Synopsis Davis and others (1989) interpret the Elysian Park anticlinorium to be formed by stacked fault propagation folds; Elysian Park thrust is the lower ramp. The thrust propagates upward from an assumed detachment at about 15 km to a depth of about 10 km. Shaw and Suppe (1996) prefer a fault-bend fold model that links the Elysian Park fault ramp with the Compton [133] ramp to the west. This is implied by the similar kink band widths (growth triangles) associated with the two ramps. They define two segments of the Elysian Park Thrust (Los Angeles and Whittier) that are offset in the vicinity of the Whittier Narrows earthquake. Schneider and others (1996) define the Los Angeles fault as that responsible for ongoing deformation of the south facing monocline that forms the northern Los Angeles shelf, based on structural reconstruction from well log data and seismic stratigraphy. In well logs they recognize increasing dip with depth, suggesting that fold growth has been by progressive limb rotation.
    [Show full text]
  • Tectonic Geomorphology of the Santa Ana Mountains
    Final Technical Report ACTIVE DEFORMATION AND EARTHQUAKE POTENTIAL OF THE SOUTHERN LOS ANGELES BASIN, ORANGE COUNTY, CALIFORNIA Award Number: 01HQGR0117 Recipient’s name: University of California - Irvine Sponsored Projects Administration 160 Administration Building, Univ. of CA - Irvine Irvine, CA 92697-1875 Principal investigator: Lisa B. Grant, Ph.D. Department of Environmental Analysis & Design 262 Social Ecology 1 University of California Irvine, CA 92697-7070 Program element: Research on earthquake occurrence and effects Research supported by the U.S. Geological Survey (USGS), Department of the Interior, under USGS award number 01HQGR0117. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Government. p. 1 Award number: 01HQGR0117 ACTIVE DEFORMATION AND EARTHQUAKE POTENTIAL OF THE SOUTHERN LOS ANGELES BASIN, ORANGE COUNTY, CALIFORNIA Eldon M. Gath, University of California, Irvine, 143 Social Ecology I, Irvine, CA, 92697-7070; tel: 949-824-5382, fax: 949-824-2056, email: [email protected] Eric E. Runnerstrom, University of California, Irvine, 143 Social Ecology I, Irvine, CA, 92697- 7070; tel: 949-824-5382, fax: 949-824-2056, email: [email protected] Lisa B. Grant (P.I.), University of California, Irvine, 262 Social Ecology I, Irvine, CA, 92697- 7070; tel: 949-824-5491, fax: 949-824-2056, email: [email protected] TECHNICAL ABSTRACT The Santa Ana Mountains (SAM) are a 1.7 km high mountain range that form the southeastern boundary of the Los Angeles basin between Orange and Riverside counties in southern California. The SAM have three well developed erosional surfaces preserved on them, as well as a suite of four fluvial fill terraces preserved in Santiago Creek, which is a drainage trapped between the uplifting SAM and a parallel Loma Ridge.
    [Show full text]
  • Simulating Earthquake Damage to the Electric-Power Infrastructure: a Case Study for Urban Planning and Policy Development
    Simulating Earthquake Damage to the Electric-Power Infrastructure: A Case Study for Urban Planning and Policy Development L. Jonathan Dowell Sudha Maheshwari Los Alamos National Laboratory Urban Planning and Policy Development P. O. Box 1663 MS F604 Rutgers University Los Alamos, NM 87545 New Brunswick, NJ 08901 [email protected] [email protected] (505) 665-9193 FAX (505) 665-5125 Abstract This paper presents a case study of the consequences of a Richter magnitude 6.75 earthquake on the Los Angeles Elysian Park fault to the electric-power infrastructure of the western United States. The analysis combines aspects of geological modeling of such an earthquake with probabilistic simulation of power-system component failures for evaluation of the operation of the engineering infrastructure. This hybrid analysis demonstrates emergent behavior of a complex system and illustrates the challenges of multi-disciplinary analyses necessary for computational operations research. The simulation predicts blackouts in the Los Angeles metropolitan area and abnormal voltages throughout the western U.S. electric-power infrastructure that compare favorably with the consequences observed following a recent Northridge earthquake. The paper discusses applications of such analyses for urban planning and policy development. 1. INTRODUCTION Assessment of the possible consequences of a major natural disaster is a daunting problem. This paper presents an approach to the assessment of the implications of a moderate earthquake in the Los Angeles basin to the electric- power infrastructure of the western United States. Such assessment requires evaluation of a complex system of systems, requiring expert knowledge of the operation and behavior of each system, the interactions between these systems.
    [Show full text]
  • Estimation of Future Earthquake Losses in California
    Estimation of Future Earthquake Losses in California B. Rowshandel, M. Reichle, C. Wills, T. Cao, M. Petersen(¨), D. Branum, and J. Davis California Geological Survey Executive Summary Using the latest information on earthquake hazard in California and the publicly available demographic data, we have made estimations of expected future earthquake economic losses in the State. The estimates presented in this paper are for two categories: scenario earthquake loss, and annualized earthquake loss. For scenario earthquake loss, we quantified the damage and loss expected in ten counties in the San Francisco Bay Area (SFBA) and in ten counties in Southern California, due to possible earthquakes on known faults in the two regions. To accomplish this task, we used scenario ground motions, or shake-maps of 50 potential earthquakes published by the United States Geological Survey (USGS). Of these 50 scenario shake-maps, 34 represent the expected ground motion hazard in the SFBA counties and 16 represent the expected ground motion hazard in the southern region. For annualized earthquake loss, we estimated the overall long-term damage and loss using the Probabilistic Seismic Hazard Analysis (PSHA) maps for the State of California, prepared and published by the California Geological Survey (CGS) and the USGS. These PSHA maps show the expected ground motions of specified annual chance of occurrence at any location within the State. The effect on ground motions on the soils at the site are taken into account for both the shake-maps and the PSHA maps, through the use of appropriate ground motion attenuation relations and soil correction factors. Liquefaction effect was taken into account for the annualized loss study, but not for the scenario loss study.
    [Show full text]
  • 10066 Report.Pdf
    Subsurface Evidence for the Puente Hills and Compton-Los Alamitos Faults in South-Central Los Angeles 2010 SCEC Annual Report Project # 10066 Robert S. Yeats and Danielle Verdugo Earth Consultants International 1642 E. 4th Street, Santa Ana, CA 92701 Abstract We analyzed well data in the vicinity of a deep exploration campaign in 1973-1975 by American Petrofina Exploration Co. to a maximum depth of 6,477 m (American Petrofina Core Hole 1), twice the depth of data from multichannel seismic profiles used in previous studies. The deeper control of the Compton-Los Alamitos (CLA) and Puente Hills reverse faults based on these wells provides evidence of reverse faulting based on repetition of strata on electric logs, abrupt changes of dipmeter-based attitudes, and offset of events on seismic profiles following Avalon Boulevard and Vermont Avenue. Structure contours on the Puente Hills fault are straightforward, whereas contours on the CLA fault are more complex. The presence of faulting at depth leads to the conclusion that the CLA and Puente Hills reverse faults change upward into fault-propagation folds rather than fault-bend folds. The CLA fault marks the northeastern boundary of a broad anticline, called here the Central Uplift anticline, cut along its crest by the right-lateral strike-slip Potrero fault in the vicinity of our study. Structure contours at depth confirm the observations of others that the CLA fault swings westward and steepens in dip toward the NIFZ south of Inglewood oil field. The presence of reverse- fault-plane solutions along the northern NIFZ and evidence for uplift along the CLA fault east of Long Beach and Seal Beach oil fields during the 1933 Long Beach earthquake support an interpretation of faulting along the Newport- Inglewood trend related to strain partitioning, indicating that the NIFZ might generate a Coalinga-type reverse fault as well as a strike-slip event similar to the 1933 earthquake.
    [Show full text]
  • 2020 SCEC Report Enhancements to the Community Fault Model (CFM
    2020 SCEC Report Enhancements to the Community Fault Model (CFM) and its IT infrastructure to support SCEC science SCEC Award 20081 Principal Investigators: Scott Marshall Professor of Geophysics Dept. of Geological and Environmental Sciences Appalachian State University 572 Rivers St., Boone, NC 28608 [email protected] // (828) 265-8680 John H. Shaw Professor of Structural & Economic Geology Andreas Plesch (Co-Investigator) Senior Research Scientist Harvard University Dept. of Earth and Planetary Sciences 20 Oxford St., Cambridge, MA 02138 [email protected] // (617) 495-8008 Philip Maechling Associate Director for Information Technology Southern California Earthquake Center, University of Southern California 3651 Trousdale Parkway, Suite 169 Los Angeles, California, 90089-0742 Proposal Categories: Data Gathering and Products; Collaborative Proposals SCEC Science Priorities: P3a; P1a; P1b Duration: 1 February 2020 to 31 January 2021 1 1. Summary This past year, we made significant progress in improving SCEC’s Community Fault Model (CFM) and enhancing the recently developed website and associated database that allows users to access and query the model and its associated metadata. The CFM (Plesch et al., 2007) is one of SCEC’s most established and widely used community resources, with applications in many aspects of SCEC science, including crustal deformation modeling, wave propagation simulations, and probabilistic seismic hazards assessment (e.g., UCERF3). The CFM also directly contributes to other community modeling efforts, such as the Geological Framework (GFM), Community Rheologic (CRM), and Community Velocity (CVM-H) Models. This project represents a collaboration between the SCEC CXM co-chair (Marshall), Associate Director for IT (Maechling), CXM software developer (Mei-Hui Su), and the primary Community Fault Model (CFM) developers (Plesch and Shaw).
    [Show full text]