Generalized Individual Dental Age Stages for Fossil and Extant Placental Mammals

Total Page:16

File Type:pdf, Size:1020Kb

Generalized Individual Dental Age Stages for Fossil and Extant Placental Mammals See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/227336602 Generalized individual dental age stages for fossil and extant placental mammals Article in Paläontologische Zeitschrift · September 2011 DOI: 10.1007/s12542-011-0098-9 CITATIONS READS 32 745 4 authors: Ulrike Anders Wighart Von Koenigswald University of Bonn University of Bonn 7 PUBLICATIONS 94 CITATIONS 162 PUBLICATIONS 2,562 CITATIONS SEE PROFILE SEE PROFILE Irina Ruf B. Holly Smith Senckenberg Research Institute George Washington University 48 PUBLICATIONS 639 CITATIONS 81 PUBLICATIONS 4,307 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Pleistocene faunas View project Microstructure in mammalian enamels View project All content following this page was uploaded by Wighart Von Koenigswald on 17 May 2014. The user has requested enhancement of the downloaded file. Pala¨ontol Z DOI 10.1007/s12542-011-0098-9 RESEARCH PAPER Generalized individual dental age stages for fossil and extant placental mammals Ulrike Anders • Wighart von Koenigswald • Irina Ruf • B. Holly Smith Received: 20 August 2010 / Accepted: 7 February 2011 Ó Springer-Verlag 2011 Abstract The traditional age stages for eutherian mam- vorgeschlagen, das auf dem Zahndurchbruch und der mals (infant, juvenile, adult, senile) can be difficult to Abrasion beruht. Sechs individuelle Altersstadien ‘‘indi- apply in the fossil record. Based on the tooth eruption and vidual dental age stages’’ (IDAS) werden definiert, die das wear of the cheek teeth we propose six ‘‘individual dental breite Spektrum der Placentalia abzudecken vermag. Die age stages’’ (IDAS) that can be applied to almost all fossil IDAS Stadien umfassen dabei die gesamte Lebensspanne and extant mammalian dentitions. The six stages of IDAS und korrelieren mit den neu definierten traditionellen cover the entire life span. Traditional terms can be corre- Bezeichnungen in folgender Weise: IDAS 0—pra¨natal, lated to the IDAS stages and thus redefined based on the IDAS 1—infantil, IDAS 2—juvenil, IDAS 3—adult, IDAS dentition: IDAS 0—prenatal, IDAS 1—infant, IDAS 2— 4—spa¨t adult und IDAS 5—senil. Daru¨ber hinaus erlaubt das juvenile, IDAS 3—adult, IDAS 4—late adult, and IDAS IDAS System, die La¨nge der Entwicklungsphasen ver- 5—senile. Furthermore IDAS enables comparison between schiedener Taxa, bis hin zu Ordnungen zu vergleichen und individuals, characterizing the mortality in monospecific damit zu charakterisieren. Ebenso bietet sich die Mo¨glich- populations, and even of entire communities composed of keit die Altersverteilung in fossilen Populationen fu¨r eine various species. The data obtained can be used for paleo- Art, aber auch fu¨r ganze Vergesellschaftungen in einer ecological interpretations. The varying duration of different Fundstelle zu vergleichen. Damit ero¨ffnet das IDAS-System stages in the IDAS pattern during the life history forms an Wege, Beitra¨ge zu verschiedenen pala¨oo¨kologischen Fragen additional way to characterize mammalian groups by zu liefern. development and wear of their dentition. Schlu¨sselwo¨rter Eutheria Á Altersstadien Á Bezahnung Á Keywords Eutheria Á Age stages Á Dentition Á Attrition Á Pala¨oo¨kologie Dental attrition Á Paleoecology Kurzfassung Altersbestimmungen durch die traditionel- Introduction len Begriffe infantil, juvenil, adult oder senil kann fu¨r fossile Eutheria meist nur bedingt angewendet werden. Deswegen Classification of individual age of fossil and extant euthe- wird hier ein generell anwendbares Alterssystem (IDAS) rian mammals is important for ecological investigations and paleoecological reconstructions. Most aging schemes were established for wildlife management (e.g., Severing- & U. Anders ( ) Á W. von Koenigswald Á I. Ruf haus 1949; Gee et al. 2002) and for the understanding of Steinmann-Institut fu¨r Geologie, Mineralogie und Pala¨ontologie, Rheinische Friedrich-Wilhelms-Universita¨t Bonn, Nussallee 8, mammal populations in terms of life span, mortality, herd 53115 Bonn, Germany growth, and reaction to ecological factors (Severinghaus e-mail: [email protected] 1949; Rausch 1961; Lowe 1967; Morris 1972). The age of single individuals also has particular importance for B. H. Smith Museum of Anthropology, The University of Michigan, forensic identification in modern humans (e.g., Gustafson Ann Arbor, MI 48109-1107, USA 1950; Smith 1992). For the interpretation of fossils, 123 U. Anders et al. individual age can establish the pace of life history (Bro- species aging system for extant species. The great diversity mage and Dean 1985). in the dentition of placental mammals with reduction of The goal of most aging studies is to age the animal in several tooth positions limits the comparability to some years, whether based on fusion of the epiphyses or sutures degree, but slight modifications within the IDAS system in the skeleton (e.g., Brothwell 1972; Driesch 1976; allow including those taxa as well. These deviations from Knußman and Martin 1988;Sa´nchez-Villagra 2010) or size the normal IDAS system are new characteristics for the of horns in bovids and antlers in cervids (e.g., Fuller 1959; various mammalian groups. Finally, we redefine the tra- Chaplin and White 1969; Miura 1985). Others use char- ditional terms ‘‘prenatal’’, ‘‘infant’’, ‘‘juvenile’’, ‘‘adult’’, acters in the dentition, such as tooth eruption and wear ‘‘late adult’’, and ‘‘senile’’ for extant and fossil taxa with (e.g., Nostrand and Stephenson 1964; Gustafson 1950; the IDAS system based on tooth eruption and wear. Lowe 1967; Goddard 1970; Habermehl 1975, 1985; Louguet 2006; Magnell and Carter 2007; Greenfield and Arnold 2008; Munro et al. 2009; Kelley and Schwartz Materials and methods 2010) or the annual cementum layers on roots in teeth (e.g., Adams and Watkins 1967; Linhart and Knowlton 1967; For the definition of the six IDAS stages we use the fol- Reimers and Nordby 1968; Wolfe 1969; Crowe 1972; lowing characters: eruption of the deciduous and perma- Gasaway et al. 1978; Bodkin et al. 1997; Hamlin et al. nent dentition, first wear facets on molars, loss of 2000; Costello et al. 2004; Roksandic et al. 2009). These structured occlusal surface, and breakdown of the denti- age classifications are often very detailed and complex, but tion. Our study is based on a broad survey of placental applicable only to the species on which they are based, e.g., mammalian dentitions. The investigated species are almost Gazella gazella (Munro et al. 2009), Diceros bicornis all undomesticated to minimize possible human impact on (Goddard 1970) or a very close relative (e.g., Adam 1994). life span. For the design of the IDAS stages, but prior to Due to the great differences in maximum life span of testing and comparing the system on different species, mammals, establishing the age of an individual at death, information about tooth eruption and tooth wear was however, tells us little about its stage of life, and is only gathered from a large number of fossil and extant indi- meaningful with reference to some other events within the viduals from various orders (Lagomorpha, Rodentia, Arti- particular species. Even the classical terms juvenile, adult, odactyla, and Carnivora) (Appendix 1). In addition, we and senile may be poorly defined and difficult to compare investigated tooth eruption shortly after birth in serial between different species (see Table 1 below). histological sections of perinatal stages of seven rodent and For paleontological questions especially, the dentition is two lagomorph species (Appendix 1). Available informa- a useful base for aging, since dentitions are well docu- tion from various orders (Rodentia, Chiroptera, Scandentia, mented in the fossil record. Therefore, we propose a gen- Carnivora, Primates, Perissodactyla, Artiodactyla, and eralized system of IDAS (individual dental age stages) that Proboscidea) concerning tooth eruption, tooth wear, and is not based on years but on tooth eruption and tooth wear. life history (weaning, maturity, individual age, and maxi- By defining functional key points in our classification mum life span) were added from literature (Appendix 2). independent of calendar years, we hope to minimize the The resulting data are used to estimate the length of the effect of the great diversity in maximum life span and IDAS stages among different eutherian mammals. We then construct a standard useful to describe an individual or an correlate the duration of the various IDAS stages with assemblage. maximum life span (data from Nowak 1999; Weigl 2005). We are well aware that individual age determination Furthermore, mortality distributions of different fossil based on the IDAS system cannot be as precise as a single populations are identified based on the IDAS system. Table 1 Correlation of the IDAS stages to age determinations of different species to illustrate the transferability of the IDAS system IDAS Common use but Schultz (primates) Knußmann 1988 (humans) Grau et al. 1970 Goddard 1970 rarely defined (racoons) (rhinoceros) 1935 1960 0 Prenatal Fetus 1 Juvenile Infantile Young Infans I, II Class I–VI 2 Juvenile Juvenis Class VII–XI 3 Adult Adult Adult Adultus/matures Class I–III Class XII–XVI 4 Class IV Class XVII–XVIII 5 Senile Old Senilis Class V Class XIX–XX 123 Generalized individual dental age stages for fossil and extant placental mammals Lastly, as an example for the mortality in a complex fossil • IDAS 2 (juvenile) covers the period from the first facets site, we construct
Recommended publications
  • The Ossicular Chain of Cainotheriidae (Mammalia, Artiodactyla)
    Dataset 3D models related to the publication: The ossicular chain of Cainotheriidae (Mammalia, Artiodactyla) Assemat Alexandre1, Mourlam Mickael¨ 1, Orliac Maeva¨ J1* 1Institut des Sciences de l’Evolution´ de Montpellier (UMR 5554, CNRS, UM, IRD, EPHE), c.c. 064, Universite´ de Montpellier, place Eugene` Bataillon, F-34095 Montpellier Cedex 05, France *Corresponding author: [email protected] Abstract This contribution includes the 3D models of the reconstructed ossicular chain of the cainotheriid Caenomeryx filholi from the late Oligocene locality of Pech Desse (MP28, Quercy, France) described and figured in the publication of Assemat et al. (2020). It represents the oldest ossicular chain reconstruction for a Paleogene terrestrial artiodactyl species. Keywords: Caenomeryx, incus, Late Oligocene, malleus, Stapes Submitted:2020-03-09, published online:2020-04-08. https://doi.org/10.18563/journal.m3.110 INTRODUCTION Model IDs Taxon Description UMPDS3353 Caenomeryx filholi middle ear with The 3D models presented here represent the first reconstruction petrosal, bulla, of a Paleogene terrestrial artiodactyl ossicular chain (see table stapes, incus, 1 and fig.1). It is based on ossicles preserved in the middle malleus ear cavity of the basicranium UM PDS 3353 from Pech Desse Table 1. Model. Collection: University of Montpellier. (MP 28, Quercy) referred to the cainotheriid Caenomeryx fil- holi. Cainotheriidae are an extinct family of small European en- Desse exceptionally preserves a complete set of ossicles: the demic artiodactyls (even-toed ungulates) documented between malleus and the stapes are preserved within the left bullar space, the Late Eocene and the Middle Miocene in Western Europe while the malleus and the incus are preserved on the right side.
    [Show full text]
  • Chapter 1 - Introduction
    EURASIAN MIDDLE AND LATE MIOCENE HOMINOID PALEOBIOGEOGRAPHY AND THE GEOGRAPHIC ORIGINS OF THE HOMININAE by Mariam C. Nargolwalla A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Anthropology University of Toronto © Copyright by M. Nargolwalla (2009) Eurasian Middle and Late Miocene Hominoid Paleobiogeography and the Geographic Origins of the Homininae Mariam C. Nargolwalla Doctor of Philosophy Department of Anthropology University of Toronto 2009 Abstract The origin and diversification of great apes and humans is among the most researched and debated series of events in the evolutionary history of the Primates. A fundamental part of understanding these events involves reconstructing paleoenvironmental and paleogeographic patterns in the Eurasian Miocene; a time period and geographic expanse rich in evidence of lineage origins and dispersals of numerous mammalian lineages, including apes. Traditionally, the geographic origin of the African ape and human lineage is considered to have occurred in Africa, however, an alternative hypothesis favouring a Eurasian origin has been proposed. This hypothesis suggests that that after an initial dispersal from Africa to Eurasia at ~17Ma and subsequent radiation from Spain to China, fossil apes disperse back to Africa at least once and found the African ape and human lineage in the late Miocene. The purpose of this study is to test the Eurasian origin hypothesis through the analysis of spatial and temporal patterns of distribution, in situ evolution, interprovincial and intercontinental dispersals of Eurasian terrestrial mammals in response to environmental factors. Using the NOW and Paleobiology databases, together with data collected through survey and excavation of middle and late Miocene vertebrate localities in Hungary and Romania, taphonomic bias and sampling completeness of Eurasian faunas are assessed.
    [Show full text]
  • Functional Morphology of the Vertebral Column in Remingtonocetus (Mammalia, Cetacea) and the Evolution of Aquatic Locomotion in Early Archaeocetes
    Functional Morphology of the Vertebral Column in Remingtonocetus (Mammalia, Cetacea) and the Evolution of Aquatic Locomotion in Early Archaeocetes by Ryan Matthew Bebej A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Ecology and Evolutionary Biology) in The University of Michigan 2011 Doctoral Committee: Professor Philip D. Gingerich, Co-Chair Professor Philip Myers, Co-Chair Professor Daniel C. Fisher Professor Paul W. Webb © Ryan Matthew Bebej 2011 To my wonderful wife Melissa, for her infinite love and support ii Acknowledgments First, I would like to thank each of my committee members. I will be forever grateful to my primary mentor, Philip D. Gingerich, for providing me the opportunity of a lifetime, studying the very organisms that sparked my interest in evolution and paleontology in the first place. His encouragement, patience, instruction, and advice have been instrumental in my development as a scholar, and his dedication to his craft has instilled in me the importance of doing careful and solid research. I am extremely grateful to Philip Myers, who graciously consented to be my co-advisor and co-chair early in my career and guided me through some of the most stressful aspects of life as a Ph.D. student (e.g., preliminary examinations). I also thank Paul W. Webb, for his novel thoughts about living in and moving through water, and Daniel C. Fisher, for his insights into functional morphology, 3D modeling, and mammalian paleobiology. My research was almost entirely predicated on cetacean fossils collected through a collaboration of the University of Michigan and the Geological Survey of Pakistan before my arrival in Ann Arbor.
    [Show full text]
  • Phylogenetic Relationships and Evolutionary History of the Dental Pattern of Cainotheriidae
    Palaeontologia Electronica palaeo-electronica.org A new Cainotherioidea (Mammalia, Artiodactyla) from Palembert (Quercy, SW France): Phylogenetic relationships and evolutionary history of the dental pattern of Cainotheriidae Romain Weppe, Cécile Blondel, Monique Vianey-Liaud, Thierry Pélissié, and Maëva Judith Orliac ABSTRACT Cainotheriidae are small artiodactyls restricted to Western Europe deposits from the late Eocene to the middle Miocene. From their first occurrence in the fossil record, cainotheriids show a highly derived molar morphology compared to other endemic European artiodactyls, called the “Cainotherium plan”, and the modalities of the emer- gence of this family are still poorly understood. Cainotherioid dental material from the Quercy area (Palembert, France; MP18-MP19) is described in this work and referred to Oxacron courtoisii and to a new “cainotherioid” species. The latter shows an intermedi- ate morphology between the “robiacinid” and the “derived cainotheriid” types. This allows for a better understanding of the evolution of the dental pattern of cainotheriids, and identifies the enlargement and lingual migration of the paraconule of the upper molars as a key driver. A phylogenetic analysis, based on dental characters, retrieves the new taxon as the sister group to the clade including Cainotheriinae and Oxacron- inae. The new taxon represents the earliest offshoot of Cainotheriidae. Romain Weppe. Institut des Sciences de l’Évolution de Montpellier, Université de Montpellier, CNRS, IRD, EPHE, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France. [email protected] Cécile Blondel. Laboratoire Paléontologie Évolution Paléoécosystèmes Paléoprimatologie: UMR 7262, Bât. B35 TSA 51106, 6 rue M. Brunet, 86073 Poitiers Cedex 9, France. [email protected] Monique Vianey-Liaud.
    [Show full text]
  • Transition of Eocene Whales from Land to Sea: Evidence from Bone Microstructure
    RESEARCH ARTICLE Transition of Eocene Whales from Land to Sea: Evidence from Bone Microstructure Alexandra Houssaye1,2*, Paul Tafforeau3, Christian de Muizon4, Philip D. Gingerich5 1 UMR 7179 CNRS/Muséum National d’Histoire Naturelle, Département Ecologie et Gestion de la Biodiversité, Paris, France, 2 Steinmann Institut für Geologie, Paläontologie und Mineralogie, Universität Bonn, Bonn, Germany, 3 European Synchrotron Radiation Facility, Grenoble, France, 4 Sorbonne Universités, CR2P—CNRS, MNHN, UPMC-Paris 6, Département Histoire de la Terre, Muséum National d’Histoire Naturelle, Paris, France, 5 Department of Earth and Environmental Sciences and Museum of Paleontology, University of Michigan, Ann Arbor, Michigan, United States of America a11111 * [email protected] Abstract Cetacea are secondarily aquatic amniotes that underwent their land-to-sea transition during OPEN ACCESS the Eocene. Primitive forms, called archaeocetes, include five families with distinct degrees Citation: Houssaye A, Tafforeau P, de Muizon C, of adaptation to an aquatic life, swimming mode and abilities that remain difficult to estimate. Gingerich PD (2015) Transition of Eocene Whales The lifestyle of early cetaceans is investigated by analysis of microanatomical features in from Land to Sea: Evidence from Bone postcranial elements of archaeocetes. We document the internal structure of long bones, Microstructure. PLoS ONE 10(2): e0118409. ribs and vertebrae in fifteen specimens belonging to the three more derived archaeocete doi:10.1371/journal.pone.0118409 families — Remingtonocetidae, Protocetidae, and Basilosauridae — using microtomogra- Academic Editor: Brian Lee Beatty, New York phy and virtual thin-sectioning. This enables us to discuss the osseous specializations ob- Institute of Technology College of Osteopathic Medicine, UNITED STATES served in these taxa and to comment on their possible swimming behavior.
    [Show full text]
  • Terrestrial Palaeoecosystems of Large Mammals from the Early Oligocene to the Early Miocene: Biodiversity, Biogeochemistry and Biotic/Abiotic Events
    4th Swiss Geoscience Meeting, Bern 2006 Terrestrial palaeoecosystems of large mammals from the Early Oligocene to the Early Miocene: biodiversity, biogeochemistry and biotic/abiotic events. Becker, D., *Scherler, L. & *Berger, J.-P. Section d’archéologie et paléontologie, République et Canton du Jura, Office de la culture, Hôtel des Halles, Case postale 64, 2900 Porrentruy 2, Switzerland *Département de Géosciences, Géologie et Paléontologie, Université de Fribourg, 6 chemin du Musée, 1700 Fribourg, Switzerland The global European climate is subjected to severe climatic changes between the Early Oligocene and the Early Miocene. While the Late Eocene was characterized by a tropical climate, an aridification linked to an increase of the seasonal contrasts can be observed in the Early Rupelian (Oligocene), after the “Grande Coupure” event at the Eocene/Oligocene boundary. From the Late Rupelian to the Chattian, the humidity increases and the climate is quite stable, just showing a slight decrease in temperature. In the latest Oligocene, the still rather warm and wet conditions evolve rapidly to a colder and drier climate, leading to the Oligocene/Miocene climatic crisis (Berger 1990, 1992). In the Aquitanian (Early Miocene), the climate again becomes warm and humid, and remains stable during the Burdigalian. According to Becker (2003), it seems that the temperature increases quickly whilst the humidity rises progressively until the Proboscidean Datum (Early/Middle Miocene boundary). All these changes influence the faunal and floral evolution. The European large mammal biodiversity testifies important modifications. For example, some ungulates show changes in their body mass, probably linked to environmental changes. The climatic stress during the Oligocene and the Early Miocene leads to changes in the diversity of the perissodactyls and artiodactyls.
    [Show full text]
  • The Walking Whales
    The Walking Whales From Land to Water in Eight Million Years J. G. M. “Hans” Thewissen with illustrations by Jacqueline Dillard university of california press The Walking Whales The Walking Whales From Land to Water in Eight Million Years J. G. M. “Hans” Thewissen with illustrations by Jacqueline Dillard university of california press University of California Press, one of the most distinguished university presses in the United States, enriches lives around the world by advancing scholarship in the humanities, social sciences, and natural sciences. Its activities are supported by the UC Press Foundation and by philanthropic contributions from individuals and institutions. For more information, visit www.ucpress.edu. University of California Press Oakland, California © 2014 by The Regents of the University of California Library of Congress Cataloging-in-Publication Data Thewissen, J. G. M., author. The walking whales : from land to water in eight million years / J.G.M. Thewissen ; with illustrations by Jacqueline Dillard. pages cm Includes bibliographical references and index. isbn 978-0-520-27706-9 (cloth : alk. paper)— isbn 978-0-520-95941-5 (e-book) 1. Whales, Fossil—Pakistan. 2. Whales, Fossil—India. 3. Whales—Evolution. 4. Paleontology—Pakistan. 5. Paleontology—India. I. Title. QE882.C5T484 2015 569′.5—dc23 2014003531 Printed in China 23 22 21 20 19 18 17 16 15 14 10 9 8 7 6 5 4 3 2 1 The paper used in this publication meets the minimum requirements of ansi/niso z39.48–1992 (r 2002) (Permanence of Paper). Cover illustration (clockwise from top right): Basilosaurus, Ambulocetus, Indohyus, Pakicetus, and Kutchicetus.
    [Show full text]
  • Title Postcranial Materials of Pondaung Mammals (Middle
    Postcranial materials of Pondaung mammals (middle Eocene, Title Myanmar) Egi, Naoko; Tsubamoto, Takehisa; Nishimura, Takeshi; Author(s) Shigehara, Nobuo Citation Asian paleoprimatology (2006), 4: 111-136 Issue Date 2006 URL http://hdl.handle.net/2433/199767 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University Asian Paleoprimatology, vol. 4:111-136 (2006) Kyoto University Primate Research Institute Postcranial materials of Pondaung mammals (middle Eocene, Myanmar) Naoko Egli' (2),Takehisa Tsubamoto2' (3),Takeshi Nishimura', and Nobuo Shigehara 2'(4) 'Laboratory of Physical Anthropology , Department of Zoology, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan 2Primate Research Institute , Kyoto University, Inuyama, Aichi 484-8506, Japan 3Centerfor Paleobiological Research , Hayashibara Biochemical Laboratories, Inc., 1-2-3 Shimoishii, Okayama 700-0907, Japan 4EnvironmentalArchaeology Section , Center for Archaeological Operations, Independent Administrative Institution, National Research Institute for Cultural Properties, Nara, Nara-shi 630-8577, Japan Parentheses indicate present addresses. Abstract Diversity of the Pondaung mammalian fauna (middle Eocene Myanmar) has been explored based on the dental materials. In this paper, we provided photos of skeletal materials of a rodent, carnivores, artiodactyls, and perissodactyls. Postcranial morphology of the endemic Pondaung mammals are compared with those of related fossil species from North America and Europe, revealing additional postcranial diversity
    [Show full text]
  • Paginas 1 a 6 Paginas 1
    Estudio de Cainotherium (Artiodactyla, Mammalia) del Mioceno Medio de Alameda de Osuna (provincia de Madrid) Study of Cainotherium (Artiodactyla, Mammalia) from the Middle Miocene of Alameda de Osuna (province of Madrid) Alejandra Alarcón1 & M. Ángeles Álvarez-Sierra2 ALARCÓN, A. & ÁLVAREZ-SIERRA, M.A. 2009. Estudio de Cainotherium (Artiodactila, Mammalia) del Mioceno Medio de Alameda de Osuna (provincia de Madrid). Coloquios de Palaeontología, 59: 29-59. Resumen: Se estudian y describen 130 restos dentales aislados, un fragmento de maxilar y cuatro fragmentos hemi- mandibulares de Cainotherium de un nuevo yacimiento, Alameda de Osuna, del Aragoniense medio de la Cuenca de Madrid. El estudio realizado ha permitido determinar la presencia de una especie de Cainotherium de talla pequeña que se cita por primera vez en el registro español, Cainotherium cf. huerzeleri HEIZMANN, 1983 y correlacionar este nivel con los yacimientos del área urbana de Madrid pertenecientes a la MN5 (zona local D). Palabras clave: Cainotherium, Artiodactyla, Mammalia, Neógeno, Mioceno medio, Aragoniense medio, Cuenca de Madrid. Abstract: 130 isolated dental remains, one maxilar and four mandibular portions of Cainotherium have been described and studied from Alameda de Osuna, Middle Aragonian of the Madrid Basin. This study has allowed to confirm the presence of one small size Cainotherium specie cited for the first time in the Spanish record, Cainotherium cf. huerzeleri. Alameda de Osuna has been correlated to other Madrid sites belonging to the MN5 (local zone D). Key words: Cainotherium, Artiodactyla, Mammalia, Neogene, Middle Miocene, Middle Aragonian, Madrid Basin. INTRODUCCIÓN Francia (BRAVARD, 1835; POMEL, 1846; 1853; FILHOL, 1877; 1879; VIRET, 1929; ROMAN & VIRET, 1934; HÜRZELER, 1936; BAUDELOT & Cainotherium BRAVARD, 1828 es un artio- CROUZEL, 1974; GINSBURG et al., 2000; dáctilo de tamaño muy pequeño, endémico de BERTHET, 2003), Alemania (BERGER, 1959; Europa Occidental (Península Ibérica, HEIZMANN, 1983) y Suiza (VON MEYER, 1837).
    [Show full text]
  • Evolution of Mammals Classifying Mammals
    Outline 20: Evolution of Mammals Classifying Mammals • Paleontologists recognize at least 5 major groups of mammals. Only 3 are still living: –Monotremes: lay eggs –Marsupials: poorly developed at birth –Eutherians or Placentals: well developed at birth 5 Major Groups: 3 Living Defining Mammals • Warm blooded • Fur • Milk glands • Can lay eggs or have some form of live birth. Recognizing Fossil Mammals • Our definition of mammals doesn’t work with fossil bones. • How do we recognize the first mammals? –Reptiles have 3 bones in lower jaw. –Mammals have 1 bone in lower jaw –Mammal teeth are specialized. Dinosaurs have 3 bones in lower jaw 2 3 1 Mammals have 1 bone in lower jaw Hadrocodium, a lower Jurassic mammal with a “large” brain (6 mm brain case in an 8 mm skull) Eomaia, oldest placental mammal, 125 my old, Lower Cretaceous, China Eomaia, oldest placental mammal, 125 my old, Lower Cretaceous, China Eomaia Mammal fossil from the Cretaceous of Mongolia Jaw bones • Reptiles have 3 bones in their jaw: dentary, articular, and quadrate. • Articular and quadrate bones of reptile jaw became the hammer and anvil bones of the mammalian inner ear. • Marsupials are born with a reptilian jaw, which quickly changes before they eat solid food. = articular of = quadrate of Human Ear Bones, or lower reptile upper reptile Auditory Ossicles jaw jaw Cochlea Mammal Teeth • Teeth make excellent fossils. • Reptile ancestors had simple, cone- shaped teeth they regularly replaced. • Mammal teeth are specialized into incisors, canines, pre-molars and molars. • Mammals have only two sets of teeth during their lifetime. A Nile crocodile.
    [Show full text]
  • Abstract Volume 7Th Swiss Geoscience Meeting Neuchâtel, 20Th – 21St November 2009
    Abstract Volume 7th Swiss Geoscience Meeting Neuchâtel, 20th – 21st November 2009 6. Darwin, Evolution and Palaeontology 198 6. Darwin, Evolution and Palaeontology Lionel Cavin Schweizerische Paläontologische Gesellschaft (SPG/SPS), Kommission der Schweizerischen Paläontologischen Abhandlungen (KSPA), Swiss Commission of Palaeontology Award 6.1 Becker D., Berger J.-P., Hiard F., Menkveld-Gfeller U., Mennecart B. & Scherler L.: Late Aquitanian mammals from the Engehalde locality (Bern, Switzerland) 6.2 Brühwiler T., Bucher H., Goudemand N., Ware D., Hermann E.: Smithian ammonoids (Early Triassic): explosive evolu- tionary radiation following the Permian/Triassic mass extinction 6.3 Buffetaut, E.: Darwinian dinosaurs : missing links or evolutionary failures ? Symposium 6: Darwin, Evolution and Palaeontology 6.4 Girault F. E. & Thierstein H. R.: Diatom assemblage turnover in the NW-Pacific at the 2.73 Ma climate transition 6.5 Girault F. E., Weller A. F. & Thierstein H. R.: Neogene global cooling: diatom size variability in a changing ocean 6.6 Goudemand N., Orchard M., Tafforeau P., Urdy S., Brühwiler T., Bucher H., Brayard A., Galfetti T., Monnet C., Lebrun R. & Zollikofer C.: Paleobiology of Early Triassic conodonts: implications of newly discovered fused clusters imaged by X-ray synchrotron microtomography 6.7 Klug C., Kröger B., Kiessling W., Mullins G.L., Servais T., Frýda J., Korn D. & Turner S.: The Devonian Nekton Revolution 6.8 Klug C., Schulz H. & De Baets K.: Red trilobites with green eyes from the Devonian of Morocco 6.9 Klug C., Schweigert G., Fuchs D. & Dietl G.: First record of a belemnite preserved with beaks, arms and ink sac from the Nusplingen Lithographic Limestone (Kimmeridgian, SW Germany) 6.10 Lavoyer T., Bertrand Y.
    [Show full text]
  • Protocetid Cetaceans (Mammalia) from the Eocene of India
    Palaeontologia Electronica palaeo-electronica.org Protocetid cetaceans (Mammalia) from the Eocene of India Sunil Bajpai and J.G.M. Thewissen ABSTRACT Protocetid cetaceans were first described from the Eocene of India in 1975, but many more specimens have been discovered since then and are described here. All specimens are from District Kutch in the State of Gujarat and were recovered in depos- its approximately 42 million years old. Valid species described in the past include Indocetus ramani, Babiacetus indicus and B. mishrai. We here describe new material for Indocetus, including lower teeth and deciduous premolars. We also describe two new genera and species: Kharodacetus sahnii and Dhedacetus hyaeni. Kharodacetus is mostly based on a very well preserved rostrum and mandibles with teeth, and Dhe- dacetus is based on a partial skull with vertebral column. The Kutch protocetid fauna differs from the protocetid fauna of the Pakistani Sulaiman Range, possibly because the latter is partly older, and/or because it samples a different environment, being located on the trailing edge of the Indian Plate, directly exposed to the Indian Ocean. Sunil Bajpai. Department of Earth Sciences, Indian Institute of Technology, Roorkee 247667, Uttarakhand, India. Current address: Birbal Sahni Institute of Palaeobotany, Lucknow 226007, Uttar Pradesh, India. [email protected]; [email protected]. J.G.M. Thewissen (corresponding author). Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio 44272, U.S.A. [email protected]. Keywords: Eocene; Mammalia; Cetacea; India; New species; New genus INTRODUCTION 1998, 2000; Thewissen and Hussain, 1998) and many specimens of the remingtonocetine genera The earliest cetaceans, pakicetids and ambu- Remingtonocetus (Bajpai et al., 2011), Dalanistes locetids are only known from the Eocene of India (Thewissen and Bajpai, 2001) and the andrewsi- and Pakistan (reviewed by Thewissen et al., 2009).
    [Show full text]