Ditribution of Dunes in Ius Chasma, Mars. O
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Eastern Outlet of Valles Marineris: a Window Into the Ancient Geologic and Hydrologic Evolution of Mars
First Landing Site/Exploration Zone Workshop for Human Missions to the Surface of Mars (2015) 1054.pdf The Eastern Outlet of Valles Marineris: A Window into the Ancient Geologic and Hydrologic Evolution of Mars Stephen M. Clifford, David A. Kring, and Allan H. Treiman, Lunar and Planetary Institute/USRA, 3600 Bay Area Bvld., Houston, TX 77058 Over its 3,500 km length, Valles Marineris exhibits enormous range of geologic and environmental diversity. At its western end, the canyon is dominated by the tectonic complex of Noctis Labyrinthus while, in the east, it grades into an extensive region of chaos - where scoured channels and streamlined islands provide evidence of catastrophic floods that spilled into the northern plains [1-4]. In the central portion of the system, debris derived from the massive interior layered deposits of Candor, Ophir and Hebes Chasmas spills into the central trough have been identified as possible lucustrine sediments that may have been laid down in long-standing ice-covered lakes [3-6]. The potential survival and growth of Martian organisms in such an environment, or in the aquifers whose disruption gave birth to the chaotic terrain at the east end of the canyon, raises the possibility that fossil indicators of life may be present in the local sediment and rock. In other areas, 6 km-deep exposures of Hesperian and Noachian-age canyon wall stratigraphy have collapsed in massive landslides that extend many tens of kilometers across the canyon floor. Ejecta from interior craters, aeolian sediments, and possible volcanics (which appear to have emanated from structurally controlled vents along the base of the scarps), further contribute to the canyon's geologic complexity [2,3]. -
1 Orbital Evidence for Clay and Acidic Sulfate Assemblages on Mars Based on 2 Mineralogical Analogs from Rio Tinto, Spain 3 4 Hannah H
1 Orbital Evidence for Clay and Acidic Sulfate Assemblages on Mars Based on 2 Mineralogical Analogs from Rio Tinto, Spain 3 4 Hannah H. Kaplan1*, Ralph E. Milliken1, David Fernández-Remolar2, Ricardo Amils3, 5 Kevin Robertson1, and Andrew H. Knoll4 6 7 Authors: 8 9 1 Department of Earth, Environmental and Planetary Sciences, Brown University, 10 Providence, RI, 02912 USA. 11 12 2British Geological Survey, Nicker Hill, Keyworth, NG12 5GG, UK. 13 14 3 Centro de Astrobiologia (INTA-CSIC), Ctra Ajalvir km 4, Torrejon de Ardoz, 28850, 15 Spain. 16 17 4 Department of Organismic and Evolutionary Biology, Harvard University, 18 Çambridge, MA, USA. 19 20 *Corresponding author: [email protected] 1 21 Abstract 22 23 Outcrops of hydrated minerals are widespread across the surface of Mars, 24 with clay minerals and sulfates being commonly identified phases. Orbitally-based 25 reflectance spectra are often used to classify these hydrated components in terms of 26 a single mineralogy, although most surfaces likely contain multiple minerals that 27 have the potential to record local geochemical conditions and processes. 28 Reflectance spectra for previously identified deposits in Ius and Melas Chasma 29 within the Valles Marineris, Mars, exhibit an enigmatic feature with two distinct 30 absorptions between 2.2 – 2.3 µm. This spectral ‘doublet’ feature is proposed to 31 result from a mixture of hydrated minerals, although the identity of the minerals has 32 remained ambiguous. Here we demonstrate that similar spectral doublet features 33 are observed in airborne, field, and laboratory reflectance spectra of rock and 34 sediment samples from Rio Tinto, Spain. -
Episodic and Declining Fluvial Processes in Southwest Melas Chasma, Valles Marineris, Mars
Journal of Geophysical Research: Planets RESEARCH ARTICLE Episodic and Declining Fluvial Processes in Southwest Melas 10.1029/2018JE005710 Chasma, Valles Marineris, Mars Key Points: J. M. Davis1 , P. M. Grindrod1 , P. Fawdon2, R. M. E. Williams3 , S. Gupta4, and M. Balme2 • Episodic fluvial processes occurred in the southwest Melas basin, Valles 1Department of Earth Sciences, Natural History Museum, London, UK, 2School of Physical Sciences, The Open University, Marineris, Mars, likely during the 3 4 Hesperian period Milton Keynes, Buckinghamshire, UK, Planetary Science Institute, Tucson, AZ, USA, Department of Earth Sciences and • Evidence for multiple “wet and dry” Engineering, Imperial College London, London, UK periods is preserved in the fluvial systems and paleolacustrine deposits • Local Valles Marineris climate likely Abstract There is abundant evidence for aqueous processes on Noachian terrains across Mars; however, supported runoff and precipitation key questions remain about whether these processes continued into the Hesperian as the martian and transitioned from perennial to ephemeral conditions climate became less temperate. One region with an extensive Hesperian sedimentary record is Valles Marineris. We use high-resolution image and topographic data sets to investigate the fluvial systems in the Supporting Information: southwest Melas basin, Valles Marineris, Mars. Fluvial landforms in the basin exist across a wide area, and • Supporting Information S1 some are preserved as inverted channels. The stratigraphy of the basin is complex: Fluvial landforms are preserved as planview geomorphic features and are also interbedded with layered deposits in the basin. The Correspondence to: fluvial morphologies are consistent with formation by precipitation-driven runoff. Fluvial processes in the J. M. -
March 21–25, 2016
FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk, -
Space News Update – June 2019
Space News Update – June 2019 By Pat Williams IN THIS EDITION: • Curiosity detects unusually high methane levels. • Scientists find largest meteorite impact in the British Isles. • Space station mould survives high doses of ionizing radiation. • NASA selects missions to study our Sun, its effects on space weather. • Subaru Telescope identifies the outermost edge of our Milky Way system. • Links to other space and astronomy news published in June 2019. Disclaimer - I claim no authorship for the printed material; except where noted (PW). CURIOSITY DETECTS UNUSUALLY HIGH METHANE LEVELS This image was taken by the left Navcam on NASA's Curiosity Mars rover on June 18, 2019, the 2,440th Martian day, or sol, of the mission. It shows part of "Teal Ridge," which the rover has been studying within a region called the "clay-bearing unit." Credits: NASA/JPL-Caltech Curiosity's team conducted a follow-on methane experiment. The results show that the methane levels have sharply decreased, with less than 1 part per billion by volume detected. That's a value close to the background levels Curiosity sees all the time. The finding suggest the previous week's methane detection, the largest amount of the gas Curiosity has ever found, was one of the transient methane plumes that have been observed in the past. While scientists have observed the background levels rise and fall seasonally, they haven't found a pattern in the occurrence of these transient plumes. The methane mystery continues. Curiosity doesn't have instruments that can definitively say whether the source of the methane is biological or geological. -
Issue 117, March 2009
NNASA’sASA’s LunarLunar ScienceScience InstituteInstitute BeginsBegins WorkWork It has been 40 years since humans fi rst set foot upon the Moon, taking that historic “giant step” for mankind. Although interest in our nearest celestial neighbor has waned considerably, it has never disappeared completely and is now enjoying a remarkable resurgence. The Moon was born when our home planet encountered a rogue planet at its birth, and has since recorded the earliest history of the solar system (a record nearly obliterated on Earth). With four spacecraft orbiting the Moon in the past three years (from four separate nation groups) and a fi fth, Lunar Reconnaissance Orbiter, due to arrive this spring, we are about to remake our understanding of this planetary body. To further contribute to the advancement of our knowledge, NASA recently created a Lunar Science Institute (NLSI) to revitalize the lunar science community and train a new generation of scientists. This spring, NASA has selected seven academic and research teams to form the initial core of the NLSI. This virtual institute is designed to support scientifi c research that supplements and extends existing NASA lunar science programs in coordination with U.S. space exploration policy. The new teams that augment NLSI were selected in a competitive evaluation process that began with the release of a cooperative agreement notice in June 2008. NASA received proposals from 33 research teams. L“We are extremely pleased with the response of the science community and the high quality of proposals received,” said David Morrison, the institute’s interim director at NASA Ames Research Center in Moffett Field, California. -
Preliminary Geologic Analysis of Sedimentary Deposits Exposed in Chaotic Terrains Within the Chryse Region on Mars
Preliminary geologic analysis of sedimentary deposits exposed in chaotic terrains within the Chryse region on Mars 1 1 1 2 German M. Sowe , E. Hauber , R. Jaumann , G. Neukum and the HRSC Co-Investigator Team 1 2 DLR Aerospace Center Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany ([email protected]), Remote Sensing of the Earth and Planets, Freie Universitaet Berlin, Germany Introduction Chaotic terrains on Mars are mainly located in the source regions of the outflow channels East of Valles Marineris. They are supposed to be formed by fluidisation of an incompetent layer underlying material that is more competent. Various states of disruption are observed especially in chasmata where some knobs are present. The High Resolution Stereo Camera (HRSC) on ESA`s Mars Express mission (MEX) provides 3D-images of the Martian surface in high resolution, while the spectrometer Observatoire pour la Minéralogie, l’Eau, les Glaces, et l’Activité (OMEGA/ MEX) produces data characterising the mineralogical composition of the surface. Very high-resolution Mars Orbiter Camera (MOC) images reveal the texture of the layers, whereas some physical properties of the surface layer can be derived from Thermal Infrared Imaging Spectrometer (THEMIS) night time-infrared data. We just started a project to use HRSC-, MOC, OMEGA-, THEMIS- and Mars Orbiter Laser Altimeter (MOLA)-data in order to analyse the stratigraphy of Interior Layered Deposits (ILDs) in the chaotic terrains, from Eos Chasma in the west to Aram Chaos in the east. The layers will be characterised by the following parameters: stratigraphic position and elevation, thickness, layer geometry, albedo, colour, physical properties, and chemical composition. -
Origin of Collapsed Pits and Branched Valleys Surrounding the Ius Chasma on Mars
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-8, 2014 ISPRS Technical Commission VIII Symposium, 09 – 12 December 2014, Hyderabad, India Origin of collapsed pits and branched valleys surrounding the Ius chasma on Mars Gasiganti T. Vamshi, Tapas R. Martha and K. Vinod Kumar National Remote Sensing Centre (NRSC), Hyderabad, India - [email protected], (tapas_martha, vinodkumar_k)@nrsc.gov.in ISPRS Technical Commission VIII Symposium KEY WORDS: Valles Marineris, MEX, HRSC ABSTRACT: Chasma is a deep, elongated and steep sided depression on planetary surfaces. Several hypothesis have been proposed regarding the origin of chasma. In this study, we analysed morphological features in north and south of Ius chasma. Collapsed pits and branched valleys alongwith craters are prominent morphological features surrounding Ius Chasma, which forms the western part of the well known Valles Marineris chasma system on Martian surface. Analysis of images from the High Resolution Stereo Camera (HRSC) in ESA’s Mars Express (MEX) with a spatial resolution of 10 m shows linear arrangement of pits north of the Ius chasma. These pits were initially developed along existing narrow linear valleys parallel to Valles Merineris and are conical in shape unlike flat floored impact craters found adjacent to them. The width of conical pits ranges 1-10 km and depth ranges 1-2 km. With more subsidence, size of individual pits increased gradually and finally coalesced together to create a large depression forming a prominent linear valley. Arrangement of pits in this particular fashion can be attributed to collapse of the surface due to large hollows created in the subsurface because of the withdrawal of either magma or dry ice. -
History of Outflow Channel Flooding from an Integrated Basin System East of Valles Marineris, Mars
47th Lunar and Planetary Science Conference (2016) 2214.pdf History of Outflow Channel Flooding from an Integrated Basin System East of Valles Marineris, Mars. N. Wagner1, N.H. Warner1, and S. Gupta2, 1State University of New York at Geneseo, Department of Geological Sciences, 1 College Circle, Geneseo, NY 14454, USA. [email protected]. 2Earth Science and Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom Introduction: The eastern end of Valles Marineris [6, 7], including all craters with diameters > 200 m in includes diverse terrain formed from extensional forces the count. and collapse due to groundwater release. Capri For the paleohydrology analysis, the topographic Chasma, Eos Chaos, Ganges Chasma, and Aurorae characteristics and dimensions of each channel were Chaos (Fig. 1) were all likely formed due to a measured using the HRSC DTM. Paleo-flow depths combination of these processes [1,2]. were determined based on the observation of trimlines Importantly, this region shows evidence that that mark the margins of individual bedrock terraces. significant volumes of overland water flow travelled These terraces were first identified by [4] and have through this integrated basin system [3,4,5]. been mapped here within every outlet channel that Furthermore, recent studies have suggested that liquid exits an upstream basin. The presence of multiple water was at least temporarily stable here [4]. The bedrock terraces and trimlines indicates that the topographic and temporal relationships between Eos channels were formed by progressively deeper incision Chaos and its associated outflow channels for example and also suggests that bankfull estimates of these demonstrate that the upstream chaotic terrains pre-date channels are gross over-estimates. -
NASA ADS: Stratigraphic Mapping of Hydrated Phases in Western Ius
NASA ADS: Stratigraphic mapping of hydrated phases in Western Ius... http://adsabs.harvard.edu/abs/2013AGUFM.P23F1844C Home Help Sitemap Fulltext Article not available Find Similar Articles Full record info Cull, S.; McGuire, P. C.; Gross, C.; Dumke, A. American Geophysical Union, Fall Meeting 2013, abstract #P23F-1844 Recent mapping with the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) and Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité (OMEGA) has revealed a wide range of hydrated minerals throughout Valles Marineris. Noctis Labyrinthus has interbedded polyhydrated and monohydrated sulfates, with occasional beds of nontronite (Weitz et al. 2010, Thollot et al. 2012). Tithonium Chasma has interbedded poly- and monohydrated sulfates (Murchie et al. 2012); Juventae has poly- and monohydrated sulfates and an anhydrous ferric hydroxysulfate-bearing material (Bishop et al. 2009); and Melas and Eastern Candor contain layers of poly- and monohydrated sulfates (e.g., Roach et al. 2009). Though each chasm displays its own mineralogy, in general, the eastern valles tend to be dominated by layered sequences with sulfates; whereas, the far western valles (Noctis Labyrinthus) has far more mineral phases, possibly due to a wider variety of past environments or processes affecting the area. Ius Chasma, which is situated between Noctis Labyrinthus and the eastern valles and chasmata, also displays a complex mineralogy, with polyhydrated sulfates, Fe/Mg smectites, hydrated silica, and kieserite (e.g. Roach et al. 2010). Here, we present mapping of recently acquired CRISM observations over Ius Chasma, combining the recent CRISM cubes with topographic terrains produced using High Resolution Stereo Camera (HRSC) data from the Mars Express spacecraft. -
Polygonal Impact Craters in Argyre Region, Mars: Implications for Geology and Cratering Mechanics
Meteoritics & Planetary Science 43, Nr 10, 1605–1628 (2008) Abstract available online at http://meteoritics.org Polygonal impact craters in Argyre region, Mars: Implications for geology and cratering mechanics T. ÖHMAN1, 2*, M. AITTOLA2, V.-P. KOSTAMA2, J. RAITALA2, and J. KORTENIEMI2, 3 1Department of Geosciences, Division of Geology, University of Oulu, P.O. Box 3000, FI-90014, Finland 2Department of Physical Sciences, Division of Astronomy, University of Oulu, P.O. Box 3000, FI-90014, Finland 3Institut für Planetologie, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Strasse 10, D-48149 Münster, Germany *Corresponding author. E-mail: [email protected] (Received 20 November 2007; revision accepted 15 April 2008) Abstract–Impact craters are not always circular; sometimes their rims are composed of several straight segments. Such polygonal impact craters (PICs) are controlled by pre-existing target structures, mainly faults or other similar planes of weakness. In the Argyre region, Mars, PICs comprise ∼17% of the total impact crater population (>7 km in diameter), and PICs are relatively more common in older geologic units. Their formation is mainly controlled by radial fractures induced by the Argyre and Ladon impact basins, and to a lesser extent by the basin-concentric fractures. Also basin-induced conjugate shear fractures may play a role. Unlike the PICs, ridges and graben in the Argyre region are mostly controlled by Tharsis-induced tectonism, with the ridges being concentric and graben radial to Tharsis. Therefore, the PICs primarily reflect an old impact basin-centered tectonic pattern, whereas Tharsis-centered tectonism responsible for the graben and the ridges has only minor influence on the PIC rim orientations. -
ORIGIN of the VALLEY NETWORKS on MARS: a HYDROLOGICAL PERSPECTIVE Virginia C. Gulick* Space Science Division, MS 245-3 NASA-Ames
ORIGIN OF THE VALLEY NETWORKS ON MARS: A HYDROLOGICAL PERSPECTIVE Virginia C. Gulick* Space Science Division, MS 245-3 NASA-Ames Research Center Moffett Field, CA 94035 (415) 604-0781 vgulick @ mail.arc.nasa, gov Manuscript accepted for publication in the special Planetary issue of Geomorphology *also at Dept. of Astronomy, New Mexico State University, Las Cruces, NM 2" Abstract The geomorphology of the Martian valley networks is examined from a hydrological perspective for their compatibility with an origin by rainfall, globally higher heat flow, and localized hydrothermal systems. Comparison of morphology and spatial distribution of valleys on geologic surfaces with terrestrial fluvial valleys suggests that most Martian valleys are probably not indicative of a rainfall origin, nor are they indicative of formation by an early global uniformly higher heat flow. In general, valleys are not uniformly distributed within geologic surface units as are terrestrial fluvial valleys. Valleys tend to form either as isolated systems or in clusters on a geologic surface unit leaving large expanses of the unit virtually untouched by erosion. With the exception of fluvial valleys on some volcanoes, most Martian valleys exhibit a sapping morphology and do not appear to have formed along with those that exhibit a runoff morphology. In contrast, terrestrial sapping valleys form from and along with runoff valleys. The isolated or clustered distribution of valleys suggests localized water sources were important in drainage development. Persistent ground-water outflow driven by localized, but vigorous hydrothermal circulation associated with magmatism, volcanism, impacts, or tectonism is, however, consistent with valley morphology and distribution. Snowfall from sublimating ice-covered lakes or seas may have provided an atmospheric water source for the formation of some valleys in regions where the surface is easily eroded and where localized geothermal/hydrothermal activity is sufficient to melt accumulated snowpacks.