Effects of Macroalgal Hosts on the Growth and Epiphytic Behavior

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Macroalgal Hosts on the Growth and Epiphytic Behavior EFFECTS OF MACROALGAL HOSTS ON THE GROWTH AND EPIPHYTIC BEHAVIOR OF FIVE GAMBIERDISCUS SPECIES FROM THE GREATER CARIBBEAN REGION A Thesis Presented to The Faculty of the College of Arts and Sciences Florida Gulf Coast University In Partial Fulfillment Of the Requirement for the Degree of Master of Science By Lacey Kay Rains 2015 APPROVAL SHEET This thesis is submitted in partial fulfillment of the requirements for the degree of Master of Science ________________________________ Lacey Kay Rains Approved: ________________________________ Michael Parsons, Ph.D. Committee Chair / Advisor ________________________________ Ai Ning Loh, Ph.D. ________________________________ Mindy Richlen, Ph.D. The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. i ACKNOWLEDGMENTS I would like to thank my major advisor Dr. Michael Parsons for his continuous support and inspiration throughout my entire time as a graduate student at FGCU. His guidance, expertise, and continued confidence in my abilities throughout my research and writing process were invaluable. Thanks to his support and friendship, along with the various travel and field opportunities he provided, I could not imagine a better experience as a graduate student than mine was. I would also like to thank my committee members, Dr. Ai Ning Loh and Dr. Mindy Richlen, for their insight and support during my writing process, as well as the commitment to be a part of my work, even from long distances. Both Alex Leynse and Ashley Brandt played a large role in my research experiences, as we all began on this ciguatera journey, alongside Mike, together (as team Firecrest). Both above and below the water, they both were a tremendous help with every aspect of my lab work and field collections, and they always made the trips to the Florida Keys enjoyable, even under some of the coldest and windiest conditions. The support, encouragement, and friendship of so many other graduate students have gotten me to this point. Rheannon Ketover was helpful in too many ways to mention, and Laura Markley was invaluable for her help with culturing over the years. The friendship and guidance from both Lesli Haynes and Erin Rasnake over the past 15 years has played a large role in where I am today. I would like to recognize the ECOHAB funding grant for making my research possible, as it funded the field work that allowed for field collections that were vital for my research. ii Finally, I owe my largest thanks to my Mom and Dad, who have always supported me enormously in my educational journey. My Dad provided with a great sense of adventure and love for the outdoors and the water that has led me to where I am today, and I could not be more thankful for that. Thank you to my entire family and my husband for their continued support and encouragement in everything that I do. iii ABSTRACT Ciguatera fish poisoning is caused by toxins produced by dinoflagellates of the genus Gambierdiscus. This genus has recently been revised and new research on the physiology and ecology of the revised species is needed. While it has been demonstrated that Gambierdiscus spp. are predominately epiphytic, there is also evidence that they are conditional, not obligate, epiphytes and that not all algae hosts are preferred equally by Gambierdiscus populations. This experiment exposed five Caribbean species of Gambierdiscus to living conditions among 8 different species of macroalgal hosts, and their epiphytic behavior (attachment vs. non-attachment) and growth were monitored over 29 days. Additionally, the experiment was carried out under two separate nutrient conditions, ambient versus enriched Florida Keys seawater. Results demonstrate variable responses in epiphytic behavior within the Gambierdiscus genus to different macroalgal hosts, and stimulation and/or inhibition of Gambierdiscus growth by different macroalgal hosts. Attachment data indicate that Gambierdiscus populations prefer attachment to hosts that have a filamentous structure, but those species did not always support high cell abundances. Certain algal host species appear to stimulate growth of some Gambierdiscus species while others seem to inhibit the growth of other species. Control treatments (no host) reveal that some Gambierdiscus reached higher cell abundances without the presence of any host algae, suggesting inhibition by the hosts. No overall attachment preference was observed among Rhodophytes, Chlorophytes, and Phaeophytes, and no phyla stimulated growth or cell abundance more than the others. There was also no difference in attachment to hosts that were nutrient- enriched versus those that were not. The variability of growth responses and attachment iv behavior to different hosts by the various Gambierdiscus species in this experiment add complexity to our understanding of the epiphytic nature of Gambierdiscus and the dynamics of blooms. v TABLE OF CONTENTS Acknowledgments ............................................................................................................... i Abstract ............................................................................................................................. iii Table of Contents ...............................................................................................................v List of Tables ................................................................................................................... vi List of Figures .................................................................................................................. vii Chapter 1: General Introduction .................................................................................1 Chapter 2: Macroalgal host effects on the growth and epiphytic behavior of Gambierdiscus ..........................................................................................17 Introduction ...................................................................................18 Research Purpose ..........................................................................22 Methods .........................................................................................23 Results ...........................................................................................27 Discussion .....................................................................................42 Chapter 3: Ambient vs. enriched host nutrient condition effects on the growth and epiphytic behavior of Gambierdiscus ..............................................57 Introduction ...................................................................................58 Research Purpose ..........................................................................62 Methods .........................................................................................63 Results ...........................................................................................67 Discussion .....................................................................................86 Chapter 4: Overall discussion ....................................................................................90 References .......................................................................................................................105 Appendices ......................................................................................................................119 vi LIST OF TABLES Chapter 2 Table 2-1 Description of host algae used in experiments ..........................................24 Table 2-2 Growth rates of the various Gambierdiscus species for each of the host treatments. .................................................................................................30 Table 2-3 Abundance (# of cells at end of experiment, averaged across triplicates) of the various Gambierdiscus species for each of the host treatments ...........34 Table 2-4 Average attachment, growth, and abundance data for each Gambierdiscus, with the host that supported the highest attachment .................................34 Table 2-5 Average attachment (% of total cells that were attached to host, averaged across triplicates and throughout entirety of experiment) of the various Gambierdiscus species for each of the host treatments .............................37 Table 2-6 Averaged (by triplicate) attachment, cell abundance, and growth rate data is categorized for each of the host treatments ..................................................39 Table 2-7 Percent biomass changes for each host algae, averaged across all treatments ...................................................................................................41 Chapter 3 Table 3-1 Average growth rate values for all ambient and enriched treatments .......74 Table 3-2 Average percent attached cells for all ambient and enriched treatments ...80 Table 3-3 Average growth rate and cell attachment data for cluster groups ........ 81-81 Table 3-4 Cluster groupings ranked from highest values to lowest values, for both growth rate and average attachment percentages .......................................83 vii LIST OF FIGURES Chapter 2 Figure 2-1 Well plates used for experiments ...............................................................26 Figure 2-2 Gambierdiscus cells attached to host .........................................................27 Figure 2-3 Abundance (# of cells, averaged across triplicates) of the
Recommended publications
  • Development of a Quantitative PCR Assay for the Detection And
    bioRxiv preprint doi: https://doi.org/10.1101/544247; this version posted February 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Development of a quantitative PCR assay for the detection and enumeration of a potentially ciguatoxin-producing dinoflagellate, Gambierdiscus lapillus (Gonyaulacales, Dinophyceae). Key words:Ciguatera fish poisoning, Gambierdiscus lapillus, Quantitative PCR assay, Great Barrier Reef Kretzschmar, A.L.1,2, Verma, A.1, Kohli, G.S.1,3, Murray, S.A.1 1Climate Change Cluster (C3), University of Technology Sydney, Ultimo, 2007 NSW, Australia 2ithree institute (i3), University of Technology Sydney, Ultimo, 2007 NSW, Australia, [email protected] 3Alfred Wegener-Institut Helmholtz-Zentrum fr Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany Abstract Ciguatera fish poisoning is an illness contracted through the ingestion of seafood containing ciguatoxins. It is prevalent in tropical regions worldwide, including in Australia. Ciguatoxins are produced by some species of Gambierdiscus. Therefore, screening of Gambierdiscus species identification through quantitative PCR (qPCR), along with the determination of species toxicity, can be useful in monitoring potential ciguatera risk in these regions. In Australia, the identity, distribution and abundance of ciguatoxin producing Gambierdiscus spp. is largely unknown. In this study we developed a rapid qPCR assay to quantify the presence and abundance of Gambierdiscus lapillus, a likely ciguatoxic species. We assessed the specificity and efficiency of the qPCR assay. The assay was tested on 25 environmental samples from the Heron Island reef in the southern Great Barrier Reef, a ciguatera endemic region, in triplicate to determine the presence and patchiness of these species across samples from Chnoospora sp., Padina sp.
    [Show full text]
  • Key Factors Influencing the Occurrence and Frequency of Ciguatera
    ResearchOnline@JCU This file is part of the following work: Sparrow, Leanne (2017) Key factors influencing the occurrence and frequency of ciguatera. PhD Thesis, James Cook University. Access to this file is available from: https://doi.org/10.25903/5d48bba175630 Copyright © 2017 Leanne Sparrow. The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owners of any third party copyright material included in this document. If you believe that this is not the case, please email [email protected] SPARROW, LEANNE B.Arts – Town Planning B.Sc – Marine Biology; M.App.Sc – Phycology KEY FACTORS INFLUENCING THE OCCURRENCE AND FREQUENCY OF CIGUATERA Doctor of Philosophy College of Science and Engineering James Cook University Submitted: 30 July 2017 Acknowledgements The production of this thesis is the end of a long and challenging journey. While I have endured numerous challenges, I have also gained so much more in experiences along the way – there have been so many wonderful people that I had the fortune to meet through tutoring, work and research. Firstly, I would like to acknowledge my supervisors for their support and contributions to experimental design and editorial advice. In particular I would like to thank Kirsten Heimann, apart from her intellectual guidance and support, she has provided emotional, financial, mentoring and friendship over the years prior and during this research – thank you. I would also like to thank Garry Russ and Leone Bielig for the guidance and the supportive chats that kept me sane towards the end. Out in the field the support and interest of the then managers, Kylie and Rob at Orpheus Island Research Station was greatly appreciated.
    [Show full text]
  • Further Advance of Gambierdiscus Species in the Canary Islands, with the First Report of Gambierdiscus Belizeanus
    toxins Article Further Advance of Gambierdiscus Species in the Canary Islands, with the First Report of Gambierdiscus belizeanus Àngels Tudó 1, Greta Gaiani 1, Maria Rey Varela 1 , Takeshi Tsumuraya 2 , Karl B. Andree 1, Margarita Fernández-Tejedor 1 ,Mònica Campàs 1 and Jorge Diogène 1,* 1 Institut de Recerca i Tecnologies Agroalimentàries (IRTA), Ctra. Poble Nou Km 5.5, Sant Carles de la Ràpita, 43540 Tarragona, Spain; [email protected] (À.T.); [email protected] (G.G.); [email protected] (M.R.V.); [email protected] (K.B.A.); [email protected] (M.F.-T.); [email protected] (M.C.) 2 Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Osaka 599-8570, Japan; [email protected] * Correspondence: [email protected] Received: 22 September 2020; Accepted: 27 October 2020; Published: 31 October 2020 Abstract: Ciguatera Poisoning (CP) is a human food-borne poisoning that has been known since ancient times to be found mainly in tropical and subtropical areas, which occurs when fish or very rarely invertebrates contaminated with ciguatoxins (CTXs) are consumed. The genus of marine benthic dinoflagellates Gambierdiscus produces CTX precursors. The presence of Gambierdiscus species in a region is one indicator of CP risk. The Canary Islands (North Eastern Atlantic Ocean) is an area where CP cases have been reported since 2004. In the present study, samplings for Gambierdiscus cells were conducted in this area during 2016 and 2017. Gambierdiscus cells were isolated and identified as G. australes, G. excentricus, G. caribaeus, and G.
    [Show full text]
  • Molecular Identification of Gambierdiscus and Fukuyoa
    marine drugs Short Note Molecular Identification of Gambierdiscus and Fukuyoa (Dinophyceae) from Environmental Samples Kirsty F. Smith 1,*, Laura Biessy 1, Phoebe A. Argyle 1,2, Tom Trnski 3, Tuikolongahau Halafihi 4 and Lesley L. Rhodes 1 1 Coastal & Freshwater Group, Cawthron Institute, Private Bag 2, 98 Halifax Street East, Nelson 7042, New Zealand; [email protected] (L.B.); [email protected] (P.A.A.); [email protected] (L.L.R.) 2 School of Biological Sciences, University of Canterbury, Private Bag 4800, 20 Kirkwood Avenue, Christchurch 8041, New Zealand 3 Auckland War Memorial Museum, Private Bag 92018, Victoria Street West, Auckland 1142, New Zealand; [email protected] 4 Ministry of Fisheries, P.O. Box 871, Nuku’alofa, Tongatapu, Tonga; [email protected] * Correspondence: [email protected]; Tel.: +64-3-548-2319 Received: 30 March 2017; Accepted: 28 July 2017; Published: 2 August 2017 Abstract: Ciguatera Fish Poisoning (CFP) is increasing across the Pacific and the distribution of the causative dinoflagellates appears to be expanding. Subtle differences in thecal plate morphology are used to distinguish dinoflagellate species, which are difficult to determine using light microscopy. For these reasons we sought to develop a Quantitative PCR assay that would detect all species from both Gambierdiscus and Fukuyoa genera in order to rapidly screen environmental samples for potentially toxic species. Additionally, a specific assay for F. paulensis was developed as this species is of concern in New Zealand coastal waters. Using the assays we analyzed 31 samples from three locations around New Zealand and the Kingdom of Tonga.
    [Show full text]
  • Effects of Grazing, Nutrients, and Depth on the Ciguatera-Causing Dinoflagellate Gambierdiscus in the US Virgin Islands
    Vol. 531: 91–104, 2015 MARINE ECOLOGY PROGRESS SERIES Published July 2 doi: 10.3354/meps11310 Mar Ecol Prog Ser Effects of grazing, nutrients, and depth on the ciguatera-causing dinoflagellate Gambierdiscus in the US Virgin Islands Christopher R. Loeffler1,3,*, Mindy L. Richlen2, Marilyn E. Brandt1, Tyler B. Smith1 1Center for Marine and Environmental Studies, University of the Virgin Islands, 2 John Brewers Bay, St Thomas, US Virgin Islands 00802, USA 2Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA 3Present address: Center for Seafood Safety, Gulf Coast Seafood Laboratory, Office of Food Safety, CFSAN US Food and Drug Administration, 1 Iberville Drive, Dauphin Island, AL 36528, USA ABSTRACT: Ciguatera fish poisoning in humans is a serious and widespread syndrome associated with the consumption of reef fishes that have accumulated lipid-soluble toxins known as cigua - toxins. These toxins are piscine metabolites of ciguatoxin precursors produced by benthic dino - flagellates in the genus Gambierdiscus. This investigation employed a novel experimental approach to identify and characterize the environmental factors and their interactions that influence the dynamic balance between cellular growth and loss of Gambierdiscus populations in situ. Field studies were conducted in St. Thomas (US Virgin Islands) at 3 sites and 2 depths (10 and 20 m). At each site and depth, Gambierdiscus was subjected to treatments designed to reduce grazing pres- sure (disturbance and removal) and elevate nutrient availability to elicit a population abundance response attributable to one of these treatments. We hypothesized that Gambierdiscus abundance would respond positively to increased nutrient availability, increasing depth (reduced water motion), and decreased grazing pressures.
    [Show full text]
  • Ciguatera in Florida Keys Patch Reefs: Biogeographic
    CIGUATERA IN FLORIDA KEYS PATCH REEFS: BIOGEOGRAPHIC INDICATORS OF GAMBIERDISCUS DENSITY AND TEMPORAL ABUNDANCE (CFP:BIG DATA) A Thesis Presented to The Faculty of the College of Arts and Sciences Florida Gulf Coast University In Partial Fulfillment of the Requirement for the Degree of Master of Science By Meghan Elizabeth Hian 2018 APPROVAL SHEET This thesis is submitted in partial fulfillment of the requirements for the degree of Master of Science Meghan Elizabeth Hian Approved: Dr. Michael Parsons Committee Chair / Advisor Dr. Michael Savarese Dr. S. Gregory Tolley The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. ABSTRACT Ciguatera fish poisoning (CFP) is a global public health concern that is associated with Gambierdiscus, a genus of harmful algae found in coral reef environments that includes species known to produce toxins (ciguatoxins). Outbreaks of CFP have often been linked to elevated abundance of Gambierdiscus cells and disturbance-related degradation of coral reefs. However, the influence of human activities on CFP risk, both directly and indirectly within the broader context of reef health, has yet to be defined for highly exploited patch reefs in the Florida Keys. The objectives of this study were to define spatial and temporal patterns in reef health and Gambierdiscus abundance across the three regions (Upper, Middle, Lower), to determine whether the drivers of those patterns were natural or anthropogenic, and to identify biogeographic indicators of risk. To address these objectives, this study combined field sampling with a “big data” approach to spatial analysis.
    [Show full text]
  • Grazing Dynamics of the Pinfish (Lagodon Rhomboides) on Thalassia Testudinum and Halimeda Incrassata Across a Temperature Gradie
    Grazing dynamics of the pinfish (Lagodon rhomboides) on Thalassia testudinum and Halimeda incrassata across a temperature gradient in the Florida Keys and implications for Ciguatera Fish Poisoning A Thesis Presented to The Faculty of the College of Arts and Sciences Florida Gulf Coast University In Partial Fulfilment of the Requirement for the Degree of Master of Science By Kathryn Alissa Ribble 2019 i Florida Gulf Coast University Thesis APPROVAL SHEET This thesis is submitted in partial fulfillment of the requirements for the degree of Master of Science Kathryn Alissa Ribble Approved: December 2, 2019 ___________________________ Michael Parsons, Ph.D., Advisor ___________________________ James Douglass, Ph.D., Committee Member ___________________________ Brian Bovard, Ph.D., Committee Member The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above-mentioned discipline. ii ACKNOWLEDGMENTS Writing these acknowledgments allows me the time to reflect on the knowledge and experience I have gained from pursuing my Master of Science degree. When I started this program, I was unaware of how immense some of the challenges and opportunities would be that came from attending graduate school. I have learned just how much effort goes into completing a masters degree and how willing people are to help you pursue your endeavors. Through hard work and with the support of many others I was able to successfully earn my Masters of Science degree! I would first like to thank my advisor Dr. Mike Parsons who initially gave me a job in his lab years ago and ultimately inspired me to get my masters degree.
    [Show full text]
  • The Occurrence of the Ciguatera Fish Poisoning Producing Dinoflagellate Genusgambierdiscus in Pakistan Waters
    Research Article Algae 2011, 26(4): 317-325 http://dx.doi.org/10.4490/algae.2011.26.4.317 Open Access The occurrence of the ciguatera fish poisoning producing dinoflagellate genus Gambierdiscus in Pakistan waters Sonia Munir1,*, P. J. A. Siddiqui1 and Steve L. Morton2 1Centre of Excellence in Marine Biology, University of Karachi, Karachi 75270, Pakistan 2National Oceanic Atmospheric and Administration, Marine Biotoxins Program, 219 Fort Johnson Road, Charleston, SC 29412, USA Five benthic species of the genus Gambierdiscus (Dinophyceae) were observed for the first time in the coastal waters of Pakistan, Northern Indian Ocean. The morphology of the epiphytic, ciguatera-related toxic species G. toxicus, G. belizea- nus, G. polynesiensis, G. australes and G. cf. yasumotoi are presented here, described by the Kofoid system of thecal plates Po, 3΄, 7˝, 6c, 8s, 5˝΄, 1p, 2˝˝ with differences in cell shape, cell size, plates, pores around the apical pore plate by using light and scanning electron microscopy. The occurrence of these potentially toxic dinoflagellate species in Pakistani coastal areas of Manora Channel and Balochistan during high temperatures of 28-32ºC is cause of concern for human health impacts from ciguatera fish poisoning. Key Words: ciguatera fish poisoning; Dinophyceae;Gambierdiscus ; Northern Indian Ocean; Pakistan INTRODUCTION The primary causative agent of ciguatera fish poison- Buenconsejo-Lum 2001). Worldwide an estimated 50,000 ing (CFP) are nonplanktonic dinoflagellates of the genus people suffer every year from cigutera toxicity (Ragelis Gambierdiscus (Dinophyceae). The type species is G. toxi- 1984, Anderson et al. 2000). cus Adachi et Fukuyo 1979, an armored, unicellular, pho- Species level description are very difficult for anteri- tosynthetic and toxic dinoflagellate species distributed posterior compressed dinoflagellate cells such as G.
    [Show full text]
  • Download (Accessed on 20 July 2021)
    toxins Review Critical Review and Conceptual and Quantitative Models for the Transfer and Depuration of Ciguatoxins in Fishes Michael J. Holmes 1, Bill Venables 2 and Richard J. Lewis 3,* 1 Queensland Department of Environment and Science, Brisbane 4102, Australia; [email protected] 2 CSIRO Data61, Brisbane 4102, Australia; [email protected] 3 Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia * Correspondence: [email protected] Abstract: We review and develop conceptual models for the bio-transfer of ciguatoxins in food chains for Platypus Bay and the Great Barrier Reef on the east coast of Australia. Platypus Bay is unique in repeatedly producing ciguateric fishes in Australia, with ciguatoxins produced by benthic dinoflagellates (Gambierdiscus spp.) growing epiphytically on free-living, benthic macroalgae. The Gambierdiscus are consumed by invertebrates living within the macroalgae, which are preyed upon by small carnivorous fishes, which are then preyed upon by Spanish mackerel (Scomberomorus commerson). We hypothesise that Gambierdiscus and/or Fukuyoa species growing on turf algae are the main source of ciguatoxins entering marine food chains to cause ciguatera on the Great Barrier Reef. The abundance of surgeonfish that feed on turf algae may act as a feedback mechanism controlling the flow of ciguatoxins through this marine food chain. If this hypothesis is broadly applicable, then a reduction in herbivory from overharvesting of herbivores could lead to increases in ciguatera by concentrating ciguatoxins through the remaining, smaller population of herbivores. Modelling the dilution of ciguatoxins by somatic growth in Spanish mackerel and coral trout (Plectropomus leopardus) revealed that growth could not significantly reduce the toxicity of fish flesh, except in young fast- Citation: Holmes, M.J.; Venables, B.; growing fishes or legal-sized fishes contaminated with low levels of ciguatoxins.
    [Show full text]
  • A Review on the Biodiversity and Biogeography of Toxigenic Benthic Marine Dinoflagellates of the Coasts of Latin America
    fmars-06-00148 April 5, 2019 Time: 14:8 # 1 REVIEW published: 05 April 2019 doi: 10.3389/fmars.2019.00148 A Review on the Biodiversity and Biogeography of Toxigenic Benthic Marine Dinoflagellates of the Coasts of Latin America Lorena María Durán-Riveroll1,2*, Allan D. Cembella2 and Yuri B. Okolodkov3 1 CONACyT-Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mexico City, Mexico, 2 Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar-und Meeresforschung, Bremerhaven, Germany, 3 Instituto de Ciencias Marinas y Pesquerías, Universidad Veracruzana, Veracruz, Mexico Many benthic dinoflagellates are known or suspected producers of lipophilic polyether phycotoxins, particularly in tropical and subtropical coastal zones. These toxins are responsible for diverse intoxication events of marine fauna and human consumers of seafood, but most notably in humans, they cause toxin syndromes known as diarrhetic shellfish poisoning (DSP) and ciguatera fish poisoning (CFP). This has led to enhanced, but still insufficient, efforts to describe benthic dinoflagellate taxa using morphological and molecular approaches. For example, recently published information on epibenthic dinoflagellates from Mexican coastal waters includes about 45 species Edited by: from 15 genera, but many have only been tentatively identified to the species level, Juan Jose Dorantes-Aranda, with fewer still confirmed by molecular criteria. This review on the biodiversity and University of Tasmania, Australia biogeography of known or putatively toxigenic benthic species in Latin America, restricts Reviewed by: the geographical scope to the neritic zones of the North and South American continents, Gustaaf Marinus Hallegraeff, University of Tasmania, Australia including adjacent islands and coral reefs. The focus is on species from subtropical Patricia A.
    [Show full text]
  • Phylogenetics of Cladopyxidoiddinophytes
    www.nature.com/scientificreports OPEN Fensomea setacea, gen. & sp. nov. (Cladopyxidaceae, Dinophyceae), is neither gonyaulacoid nor peridinioid as inferred from morphological and molecular data Marc Gottschling1, Maria Consuelo Carbonell‑Moore2, Kenneth Neil Mertens3, Monika Kirsch4, Malte Elbrächter5 & Urban Tillmann6* Dinophyte evolution is essentially inferred from the pattern of thecal plates, and two diferent labelling systems are used for the important subgroups Gonyaulacales and Peridiniales. The partiform hypotheca of cladopyxidoid dinophytes fts into the morphological concepts of neither group, although they are assigned to the Gonyaulacales. Here, we describe the thecate dinophyte Fensomea setacea, gen. & sp. nov., which has a cladopyxidoid tabulation. The cells displayed a Kofoidean plate formula APC, 3′, 4a, 7″, 7C, 6S, 6′′′, 2′′′′, and slender processes were randomly distributed over the echinate or baculate surface. In addition, we obtained rRNA sequences of F. setacea, gen. & sp. nov., but dinophytes that exhibit a partiform hypotheca did not show a close relationship to Gonyaulacales. Character evolution of thecate dinophytes may have progressed from the ancestral state of six postcingular plates, and two more or less symmetrically arranged antapical plates, towards patterns of only fve postcingular plates (Peridiniales) or more asymmetrical confgurations (Gonyaulacales). Based on our phylogenetic reconsiderations the contact between the posterior sulcal plate and the frst postcingular plate, as well as the contact between an antapical plate and the distalmost postcingular plate, do not represent a rare, specialized gonyaulacoid plate confguration (i.e., the partiform hypotheca of cladopyxidoid dinophytes). Instead, these contacts correspond to the common and regular confguration of peridinioid (and other) dinophytes. Over time, evolution has produced impressive biodiversity in the world’s oceans, including multicellular organ- isms, such as animals, and unicellular organisms that make signifcant ecological contributions 1,2.
    [Show full text]
  • Download Date 04/10/2021 08:44:00
    GEOHAB Core Research Project: HABs in Benthic Systems. Item Type Report Publisher IOC and SCOR Download date 04/10/2021 08:44:00 Link to Item http://hdl.handle.net/1834/12437 7 ISSN 1538 182X GEOHAB GLOBAL ECOLOGY AND OCEANOGRAPHY OF HARMFUL ALGAL BLOOMS GEOHAB CORE RESEARCH PROJECT: HABs in Benthic Systems AN INTERNATIONAL PROGRAMME SPONSORED BY THE SCIENTIFIC COMMITTEE ON OCEANIC RESEARCH (SCOR) AND THE INTERGOVERNMENTAL OCEANOGRAPHIC COMMISSION (IOC) OF UNESCO Edited by: E. Berdalet, P. Tester and A. Zingone Contributors (alphabetic order): E. Berdalet, I. Bravo, J. Evans, S. Fraga, S. Kibler, R. M. Kudela, J. Larsen, W. Litaker, A. Penna, P. Tester, M. Vila, A. Zingone THIS REPORT IS BASED ON CONTRIBUTIONS AND DISCUSSIONS BY PARTICIPANTS OF THE GEOHAB OPEN SCIENCE MEETING ON HABS IN BENTHIC SYSTEMS AND MEMBERS OF THE GEOHAB SCIENTIFIC STEERING COMMITTEE Disclaimer: Authors are responsible for the choice and the presentation of the facts contained in signed articles and for the opinions expressed therein, which are not necessarily those of UNESCO and do not commit the Organization. The designations employed and the presentation of material throughout this publication do not im- ply the expression of any opinion whatsoever on the part of UNESCO concerning the legal status of any country, territory, city or area or of its authorities or concerning the delimitation of its frontiers o boundaries. This report may be cited as: GEOHAB 2012. Global Ecology and Oceanography of Harmful Algal Blooms, GEOHAB Core Research Project: HABs in Benthic Systems. E. Berdalet, P. Tester, A. Zin- gone (Eds.) IOC of UNESCO and SCOR, Paris and Newark, 64 pp.
    [Show full text]