Hepatocyte Growth Factor Signaling Pathway As a Potential Target in Ductal Adenocarcinoma of the Pancreas
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Differential Expression of the CCN Family Members Cyr61, CTGF and Nov in Human Breast Cancer
Endocrine-Related Cancer (2004) 11 781–791 Differential expression of the CCN family members Cyr61, CTGF and Nov in human breast cancer Wen G Jiang, Gareth Watkins, Oystein Fodstad 1, Anthony Douglas-Jones 2, Kefah Mokbel 3 and Robert E Mansel Metastasis & Angiogenesis Research Group, University of Wales College of Medicine, Cardiff University, Cardiff, UK 1Cancer Research Institute, University of South Alabama, Mobile, AL, USA 2Pathology, University of Wales College of Medicine, Cardiff University, Cardiff, UK 3Department of Surgery, St George Hospital, London, UK (Requests for offprints should be addressed to W G Jiang; Email: [email protected]) Abstract The CCN family members cysteine-rich 61 (Cyr61/CCN1), connective tissue growth factor (CTGF/ CCN2) and nephroblastoma over-expressed (Nov/CCN3) play diverse roles in cells, are known to regulate cell growth, adhesion, matrix production and migration and are involved in endocrine- regulated pathways in various cell types. The role of these molecules in cancer remains controversial. In a cohort of 122 human breast tumours (together with 32 normal breast tissues) we have analysed the expression of all three CCN members at the mRNA and protein levels. Significantly higher levels of Cyr61 ðP ¼ 0:02Þ, but low levels of CTGF and Nov, were seen in tumour tissues compared with normal tissues. Significantly raised levels of Cyr61 were associated with poor prognosis ðP ¼ 0:02Þ, nodal involvement ðP ¼ 0:03Þ and metastatic disease ðP ¼ 0:016Þ. Patients who died of breast cancer also had high levels of Cyr61. In contrast, CTGF in patients with poor prognosis ðP ¼ 0:021Þ, metastasis ðP ¼ 0:012Þ, local recurrence ðP ¼ 0:0024Þ and mortality ðP ¼ 0:0072Þ had markedly reduced levels. -
Review Article Receptor Tyrosine Kinases in Kidney Development
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central Hindawi Publishing Corporation Journal of Signal Transduction Volume 2011, Article ID 869281, 10 pages doi:10.1155/2011/869281 Review Article Receptor Tyrosine Kinases in Kidney Development Renfang Song, Samir S. El-Dahr, and Ihor V. Yosypiv Section of Pediatric Nephrology, Department of Pediatrics, Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA Correspondence should be addressed to Ihor V. Yosypiv, [email protected] Received 25 November 2010; Revised 8 January 2011; Accepted 15 January 2011 Academic Editor: Karl Matter Copyright © 2011 Renfang Song et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The kidney plays a fundamental role in the regulation of arterial blood pressure and fluid/electrolyte homeostasis. As congenital anomalies of the kidney and urinary tract (CAKUT) constitute one of the most common human birth defects, improved understanding of the cellular and molecular mechanisms that lead to CAKUT is critical. Accumulating evidence indicates that aberrant signaling via receptor tyrosine kinases (RTKs) is causally linked to CAKUT. Upon activation by their ligands, RTKs dimerize, undergo autophosphorylation on specific tyrosine residues, and interact with adaptor proteins to activate intracellular signal transduction pathways that regulate diverse cell behaviours such as cell proliferation, survival, and movement. Here, we review the current understanding of role of RTKs and their downstream signaling pathways in the pathogenesis of CAKUT. -
Genetic Analysis of the Roles of Hh, FGF8, and Nodal Signaling During Catecholaminergic System Development in the Zebrafish Brain
The Journal of Neuroscience, July 2, 2003 • 23(13):5507–5519 • 5507 Development/Plasticity/Repair Genetic Analysis of the Roles of Hh, FGF8, and Nodal Signaling during Catecholaminergic System Development in the Zebrafish Brain Jochen Holzschuh, Giselbert Hauptmann, and Wolfgang Driever Developmental Biology, Institute Biology 1, University of Freiburg, D-79104 Freiburg, Germany CNS catecholaminergic neurons can be distinguished by their neurotransmitters as dopaminergic or noradrenergic and form in distinct regions at characteristic embryonic stages. This raises the question of whether all catecholaminergic neurons of one transmitter type are specified by the same set of factors. Therefore, we performed genetic analyses to define signaling requirements for the specification of distinct clusters of catecholaminergic neurons in zebrafish. In mutants affecting midbrain–hindbrain boundary (MHB) organizer for- mation, the earliest ventral diencephalic dopaminergic neurons appear normal. However, after2dofdevelopment, we observed fewer cells than in wild types, which suggests that the MHB provides proliferation or survival factors rather than specifying ventral diencephalic dopaminergic clusters. In hedgehog (Hh) pathway mutants, the formation of catecholaminergic neurons is affected only in the pretectal cluster. Surprisingly, neither fibroblast growth factor 8 (FGF8) alone nor in combination with Hh signaling is required for specification of early developing dopaminergic neurons. We analyzed the formation of prosomeric territories in the forebrain of Hh and Nodal pathway mutants to determine whether the absence of specific dopaminergic clusters may be caused by early patterning defects ablating corre- sponding parts of the CNS. In Nodal pathway mutants, ventral diencephalic and pretectal catecholaminergic neurons fail to develop, whereas both anatomical structures form at least in part. -
Epha Receptors and Ephrin-A Ligands Are Upregulated by Monocytic
Mukai et al. BMC Cell Biology (2017) 18:28 DOI 10.1186/s12860-017-0144-x RESEARCHARTICLE Open Access EphA receptors and ephrin-A ligands are upregulated by monocytic differentiation/ maturation and promote cell adhesion and protrusion formation in HL60 monocytes Midori Mukai, Norihiko Suruga, Noritaka Saeki and Kazushige Ogawa* Abstract Background: Eph signaling is known to induce contrasting cell behaviors such as promoting and inhibiting cell adhesion/ spreading by altering F-actin organization and influencing integrin activities. We have previously demonstrated that EphA2 stimulation by ephrin-A1 promotes cell adhesion through interaction with integrins and integrin ligands in two monocyte/ macrophage cell lines. Although mature mononuclear leukocytes express several members of the EphA/ephrin-A subclass, their expression has not been examined in monocytes undergoing during differentiation and maturation. Results: Using RT-PCR, we have shown that EphA2, ephrin-A1, and ephrin-A2 expression was upregulated in murine bone marrow mononuclear cells during monocyte maturation. Moreover, EphA2 and EphA4 expression was induced, and ephrin-A4 expression was upregulated, in a human promyelocytic leukemia cell line, HL60, along with monocyte differentiation toward the classical CD14++CD16− monocyte subset. Using RT-PCR and flow cytometry, we have also shown that expression levels of αL, αM, αX, and β2 integrin subunits were upregulated in HL60 cells along with monocyte differentiation while those of α4, α5, α6, and β1 subunits were unchanged. Using a cell attachment stripe assay, we have shown that stimulation by EphA as well as ephrin-A, likely promoted adhesion to an integrin ligand- coated surface in HL60 monocytes. Moreover, EphA and ephrin-A stimulation likely promoted the formation of protrusions in HL60 monocytes. -
Gene Expression Analysis Identifies Potential Biomarkers of Neurofibromatosis Type 1 Including Adrenomedullin
Published OnlineFirst August 25, 2010; DOI: 10.1158/1078-0432.CCR-10-0613 Clinical Imaging, Diagnosis, Prognosis Cancer Research Gene Expression Analysis Identifies Potential Biomarkers of Neurofibromatosis Type 1 Including Adrenomedullin Trent R. Hummel1, Walter J. Jessen1, Shyra J. Miller1, Lan Kluwe4, Victor F. Mautner4, Margaret R. Wallace5, Conxi Lázaro6, Grier P. Page7, Paul F. Worley8, Bruce J. Aronow2, Elizabeth K. Schorry3, and Nancy Ratner1 Abstract Purpose: Plexiform neurofibromas (pNF) are Schwann cell tumors found in a third of individuals with neurofibromatosis type 1 (NF1). pNF can undergo transformation to malignant peripheral nerve sheath tumors (MPNST). There are no identified serum biomarkers of pNF tumor burden or transformation to MPNST. Serum biomarkers would be useful to verify NF1 diagnosis, monitor tumor burden, and/or detect transformation. Experimental Design: We used microarray gene expression analysis to define 92 genes that encode putative secreted proteins in neurofibroma Schwann cells, neurofibromas, and MPNST. We validated dif- ferential expression by quantitative reverse transcription-PCR, Western blotting, and ELISA assays in cell conditioned medium and control and NF1 patient sera. Results: Of 13 candidate genes evaluated, only adrenomedullin (ADM) was confirmed as differentially expressed and elevated in serum of NF1 patients. ADM protein concentrati on was further elevated in serum of a small sampling of NF1 patients with MPNST. MPNST cell conditioned medium, containing ADM and hepatocyte growth factor, stimulated MPNST migration and endothelial cell proliferation. Conclusions: Thus, microarray analysis identifies potential serum biomarkers for disease, and ADM is a serum biomarker of NF1. ADM serum levels do not seem to correlate with the presence of pNFs but may be a biomarker of transformation to MPNST. -
Different Fgfs Have Distinct Roles in Regulating Neurogenesis After Spinal Cord Injury in Zebrafish Yona Goldshmit1,2, Jean Kitty K
Goldshmit et al. Neural Development (2018) 13:24 https://doi.org/10.1186/s13064-018-0122-9 RESEARCHARTICLE Open Access Different Fgfs have distinct roles in regulating neurogenesis after spinal cord injury in zebrafish Yona Goldshmit1,2, Jean Kitty K. Y. Tang1, Ashley L. Siegel1, Phong D. Nguyen1, Jan Kaslin1, Peter D. Currie1 and Patricia R. Jusuf1,3* Abstract Background: Despite conserved developmental processes and organization of the vertebrate central nervous system, only some vertebrates including zebrafish can efficiently regenerate neural damage including after spinal cord injury. The mammalian spinal cord shows very limited regeneration and neurogenesis, resulting in permanent life-long functional impairment. Therefore, there is an urgent need to identify the cellular and molecular mechanisms that can drive efficient vertebrate neurogenesis following injury. A key pathway implicated in zebrafish neurogenesis is fibroblast growth factor signaling. Methods: In the present study we investigated the roles of distinctfibroblastgrowthfactormembersandtheir receptors in facilitating different aspects of neural development and regeneration at different timepoints following spinal cord injury. After spinal cord injury in adults and during larval development, loss and/or gain of Fgf signaling was combined with immunohistochemistry, in situ hybridization and transgenes marking motor neuron populations in in vivo zebrafish and in vitro mammalian PC12 cell culture models. Results: Fgf3 drives neurogenesis of Islet1 expressing motor neuron subtypes and mediate axonogenesis in cMet expressing motor neuron subtypes. We also demonstrate that the role of Fgf members are not necessarily simple recapitulating development. During development Fgf2, Fgf3 and Fgf8 mediate neurogenesis of Islet1 expressing neurons and neuronal sprouting of both, Islet1 and cMet expressing motor neurons. -
Ephb3 Suppresses Non-Small-Cell Lung Cancer Metastasis Via a PP2A/RACK1/Akt Signalling Complex
ARTICLE Received 7 Nov 2011 | Accepted 11 Jan 2012 | Published 7 Feb 2012 DOI: 10.1038/ncomms1675 EphB3 suppresses non-small-cell lung cancer metastasis via a PP2A/RACK1/Akt signalling complex Guo Li1, Xiao-Dan Ji1, Hong Gao1, Jiang-Sha Zhao1, Jun-Feng Xu1, Zhi-Jian Sun1, Yue-Zhen Deng1, Shuo Shi1, Yu-Xiong Feng1, Yin-Qiu Zhu1, Tao Wang2, Jing-Jing Li1 & Dong Xie1 Eph receptors are implicated in regulating the malignant progression of cancer. Here we find that despite overexpression of EphB3 in human non-small-cell lung cancer, as reported previously, the expression of its cognate ligands, either ephrin-B1 or ephrin-B2, is significantly downregulated, leading to reduced tyrosine phosphorylation of EphB3. Forced activation of EphB3 kinase in EphB3-overexpressing non-small-cell lung cancer cells inhibits cell migratory capability in vitro as well as metastatic seeding in vivo. Furthermore, we identify a novel EphB3-binding protein, the receptor for activated C-kinase 1, which mediates the assembly of a ternary signal complex comprising protein phosphatase 2A, Akt and itself in response to EphB3 activation, leading to reduced Akt phosphorylation and subsequent inhibition of cell migration. Our study reveals a novel tumour-suppressive signalling pathway associated with kinase-activated EphB3 in non-small-cell lung cancer, and provides a potential therapeutic strategy by activating EphB3 signalling, thus inhibiting tumour metastasis. 1 Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of Chinese Academy of Sciences, Shanghai 200031, China. 2 The Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai 200433, China. -
Artificial Liver Support Potential to Retard Regeneration?
REVIEW ARTICLE Artificial Liver Support Potential to Retard Regeneration? Emma J. Mullin, MBChB; Matthew S. Metcalfe, FRCS; Guy J. Maddern, MD Hypothesis: The concept of an “artificial liver” has been growth-promoting factors from these cultured hepato- in development for over 40 years. Such devices aim to cytes? temporarily assume metabolic and excretory functions of the liver, with removal of potentially hepatotoxic sub- Data Sources, Extraction, and Study Selection: stances, thereby clinically stabilizing patients and pre- Data were obtained using PubMed search for reports in- venting deterioration while awaiting transplantation. If volving liver support, extracorporeal circuits, dialysis, sufficient numbers of viable hepatocytes remain, regen- growth factors, and cytokines. Those reports specifi- eration and subsequent recovery of innate liver func- cally looking at the effect of artificial liver support on cy- tion may occur. However, these devices have not yet be- tokines and growth factors are discussed. come part of routine clinical use. Much less is known regarding the effect such devices have, if any, on circu- Conclusions: There is a paucity of information on the lating cytokines and growth factors and the subsequent key events and substances involved in hepatic regenera- effects on the regenerating liver. If these devices remove tion. In addition, there is a potential impact of liver sup- or reduce factors known to promote regeneration, is the port devices on the regeneration of substances associ- rate of regeneration retarded? Conversely, does the in- ated with hepatic regeneration. Further study is needed. corporation of hepatocytes into bioartificial support sys- tems confer an advantage through the production of Arch Surg. -
Mft•] ~;;I~ [I) I~ T?L3 ·Ilr!F·S; [,J ~ M
Mft•] ~;;I~ [I) I~ t?l3 ·ilr!f·S; [,j ~ M Hepatobiliary Imaging Update Maggie Chester and Jerry Glowniak Veterans Affairs Medical Center and Oregon Health Sciences University, Portland, Oregon and the gallbladder ejection fraction (EF) after the injection This is the first article in a four-part series on interventional of cholecystokinin (CCK) (Kinevac®, Squibb Diagnostics, nuclear medicine. Upon completion, the nuclear medicine New Brunswick, NJ). A brief description of the hepatic ex technologist should be able to (1) list the advantages of using traction fraction (HEF) was given; the technique used quan interventional hepatic imaging, (2) identify the benefit in tifies hepatocyte function more accurately than does excretion calculating HEF, and (3) utilize the HEF calculation method when appropriate. half-time. Since publication of the previous article (5), the HEF has become more widely used as a measure of hepatocyte function, and nearly all the major nuclear medicine software vendors include programs for calculating the HEF. Scintigraphic assessment of hepatobiliary function began in In this article, we will describe new observations and meth the 1950s with the introduction of iodine-131 C31 1) Rose ods used in hepatobiliary imaging. The following topics will bengal (1). Due to the poor imaging characteristics of 1311, be discussed: ( 1) the use of morphine as an aid in the diagnosis numerous attempts were made to find a technetium-99m 99 of acute cholecystitis, (2) the rim sign in the diagnosis of acute ( mTc) labeled hepatobiliary agent (2). The most useful of cholecystitis, and (3) methods for calculating the HEF. the several 99mTc-labeled agents that were investigated were the iminodiacetic acid (IDA) analogs, which were introduced MORPHINE-AUGMENTED CHOLESCINTIGRAPHY in the mid 1970s (3). -
Fgf8b Oncogene Mediates Proliferation and Invasion of Epstein–Barr Virus-Associated Nasopharyngeal Carcinoma Cells: Implication for Viral-Mediated Fgf8b Upregulation
Oncogene (2011) 30, 1518–1530 & 2011 Macmillan Publishers Limited All rights reserved 0950-9232/11 www.nature.com/onc ORIGINAL ARTICLE FGF8b oncogene mediates proliferation and invasion of Epstein–Barr virus-associated nasopharyngeal carcinoma cells: implication for viral-mediated FGF8b upregulation VWY Lui1,7, DM-S Yau1,7, CS-F Cheung1, SCC Wong1, AK-C Chan2, Q Zhou1, EY-L Wong1, CPY Lau1, EKY Lam1, EP Hui1, B Hong1, CWC Hui1, AS-K Chan1, PKS Ng3, Y-K Ng4, K-W Lo5, CM Tsang6, SKW Tsui3, S-W Tsao6 and ATC Chan1 1State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer, Department of Clinical Oncology, Chinese University of Hong Kong, Hong Kong; 2Department of Pathology, Queen Elizabeth Hospital, Hong Kong; 3School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong; 4Department of Surgery, Chinese University of Hong Kong, Hong Kong; 5Department of Anatomical and Cellular Pathology, Chinese University of Hong Kong, Hong Kong and 6Department of Anatomy, University of Hong Kong, Hong Kong The fibroblast growth factor 8b (FGF8b) oncogene is identified LMP1 as the first viral oncogene capable of known to be primarily involved in the tumorigenesis and directly inducing FGF8b (an important cellular oncogene) progression of hormone-related cancers. Its role in other expression in human cancer cells. This novel mechanism of epithelial cancers has not been investigated, except for viral-mediated FGF8 upregulation may implicate a new esophageal cancer, in which FGF8b overexpression was role of oncoviruses in human carcinogenesis. mainly found in tumor biopsies of male patients. These Oncogene (2011) 30, 1518–1530; doi:10.1038/onc.2010.529; observations were consistent with previous findings in published online 29 November 2010 these cancer types that the male sex-hormone androgen is responsible for FGF8b expression. -
Suppression of Hepatocyte CYP1A2 Expression by Kupffer Cells Via Ahr Pathway: the Central Role of Proinflammatory Cytokines
339-346 29/6/06 12:40 Page 339 INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 18: 339-346, 2006 339 Suppression of hepatocyte CYP1A2 expression by Kupffer cells via AhR pathway: The central role of proinflammatory cytokines RONGQIAN WU1, XIAOXUAN CUI1, WEIFENG DONG1, MIAN ZHOU1, H. HANK SIMMS2 and PING WANG1 1Department of Surgery, North Shore University Hospital and Long Island Jewish Medical Center, Manhasset, NY 11030, USA Received February 6, 2006; Accepted March 23, 2006 Abstract. The hepatic cytochrome P-450 (CYP) enzyme such downregulation. Inhibition of proinflammatory cytokines system provides a major aspect of liver function, yet alterations by curcumin may provide a novel approach to modulate the of CYP in sepsis remain largely unknown. Although we have hepatic CYP function in sepsis. recently shown that CYP1A2, one of the major isoforms of CYP in rats, is downregulated in sepsis, the underlying mech- Introduction anism and possible therapeutic approaches warrant further investigation. The aim of this study was to determine whether Sepsis is the leading cause of death in non-cardiac intensive Kupffer cells (KCs) play any role in suppressing CYP1A2 in care units with >210,000 people succumbing to overwhelming the hepatocytes (HCs) and if so, how to modulate CYP1A2 infection (or the resultant multiple organ failure) in the US expression in sepsis. To study this, primary KCs and HCs annually (1). Although experimental studies using cell and were cultured separately or together with or without transwells. animal models have greatly improved our understanding of Cells and supernatant samples were collected after various the pathophysiology of sepsis, there remains a remarkable stimulations. -
Hepatic Toxicity
Hepatic Toxicity MSc in Molecular Pathology and Toxicology 2001 Andy Smith MRC Toxicology Unit THE LIVER • The liver constitutes about 5% of the body mass of a rodent or human. • It has many functions eg. Carbohydrate storage and metabolism Synthesis of fibrinogen and albumin etc. Fat metabolism Synthesis of bile acids Metabolism of hormones Formation of urea from amino acids • Blood supply is about 20% arterial-80% venous. • May contain 10-15% of blood volume INFLUENCE OF TOXIC CHEMICALS ON THE LIVER • The liver is the most common site of damage in laboratory animals administered drugs and other chemicals. There are many reasons including the fact that the liver is the first major organ to be exposed to ingested chemicals due to its portal blood supply. • Although chemicals are delivered to the liver to be metabolized and excreted, this can frequently lead to activation and liver injury. • Study of the liver has been and continues to be important in understanding fundamental molecular mechanisms of toxicity as well as in assessment of risks to humans. VENA CAVA HEPATIC VEIN LIVER HEPATIC PORTAL VEIN BILE DUCT SMALL AND LARGE INTESTINE LOBULE PORTAL VEIN BLOOD FLOW HEPATIC ARTERY III I BILE FLOW BILE DUCT CENTRAL VEIN PORTAL TRIAD TYPES OF LIVER CELLS Hepatocytes- Not all the same; depends on lobular site Zone I Higher in respiratory enzymes (periportal) Zone III Higher in cytochrome P450 (centrilobular) Endothelial cells Bile duct cells Oval cells- Possibly stem cells Kupffer cells- Phagocytic cells Important role in inflammation Ito cells- Fat storing or stellate cells TYPES OF HEPATIC INJURY OR RESPONSES Each of the different cell types may respond to a toxic insult.