(12) Patent Application Publication (10) Pub. No.: US 2017/0020892 A1 Thompson Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. No.: US 2017/0020892 A1 Thompson Et Al US 20170020892A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2017/0020892 A1 Thompson et al. (43) Pub. Date: Jan. 26, 2017 (54) USE OF NEGATIVE MODULATORS OF Related U.S. Application Data GABA RECEPTORS CONTAINING ALPHAS SUBUNITS AS FAST ACTING (60) Provisional application No. 61/972,446, filed on Mar. ANTDEPRESSANTS 31, 2014. (71) Applicant: University of Maryland, Baltimore, Publication Classification Baltimore, MD (US) (51) Int. Cl. A 6LX 3/557 (2006.01) (72) Inventors: Scott Thompson, Baltimore, MD (US); A6II 3/53 (2006.01) Mark D. Kvarta, Ellicott City, MD A6II 45/06 (2006.01) (US); Adam Van Dyke, Baltimore, MD (52) U.S. Cl. (US) CPC ........... A61 K3I/55.17 (2013.01); A61K 45/06 (2013.01); A61 K3I/53 (2013.01) (73) Assignee: University of Maryland, Baltimore, Baltimore, MD (US) (57) ABSTRACT Embodiments of the disclosure include methods and com (21) Appl. No.: 15/300,984 positions related to treatment of one or more medical conditions with one or more negative modulators of GABA (22) PCT Filed: Mar. 31, 2015 receptors. In specific embodiments, depression and/or Sui cidability is treated or ameliorated or prevented with one or (86) PCT No.: PCT/US2O15/023667 more negative modulators of GABA receptors, such as a S 371 (c)(1), partial inverse agonist of a GABA receptor comprising an (2) Date: Sep. 30, 2016 alpha5 subunit. Patent Application Publication Jan. 26, 2017. Sheet 1 of 12 US 2017/002O892 A1 ×1/ /|\ Patent Application Publication Jan. 26, 2017. Sheet 3 of 12 US 2017/002O892 A1 & Patent Application Publication Jan. 26, 2017. Sheet 4 of 12 US 2017/002O892 A1 Patent Application Publication Jan. 26, 2017. Sheet 5 of 12 US 2017/002O892 A1 SuÐquunOOB‘NSnduueOOdd|H Patent Application Publication Jan. 26, 2017. Sheet 6 of 12 US 2017/002O892 A1 an O O L CO OO O O N Ha ?m 3LO (O - CD H -- o . CO : CD d O 8 as ? D O O O O O O O O Od OO N CO O s (e.O. 9%) eoueuegeld eSOJOnS 16 > s O O N- CO O CD H. : . ?h : (O : : H ? CO O O O O O O OO CO s CN O OO Ole uOOeuelu Patent Application Publication Jan. 26, 2017. Sheet 7 of 12 US 2017/002O892 A1 Patent Application Publication Jan. 26, 2017. Sheet 8 of 12 US 2017/002O892 A1 oC) O N OO h g S CO : C -CO LOr Q cpLO - CD -- H. : ce CD .C. as D -- OO C ofCD a 9) O C Cld 9 F L C23 9. C CS ? O O O O O c5 O O O OO N. CO O r : r H. : n- bO). CO %) eoueuegeld( eSOJOnS Patent Application Publication Jan. 26, 2017. Sheet 9 of 12 US 2017/002O892 A1 OOZ 00|| Ollel uOOeueueoOS eOueuepeud eSOJOnS 00||00|| O O eouelejeud eSOJOnS Patent Application Publication Jan. 26, 2017. Sheet 10 of 12 US 2017/002O892 A1 s Patent Application Publication Jan. 26, 2017. Sheet 11 of 12 US 2017/0020892 A1 c CN y oo co N. c. o CD ch r O O O O e eAeuel Oud peZeuON aa V V 9 Patent Application Publication Jan. 26, 2017. Sheet 12 of 12 US 2017/0020892 A1 O CD of) of) 9) C CD N D O CD CD D -- L CO D O CD . d5 of) (s ? O O O O O O 2 OO CO s CN euOZ uOOeuelu u eu 9% CD O CD 2 D O C CN g V N 9 :r . CD ? O O O OO euOZ uOOeuelu u eu 9% US 2017/002O892 A1 Jan. 26, 2017 USE OF NEGATIVE MODULATORS OF conditions. In particular embodiments, the one or more GABA RECEPTORS CONTAINING ALPHAS medical conditions includes depression and similar condi SUBUNITS AS FAST ACTING tions. The condition may be of any kind, but in specific ANTIDEPRESSANTS embodiments the condition being treated is major depression and/or Suicidality. In specific embodiments, treatment of the CROSS-REFERENCE TO RELATED medical condition occurs at a more rapid rate than currently APPLICATIONS known treatments and has fewer deleterious side effects. In specific embodiments, the medical condition is a depression 0001. This application claims priority to U.S. Provisional related disorder; an anxiety-related disorder, an attention Patent Application No. 61/972,446, filed on Mar. 31, 2014, related disorder; a psychosis-related disorder; an eating which is incorporated by reference herein in its entirety. disorder; a personality disorder, cognitive impairment, including that follows traumatic brain injury (TBI) or that is STATEMENT REGARDING FEDERALLY non-TBI cognitive impairment; neuropathic pain; chronic SPONSORED RESEARCH OR DEVELOPMENT muscle or bone pain; diabetic complications resulting in 0002 This invention was made with government support nerve injury; generalized attack of muscular weakness; under Grant Number MH086828 awarded by the National recurring sleep episodes during the day; migraine; addiction; Institutes of Health. The government has certain rights in the or a combination thereof. invention. 0008 Embodiments of the present disclosure relate to a method for treating or ameliorating depression and/or Sui TECHNICAL FIELD cidality in a human Subject comprising administering to the 0003 Embodiments of the disclosure are related at least subject a therapeutically effective amount of a modulator of to the fields of cell biology, molecular biology, biochemistry, a GABA receptor. Although any modulator of a GABA neurology, psychiatry, pharmacology, psychology, and receptor that ameliorates a medical condition as described medicine. In specific embodiments, the disclosure relates to herein, in a specific embodiment the modulator is a negative methods for treating or ameliorating depression and/or Sui modulator of the receptor. In specific embodiments, the cidality in a Subject by administering one or more modula modulator is a negative allosteric modulator of GABA tors of the GABA receptor that can produce a rapid anti receptors containing an alpha5 subunit. depressant action. 0009 Specific embodiments of the disclosure concern the use of negative allosteric modulators of alpha5 subunit BACKGROUND containing GABA receptors as fast-acting antidepressants to address depression and/or reduce Suicidality. In specific 0004. There is a need to identify new drugs that can be embodiments, fast-acting as used herein is defined as the used to treat depressive disorders and reduce the incidence onset of therapeutic effects being within hours to days of suicide on a worldwide basis. Selective serotonin compared to current therapies that take days to weeks to reuptake inhibitors (SSRIs) are often the first line of treat months. ment, but many patients do not respond to these medications 0010. In particular embodiments, any and all drugs that and prolonged treatment (several weeks or months) is often are negative allosteric modulators of alpha5 subunit-con required to achieve therapeutic improvement. taining GABA receptors (including inverse agonists at the 0005. The GABA receptor is an ionotropic receptor and benzodiazepine binding site of GABA receptors containing ligand gated ion channel. Its endogenous ligand is gamma alpha5 Subunits) will produce a rapid antidepressant action aminobutyric acid (GABA), the major inhibitory neurotrans and will produce a rapid decrease in depression and/or mitter in the central nervous system. The primary activation Suicidality in patients Suffering from major depression or in site of the GABA receptor is the binding site for GABA and patients suffering from depression that are not suicidal. several drugs, such as muscimol, gaboXadol, and bicucul Because alpha5-containing GABA receptors are narrowly line. A second binding site is the so-called “benzodiazepine expressed in the hippocampus and cortex, and because in at receptor’ site. Drugs binding at this site can promote or least some embodiments the Substances are weak inverse impair the ability of GABA to activate the GABA receptor. agonists, in certain embodiments they have a significantly GABA receptors occur in all organisms with a central greater therapeutic potential than current treatments. nervous system. Because of their wide distribution within 0011. In one embodiment the present disclosure relates to the nervous system of mammals, they play a role in virtually a method for treating or ameliorating depression and/or all brain functions. Suicidality in a human Subject comprising administering to 0006 Ketamine, a recognized antagonist of the NMDA the Subject a therapeutically effective amount of a negative type glutamate receptor, has demonstrated fast-acting anti allosteric modulator of the GABA receptor, and in some depressant properties. However, ketamine is recognized to embodiments the modulator is administered orally, intrad have potent psychotomimetic effects and the mechanism of ermally, intramuscularly, intraperitonealy, intravenously, via action of ketamine remains uncertain. Thus, there is a clear insufflation, or in a dermal patch. clinical need for the identification of other fast-acting anti 0012. The present disclosure relates to a method for depressants for depression and Suicidality that have treating or ameliorating depression and/or Suicidality in a enhanced pharmacokinetic properties and that can yield human Subject comprising administering to the Subject a more robust responses with less negative side effects. therapeutically effective amount of a negative allosteric BRIEF SUMMARY modulator of the alpha5 subunit of the GABA receptor and in some embodiments the modulator is administered orally 0007 Embodiments of the disclosure concern methods intradermally, intramuscularly, intraperitonealy, intrave and compositions for the treatment of one or more medical nously, via insufllation, or in a dermal patch. US 2017/002O892 A1 Jan. 26, 2017 0013. In another embodiment the present disclosure stimulants, anti-glucocorticoids, antagonists of NMDA-type relates to a method for treating or ameliorating depression glutamate receptors, tricylic antidepressants (TCAS), and and/or Suicidality in a human Subject comprising adminis combinations thereof. tering to the subject a therapeutically effective amount of 0019.
Recommended publications
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 De Juan Et Al
    US 200601 10428A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 de Juan et al. (43) Pub. Date: May 25, 2006 (54) METHODS AND DEVICES FOR THE Publication Classification TREATMENT OF OCULAR CONDITIONS (51) Int. Cl. (76) Inventors: Eugene de Juan, LaCanada, CA (US); A6F 2/00 (2006.01) Signe E. Varner, Los Angeles, CA (52) U.S. Cl. .............................................................. 424/427 (US); Laurie R. Lawin, New Brighton, MN (US) (57) ABSTRACT Correspondence Address: Featured is a method for instilling one or more bioactive SCOTT PRIBNOW agents into ocular tissue within an eye of a patient for the Kagan Binder, PLLC treatment of an ocular condition, the method comprising Suite 200 concurrently using at least two of the following bioactive 221 Main Street North agent delivery methods (A)-(C): Stillwater, MN 55082 (US) (A) implanting a Sustained release delivery device com (21) Appl. No.: 11/175,850 prising one or more bioactive agents in a posterior region of the eye so that it delivers the one or more (22) Filed: Jul. 5, 2005 bioactive agents into the vitreous humor of the eye; (B) instilling (e.g., injecting or implanting) one or more Related U.S. Application Data bioactive agents Subretinally; and (60) Provisional application No. 60/585,236, filed on Jul. (C) instilling (e.g., injecting or delivering by ocular ion 2, 2004. Provisional application No. 60/669,701, filed tophoresis) one or more bioactive agents into the Vit on Apr. 8, 2005. reous humor of the eye. Patent Application Publication May 25, 2006 Sheet 1 of 22 US 2006/0110428A1 R 2 2 C.6 Fig.
    [Show full text]
  • An Investigation Into Pro-Apoptotic Targets in Experimental Glaucoma and the Neuroprotective Effects of Ginkgo Biloba in Retinal Ganglion Cells
    An investigation into pro-apoptotic targets in experimental glaucoma and the neuroprotective effects of Ginkgo biloba in retinal ganglion cells Abeir Baltmr MB ChB, FRCS (Glasg) A thesis submitted to University College London for the degree of Doctor of Medicine (Research) 2012 Glaucoma and Retinal Neurodegeneration Research Group Visual Neuroscience Institute of Ophthalmology 1 Declaration I, Abeir Baltmr, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Abeir Baltmr 2 Abstract Ginkgo biloba has been advocated as a neuroprotective agent for several years in glaucoma. In this study, immunohistochemistry was used to identify known potential molecular targets of Ginkgo biloba related to retinal ganglion cell (RGC) apoptosis in experimental glaucoma, including amyloid precursor protein (APP), Aß, cytochrome c, caspase-3 and tumor necrosis factor receptor-1 (TNF-R1). Furthermore, using apoptotic inducers related to mechanisms implicated in glaucoma, namely Dimethyl sulphoxide (DMSO), ultraviolet C (UVC) and Sodium Azide (NaN3), the effects of the terpenoid fraction of Ginkgo biloba (Ginkgolide A, Ginkgolide B and Bilobalide) were investigated separately in cultured retinal ganglion cells (RGC-5). Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay and morphological analysis of DMSO treated RGC-5 was performed using Hoechst 33342 stain. Immunohistochemistry showed a strong inverse correlation between Aß and APP in ocular hypertension (OHT) animals, with APP and Aß accumulation peaking at 1 and 12 weeks after intraocular pressure (IOP) elevation respectively. Cytochrome c and TNF-R1 expression peaked at 3 weeks, and active caspase 3 activity at 12 weeks after IOP elevation.
    [Show full text]
  • Ginkgolide B Increases Hydrogen Sulfide and Protects Against Endothelial Dysfunction in Diabetic Rats
    4 DISEASE-RELATED CHANGES IN BLOOD VESSELS Croat Med J. 2015;56:4-13 doi: 10.3325/cmj.2015.56.4 Ginkgolide B increases Guo-Guang Wang1*, Qing- Ying Chen2*, Wei Li1, Xiao- hydrogen sulfide and protects Hua Lu1, Xue Zhao1 1Department of Pathophysiology, against endothelial dysfunction Wannan Medical College, Wuhu, in diabetic rats People’s Republic of China 2General Hospital of Jinan Military Command, Jinan, People’s Republic of China *Contributed equally to the study. Aim To evaluate the effect of ginkgolide B treatment on vascular endothelial function in diabetic rats. Methods The study included four groups with 15 male Sprague-Dawley rats: control group; control group treat- ed with ginkgolide B; diabetic group; and diabetic treat- ed with ginkgolide B. The activity of superoxide dismutase (SOD), malondialdehyde content, and nicotinamide ade- nine dinucleotide phosphate (NADPH) oxidase subunits, and glutathione peroxidase 1 (GPX1) protein expression were determined in aortic tissues. Vasoconstriction to phe- nylephrine (PHE) and vasorelaxation to acetylcholine (Ach) and sodium nitroprusside (SNP) were assessed in aortic rings. Nitric oxide (NO) and hydrogen sulfide (H2S) were measured, as well as cystathionine γ lyase (CSE) and cys- tathionine β synthetase (CBS) protein expression, and en- dothelial nitric oxide synthase (eNOS) activity. Results Diabetes significantly impaired PHE-induced va- soconstriction and Ach-induced vasorelaxation (P < 0.001), reduced NO bioavailability and H2S production (P < 0.001), SOD activity, and GPX1 protein expression (P < 0.001), and increased malondialdehyde content and NADPH oxidase subunits, and CSE and CBS protein expression (P < 0.001). Ginkgolide B treatment improved PHE vasoconstriction and Ach vasorelaxation (P < 0.001), restored SOD (P = 0.005) and eNOS (P < 0.001) activities, H2S production (P = 0.044) and decreased malondialdehyde content (P = 0.014).
    [Show full text]
  • GABA Receptors
    D Reviews • BIOTREND Reviews • BIOTREND Reviews • BIOTREND Reviews • BIOTREND Reviews Review No.7 / 1-2011 GABA receptors Wolfgang Froestl , CNS & Chemistry Expert, AC Immune SA, PSE Building B - EPFL, CH-1015 Lausanne, Phone: +41 21 693 91 43, FAX: +41 21 693 91 20, E-mail: [email protected] GABA Activation of the GABA A receptor leads to an influx of chloride GABA ( -aminobutyric acid; Figure 1) is the most important and ions and to a hyperpolarization of the membrane. 16 subunits with γ most abundant inhibitory neurotransmitter in the mammalian molecular weights between 50 and 65 kD have been identified brain 1,2 , where it was first discovered in 1950 3-5 . It is a small achiral so far, 6 subunits, 3 subunits, 3 subunits, and the , , α β γ δ ε θ molecule with molecular weight of 103 g/mol and high water solu - and subunits 8,9 . π bility. At 25°C one gram of water can dissolve 1.3 grams of GABA. 2 Such a hydrophilic molecule (log P = -2.13, PSA = 63.3 Å ) cannot In the meantime all GABA A receptor binding sites have been eluci - cross the blood brain barrier. It is produced in the brain by decarb- dated in great detail. The GABA site is located at the interface oxylation of L-glutamic acid by the enzyme glutamic acid decarb- between and subunits. Benzodiazepines interact with subunit α β oxylase (GAD, EC 4.1.1.15). It is a neutral amino acid with pK = combinations ( ) ( ) , which is the most abundant combi - 1 α1 2 β2 2 γ2 4.23 and pK = 10.43.
    [Show full text]
  • Mixed Antagonistic Effects of the Ginkgolides at Recombinant Human R1 GABAC Receptors
    Neuropharmacology 63 (2012) 1127e1139 Contents lists available at SciVerse ScienceDirect Neuropharmacology journal homepage: www.elsevier.com/locate/neuropharm Mixed antagonistic effects of the ginkgolides at recombinant human r1 GABAC receptors Shelley H. Huang a, Trevor M. Lewis b, Sarah C.R. Lummis c, Andrew J. Thompson c, Mary Chebib d, Graham A.R. Johnston a, Rujee K. Duke a,* a Discipline of Pharmacology, School of Medical Sciences, Faculty of Medicine, University of Sydney, Australia b School of Medical Sciences, University of New South Wales, Australia c Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom d Faculty of Pharmacy, University of Sydney, Australia article info abstract Article history: The diterpene lactones of Ginkgo biloba, ginkgolides A, B and C are antagonists at a range of Cys-loop Received 11 July 2011 receptors. This study examined the effects of the ginkgolides at recombinant human r1 GABAC recep- Received in revised form tors expressed in Xenopus oocytes using two-electrode voltage clamp. The ginkgolides were moderately 18 June 2012 potent antagonists with IC sinthemM range. At 10 mM, 30 mM and 100 mM, the ginkgolides caused Accepted 24 June 2012 50 rightward shifts of GABA doseeresponse curves and reduced maximal GABA responses, characteristic of noncompetitive antagonists, while the potencies showed a clear dependence on GABA concentration, Keywords: indicating apparent competitive antagonism. This suggests that the ginkgolides exert a mixed-type Ginkgolide Bilobalide antagonism at the r1 GABAC receptors. The ginkgolides did not exhibit any obvious use-dependent Mixed-antagonism inhibition. Fitting of the data to a number of kinetic schemes suggests an allosteric inhibition as Use-dependent a possible mechanism of action of the ginkgolides which accounts for their inhibition of the responses GABAr receptor without channel block or use-dependent inhibition.
    [Show full text]
  • (19) United States (12) Patent Application Publication (10) Pub
    US 20130289061A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0289061 A1 Bhide et al. (43) Pub. Date: Oct. 31, 2013 (54) METHODS AND COMPOSITIONS TO Publication Classi?cation PREVENT ADDICTION (51) Int. Cl. (71) Applicant: The General Hospital Corporation, A61K 31/485 (2006-01) Boston’ MA (Us) A61K 31/4458 (2006.01) (52) U.S. Cl. (72) Inventors: Pradeep G. Bhide; Peabody, MA (US); CPC """"" " A61K31/485 (201301); ‘4161223011? Jmm‘“ Zhu’ Ansm’ MA. (Us); USPC ......... .. 514/282; 514/317; 514/654; 514/618; Thomas J. Spencer; Carhsle; MA (US); 514/279 Joseph Biederman; Brookline; MA (Us) (57) ABSTRACT Disclosed herein is a method of reducing or preventing the development of aversion to a CNS stimulant in a subject (21) App1_ NO_; 13/924,815 comprising; administering a therapeutic amount of the neu rological stimulant and administering an antagonist of the kappa opioid receptor; to thereby reduce or prevent the devel - . opment of aversion to the CNS stimulant in the subject. Also (22) Flled' Jun‘ 24’ 2013 disclosed is a method of reducing or preventing the develop ment of addiction to a CNS stimulant in a subj ect; comprising; _ _ administering the CNS stimulant and administering a mu Related U‘s‘ Apphcatlon Data opioid receptor antagonist to thereby reduce or prevent the (63) Continuation of application NO 13/389,959, ?led on development of addiction to the CNS stimulant in the subject. Apt 27’ 2012’ ?led as application NO_ PCT/US2010/ Also disclosed are pharmaceutical compositions comprising 045486 on Aug' 13 2010' a central nervous system stimulant and an opioid receptor ’ antagonist.
    [Show full text]
  • Total Syntheses of Ginkgolide B
    Total Syntheses of Ginkgolide B O HO O HO O H O t-Bu Me O HO O O H Brooks Maki May 23, 2005 Outline • What? – Background of Ginkgolides • Why? – Points of interest concerning Ginkgolide B • Who? (When?) – Corey’s racemic synthesis (1988) – Corey’s enantioselective synthesis (1988) – Crimmins’ racemic synthesis (2000) • How? – 2 total syntheses – 1 formal synthesis Isolation and Characterization • Ginkgolides A, B, C, and M were isolated from O HO O the root bark of Ginkgo biloba by Furukawa in R2 O H O 1932. t-Bu Me O R1 • Nakanishi and co-workers identified structures R3 of these diterpenes in 1967. O O H Ginkgolide A - R1 = OH, R2 = H, R3 = H Ginkgolide B - R1 = OH, R2 = OH, R3 = H • Also in 1967, Okabe and colleagues published Ginkgolide C - R1 = OH, R2 = OH, R3 = OH X-ray crystallography studies confirming Ginkgolide M - R1 = H, R2 = OH, R3 = OH structure and absolute stereochemistry of the Ginkgolide J - R1 = OH, R2 = H, R3 = OH ginkgolides. H O O O • Bilobalide (in 1971) and Ginkgolide J (in O O 1987) have been discovered as other members OH O t-Bu of the ginkgolide family. H OH Furukawa, S. Sci. Papers Inst. Phys. Chem. Res. Tokyo 1932, 19, 27. Bilobalide Nakanishi, K. Pure Appl. Chem. 1967, 14, 89-113. Sakabe, N.; Takada, S.; Okabe, K. J. Chem. Soc., Chem. Commun. 1967, 259-261 Ginkgo Biloba: The Source • Oldest fossil records from 270 million years ago • Basically unchanged since the Jurassic period. • Extracts known to have medicinal value for nearly 2500 years (China, Japan, and India) • Survived atomic blast at Hiroshima in 1945.
    [Show full text]
  • Beneficial Effects of Ginkgo Biloba Extract on Insulin Signaling Cascade, Dyslipidemia, and Body Adiposity of Diet-Induced Obese Rats
    Brazilian Journal of Medical and Biological Research (2014) 47(9): 780-788, http://dx.doi.org/10.1590/1414-431X20142983 ISSN 1414-431X Beneficial effects of Ginkgo biloba extract on insulin signaling cascade, dyslipidemia, and body adiposity of diet-induced obese rats R.M. Banin1, B.K.S. Hirata1, I.S. Andrade2, J.C.S. Zemdegs2, A.P.G. Clemente4, A.P.S. Dornellas2, V.T. Boldarine2, D. Estadella3, K.T. Albuquerque5, L.M. Oyama2, E.B. Ribeiro2 and M.M. Telles1 1Departamento de Cieˆncias Biolo´gicas, Universidade Federal de Sa˜o Paulo, Diadema, SP, Brasil 2Disciplina de Fisiologia da Nutric¸a˜o, Departamento de Fisiologia, Universidade Federal de Sa˜o Paulo, Sa˜o Paulo, SP, Brasil 3Departamento de Biocieˆncias, Universidade Federal de Sa˜o Paulo, Baixada Santista, SP, Brasil 4Faculdade de Nutric¸a˜o, Universidade Federal de Alagoas, Maceio´, AL, Brasil 5Curso de Nutric¸a˜o, Universidade Federal do Rio de Janeiro, Macae´, RJ, Brasil Abstract Ginkgo biloba extract (GbE) has been indicated as an efficient medicine for the treatment of diabetes mellitus type 2. It remains unclear if its effects are due to an improvement of the insulin signaling cascade, especially in obese subjects. The aim of the present study was to evaluate the effect of GbE on insulin tolerance, food intake, body adiposity, lipid profile, fasting insulin, and muscle levels of insulin receptor substrate 1 (IRS-1), protein tyrosine phosphatase 1B (PTP-1B), and protein kinase B (Akt), as well as Akt phosphorylation, in diet-induced obese rats. Rats were fed with a high-fat diet (HFD) or a normal fat diet (NFD) for 8 weeks.
    [Show full text]
  • Enhanced Dendritic Inhibition and Impaired NMDAR Activation in a Mouse Model of Down Syndrome
    This Accepted Manuscript has not been copyedited and formatted. The final version may differ from this version. Research Articles: Neurobiology of Disease Enhanced dendritic inhibition and impaired NMDAR activation in a mouse model of Down syndrome Jan M. Schulz1, Frederic Knoflach2, Maria-Clemencia Hernandez2 and Josef Bischofberger1 1Department of Biomedicine, University of Basel, Pestalozzistr. 20, CH-4056 Basel, Switzerland 2Pharma Research and Early Development, Discovery Neuroscience Department, F. Hoffmann-La Roche Ltd, Basel, Switzerland https://doi.org/10.1523/JNEUROSCI.2723-18.2019 Received: 22 October 2018 Revised: 9 April 2019 Accepted: 10 April 2019 Published: 18 April 2019 Author contributions: J.M.S., M.C.H., and J.B. designed research; J.M.S. and F.K. performed research; J.M.S. analyzed data; J.M.S. and J.B. wrote the first draft of the paper; J.M.S. and J.B. wrote the paper; F.K., M.C.H., and J.B. edited the paper. Conflict of Interest: The authors declare no competing financial interests. We would like to thank Tom Otis for helpful comments on the manuscript. We thank Selma Becherer and Martine Schwager for mouse genotyping, histochemical stainings and technical assistance, Marie-Claire Pflimlin for some electrophysiological recordings and Andrew Thomas for RO4938581 supply. This work was supported by a Roche Postdoctoral Fellowship and by the Swiss National Science Foundation (SNSF, Project 31003A_176321). The authors declare no competing financial interests. Correspondence: Dr. Josef Bischofberger, Department of Biomedicine, University of Basel, Pestalozzistr. 20, CH-4046 Basel, Switzerland, Phone: +41-61-2672729, E-mail: [email protected] Cite as: J.
    [Show full text]
  • Ion Channels
    UC Davis UC Davis Previously Published Works Title THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. Permalink https://escholarship.org/uc/item/1442g5hg Journal British journal of pharmacology, 176 Suppl 1(S1) ISSN 0007-1188 Authors Alexander, Stephen PH Mathie, Alistair Peters, John A et al. Publication Date 2019-12-01 DOI 10.1111/bph.14749 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology (2019) 176, S142–S228 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels Stephen PH Alexander1 , Alistair Mathie2 ,JohnAPeters3 , Emma L Veale2 , Jörg Striessnig4 , Eamonn Kelly5, Jane F Armstrong6 , Elena Faccenda6 ,SimonDHarding6 ,AdamJPawson6 , Joanna L Sharman6 , Christopher Southan6 , Jamie A Davies6 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 3Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 4Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, A-6020 Innsbruck, Austria 5School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 6Centre for Discovery Brain Science, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties.
    [Show full text]
  • Research Article
    Acta Veterinaria-Beograd 2014, 64 (1), 52-60 UDK: 615.214.32:612.825 DOI: 10.2478/acve-2014-0006 Research article ANTIDEPRESSANT EFFECTS OF AN INVERSE AGONIST SELECTIVE FOR α5 GABA-A RECEPTORS IN THE RAT FORCED SWIM TEST SAMARDŽIĆ Janko1*, PUŠKAŠ Laslo2, OBRADOVIĆ Miljana3, LAZIĆ-PUŠKAŠ Dijana4, OBRADOVIĆ I Dragan1 1Institute of Pharmacology, Clinical Pharmacology and Toxicology, Medical Faculty, University of Belgrade, Dr Subotića 1, Belgrade, Serbia; 2Institute of Anatomy “Niko Miljanić”, Medical Faculty, University of Belgrade, Dr Subotića 4, Belgrade, Serbia; 3Institute of Histology and Embriology, Medical Faculty, University of Belgrade, Višegradska 26, Belgrade, Serbia; 4Clinic for Psychiatric Diseases “Dr Laza Lazarevic”, Belgrade, Serbia and Faculty of Special Education and Rehabilitation, University of Belgrade, Visokog Stevana 5, Belgrade, Serbia (Received 24 December 2013; Accepted 28 January 2014) It has been shown in electrophysiological studies that the ligand L-655,708 possesses a binding selectivity and a moderate inverse agonist functional selectivity for α5-containing GABA-A receptors. The present study is aimed to investigate the antidepressant effects of the ligand L-655,708 in the forced swim test (FST) and its impact on locomotor activity in rats. The behavior of the animals was recorded with a digital camera, and the data were analyzed by one-way ANOVA, followed by Dunnett’s test. In FST, L-655,708 signifi cantly decreased immobility time at a dose of 3 mg/kg after a single and repeated administration (p<0.05), exerting acute and chronic antidepressant effects. However, it did not induce signifi cant differences in the time of struggling behavior during FST.
    [Show full text]
  • Neurochemical and Behavioral Features in Genetic Absence Epilepsy and in Acutely Induced Absence Seizures
    Hindawi Publishing Corporation ISRN Neurology Volume 2013, Article ID 875834, 48 pages http://dx.doi.org/10.1155/2013/875834 Review Article Neurochemical and Behavioral Features in Genetic Absence Epilepsy and in Acutely Induced Absence Seizures A. S. Bazyan1 and G. van Luijtelaar2 1 Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, Russian Federation, 5A Butlerov Street, Moscow 117485, Russia 2 Biological Psychology, Donders Centre for Cognition, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, P.O. Box 9104, 6500 HE Nijmegen, The Netherlands Correspondence should be addressed to G. van Luijtelaar; [email protected] Received 21 January 2013; Accepted 6 February 2013 Academic Editors: R. L. Macdonald, Y. Wang, and E. M. Wassermann Copyright © 2013 A. S. Bazyan and G. van Luijtelaar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The absence epilepsy typical electroencephalographic pattern of sharp spikes and slow waves (SWDs) is considered to be dueto an interaction of an initiation site in the cortex and a resonant circuit in the thalamus. The hyperpolarization-activated cyclic nucleotide-gated cationic Ih pacemaker channels (HCN) play an important role in the enhanced cortical excitability. The role of thalamic HCN in SWD occurrence is less clear. Absence epilepsy in the WAG/Rij strain is accompanied by deficiency of the activity of dopaminergic system, which weakens the formation of an emotional positive state, causes depression-like symptoms, and counteracts learning and memory processes.
    [Show full text]