Space News Update – June 2019
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Validation of Wind Tunnel Test and Cfd Techniques for Retro-Propulsion (Retpro): Overview on a Project Within the Future Launchers Preparatory Programme (Flpp)
VALIDATION OF WIND TUNNEL TEST AND CFD TECHNIQUES FOR RETRO-PROPULSION (RETPRO): OVERVIEW ON A PROJECT WITHIN THE FUTURE LAUNCHERS PREPARATORY PROGRAMME (FLPP) D. Kirchheck, A. Marwege, J. Klevanski, J. Riehmer, A. Gulhan¨ German Aerospace Center (DLR) Supersonic and Hypersonic Technologies Department Cologne, Germany S. Karl O. Gloth German Aerospace Center (DLR) enGits GmbH Spacecraft Department Todtnau, Germany Gottingen,¨ Germany ABSTRACT and landing (VTVL) spacecraft, assisted by retro-propulsion. Up to now, in Europe, knowledge and expertise in that field, The RETPRO project is a 2-years activity, led by the Ger- though constantly growing, is still limited. Systematic stud- man Aerospace Center (DLR) in the frame of ESA’s Future ies were conducted to compare concepts for possible future Launchers Preparatory Program (FLPP), to close the gap of European launchers [2, 3], and activities on detailed inves- knowledge on aerodynamics and aero-thermodynamics of tigations of system components of VTVL re-usable launch retro-propulsion assisted landings for future concepts in Eu- vehicles (RLV) recently started in the RETALT project [4, 5]. rope. The paper gives an overview on the goals, strategy, and Nevertheless, validated knowledge on the aerodynamic current status of the project, aiming for the validation of inno- and aerothermal characteristics of such vehicles is still lim- vative WTT and CFD tools for retro-propulsion applications. ited to a small amount of experimental and numerical inves- Index Terms— RETPRO, retro-propulsion, launcher tigations mostly on lower altitude VTVL trajectories, e. g. aero-thermodynamics, wind tunnel testing, CFD validation within the CALLISTO project [6, 7, 8]. Other studies were conducted to analyze the aerothermodynamics of a simplified generic Falcon 9 geometry during its re-entry and landing 1. -
The Eastern Outlet of Valles Marineris: a Window Into the Ancient Geologic and Hydrologic Evolution of Mars
First Landing Site/Exploration Zone Workshop for Human Missions to the Surface of Mars (2015) 1054.pdf The Eastern Outlet of Valles Marineris: A Window into the Ancient Geologic and Hydrologic Evolution of Mars Stephen M. Clifford, David A. Kring, and Allan H. Treiman, Lunar and Planetary Institute/USRA, 3600 Bay Area Bvld., Houston, TX 77058 Over its 3,500 km length, Valles Marineris exhibits enormous range of geologic and environmental diversity. At its western end, the canyon is dominated by the tectonic complex of Noctis Labyrinthus while, in the east, it grades into an extensive region of chaos - where scoured channels and streamlined islands provide evidence of catastrophic floods that spilled into the northern plains [1-4]. In the central portion of the system, debris derived from the massive interior layered deposits of Candor, Ophir and Hebes Chasmas spills into the central trough have been identified as possible lucustrine sediments that may have been laid down in long-standing ice-covered lakes [3-6]. The potential survival and growth of Martian organisms in such an environment, or in the aquifers whose disruption gave birth to the chaotic terrain at the east end of the canyon, raises the possibility that fossil indicators of life may be present in the local sediment and rock. In other areas, 6 km-deep exposures of Hesperian and Noachian-age canyon wall stratigraphy have collapsed in massive landslides that extend many tens of kilometers across the canyon floor. Ejecta from interior craters, aeolian sediments, and possible volcanics (which appear to have emanated from structurally controlled vents along the base of the scarps), further contribute to the canyon's geologic complexity [2,3]. -
Espinsights the Global Space Activity Monitor
ESPInsights The Global Space Activity Monitor Issue 2 May–June 2019 CONTENTS FOCUS ..................................................................................................................... 1 European industrial leadership at stake ............................................................................ 1 SPACE POLICY AND PROGRAMMES .................................................................................... 2 EUROPE ................................................................................................................. 2 9th EU-ESA Space Council .......................................................................................... 2 Europe’s Martian ambitions take shape ......................................................................... 2 ESA’s advancements on Planetary Defence Systems ........................................................... 2 ESA prepares for rescuing Humans on Moon .................................................................... 3 ESA’s private partnerships ......................................................................................... 3 ESA’s international cooperation with Japan .................................................................... 3 New EU Parliament, new EU European Space Policy? ......................................................... 3 France reflects on its competitiveness and defence posture in space ...................................... 3 Germany joins consortium to support a European reusable rocket......................................... -
Issue 117, March 2009
NNASA’sASA’s LunarLunar ScienceScience InstituteInstitute BeginsBegins WorkWork It has been 40 years since humans fi rst set foot upon the Moon, taking that historic “giant step” for mankind. Although interest in our nearest celestial neighbor has waned considerably, it has never disappeared completely and is now enjoying a remarkable resurgence. The Moon was born when our home planet encountered a rogue planet at its birth, and has since recorded the earliest history of the solar system (a record nearly obliterated on Earth). With four spacecraft orbiting the Moon in the past three years (from four separate nation groups) and a fi fth, Lunar Reconnaissance Orbiter, due to arrive this spring, we are about to remake our understanding of this planetary body. To further contribute to the advancement of our knowledge, NASA recently created a Lunar Science Institute (NLSI) to revitalize the lunar science community and train a new generation of scientists. This spring, NASA has selected seven academic and research teams to form the initial core of the NLSI. This virtual institute is designed to support scientifi c research that supplements and extends existing NASA lunar science programs in coordination with U.S. space exploration policy. The new teams that augment NLSI were selected in a competitive evaluation process that began with the release of a cooperative agreement notice in June 2008. NASA received proposals from 33 research teams. L“We are extremely pleased with the response of the science community and the high quality of proposals received,” said David Morrison, the institute’s interim director at NASA Ames Research Center in Moffett Field, California. -
Preliminary Geologic Analysis of Sedimentary Deposits Exposed in Chaotic Terrains Within the Chryse Region on Mars
Preliminary geologic analysis of sedimentary deposits exposed in chaotic terrains within the Chryse region on Mars 1 1 1 2 German M. Sowe , E. Hauber , R. Jaumann , G. Neukum and the HRSC Co-Investigator Team 1 2 DLR Aerospace Center Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany ([email protected]), Remote Sensing of the Earth and Planets, Freie Universitaet Berlin, Germany Introduction Chaotic terrains on Mars are mainly located in the source regions of the outflow channels East of Valles Marineris. They are supposed to be formed by fluidisation of an incompetent layer underlying material that is more competent. Various states of disruption are observed especially in chasmata where some knobs are present. The High Resolution Stereo Camera (HRSC) on ESA`s Mars Express mission (MEX) provides 3D-images of the Martian surface in high resolution, while the spectrometer Observatoire pour la Minéralogie, l’Eau, les Glaces, et l’Activité (OMEGA/ MEX) produces data characterising the mineralogical composition of the surface. Very high-resolution Mars Orbiter Camera (MOC) images reveal the texture of the layers, whereas some physical properties of the surface layer can be derived from Thermal Infrared Imaging Spectrometer (THEMIS) night time-infrared data. We just started a project to use HRSC-, MOC, OMEGA-, THEMIS- and Mars Orbiter Laser Altimeter (MOLA)-data in order to analyse the stratigraphy of Interior Layered Deposits (ILDs) in the chaotic terrains, from Eos Chasma in the west to Aram Chaos in the east. The layers will be characterised by the following parameters: stratigraphic position and elevation, thickness, layer geometry, albedo, colour, physical properties, and chemical composition. -
History of Outflow Channel Flooding from an Integrated Basin System East of Valles Marineris, Mars
47th Lunar and Planetary Science Conference (2016) 2214.pdf History of Outflow Channel Flooding from an Integrated Basin System East of Valles Marineris, Mars. N. Wagner1, N.H. Warner1, and S. Gupta2, 1State University of New York at Geneseo, Department of Geological Sciences, 1 College Circle, Geneseo, NY 14454, USA. [email protected]. 2Earth Science and Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom Introduction: The eastern end of Valles Marineris [6, 7], including all craters with diameters > 200 m in includes diverse terrain formed from extensional forces the count. and collapse due to groundwater release. Capri For the paleohydrology analysis, the topographic Chasma, Eos Chaos, Ganges Chasma, and Aurorae characteristics and dimensions of each channel were Chaos (Fig. 1) were all likely formed due to a measured using the HRSC DTM. Paleo-flow depths combination of these processes [1,2]. were determined based on the observation of trimlines Importantly, this region shows evidence that that mark the margins of individual bedrock terraces. significant volumes of overland water flow travelled These terraces were first identified by [4] and have through this integrated basin system [3,4,5]. been mapped here within every outlet channel that Furthermore, recent studies have suggested that liquid exits an upstream basin. The presence of multiple water was at least temporarily stable here [4]. The bedrock terraces and trimlines indicates that the topographic and temporal relationships between Eos channels were formed by progressively deeper incision Chaos and its associated outflow channels for example and also suggests that bankfull estimates of these demonstrate that the upstream chaotic terrains pre-date channels are gross over-estimates. -
(RETALT): Current Status and Outlook of the EU Funded Project on Reusable Launch Vehicles
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Institute of Transport Research:Publications 70th International Astronautical Congress (IAC), Washington D.C., United States, 21-25 October 2019. Copyright ©2019 by DLR. Published by the IAF, with permission and released to the IAF to publish in all forms. IAC-19.D2.4.5x49370 Retro Propulsion Assisted Landing Technologies (RETALT): Current Status and Outlook of the EU Funded Project on Reusable Launch Vehicles Ansgar Marwegea*, Ali Gülhana*, Josef Klevanskia, Johannes Riehmera, Daniel Kirchhecka, Sebastian Karla Davide Bonettib, Jan Vosc, Matthew Jevonsd, Anett Krammere, João Carvalhof a DLR Institute of Aerodynamics and Flow Technology, Linder Höhe, 51147 Köln, Germany, [email protected], [email protected], b Flight Systems Business Unit DEIMOS Space S.L.U., Atmospheric Flight Competence Center, Ronda de Poniente, 19. Edificio Fiteni VI, portal 2, 28760 Tres Cantos (Madrid), Spain cCFS Engineering, EPFL Innovation Park, Batiment-A, 1015 Lausanne, Switzerland dMT Aerospace AG, Future Programs, Franz-Josef-Strauß-Straße 5, D-86153 Augsburg eAlmatech Space & Naval Engineering, EPFL Innovation Park D, CH-1015 Lausanne fAmorim Cork Composite, Rua de Meladas 260, Mozelos VFR 4536 902, Portugal * Corresponding Author Abstract The development and operation of Reusable Launch Vehicles (RLV) are currently changing the global market of space transportation. A main game changer in this field are the technologies of retro propulsion assisted landing, which is a concept of decelerating the vehicle during its return to ground by firing its engines against the velocity vector. To foster a cost-efficient and sustainable global and European launcher market there is not only an urgent need to build up the necessary know-how on state-of-the-art Vertical Take-off Vertical Landing (VTVL) Two Stage To Orbit (TSTO) concepts, but also to go beyond this approach. -
RWTH Aachen University Institute of Jet Propulsion and Turbomachinery
RWTH Aachen University Institute of Jet Propulsion and Turbomachinery DLR - German Aerospace Center Institute of Space Propulsion Optimization of a Reusable Launch Vehicle using Genetic Algorithms A thesis submitted for the degree of M.Sc. Aerospace Engineering by Simon Jentzsch June 20, 2020 Advisor: Felix Wrede, M.Sc. External Advisors: Kai Dresia, M.Sc. Dr. Günther Waxenegger-Wilfing Examiner: Prof. Dr. Michael Oschwald Statutory Declaration in Lieu of an Oath I hereby declare in lieu of an oath that I have completed the present Master the- sis entitled ‘Optimization of a Reusable Launch Vehicle using Genetic Algorithms’ independently and without illegitimate assistance from third parties. I have used no other than the specified sources and aids. In case that the thesis is additionally submitted in an electronic format, I declare that the written and electronic versions are fully identical. The thesis has not been submitted to any examination body in this, or similar, form. City, Date, Signature Abstract SpaceX has demonstrated that reusing the first stage of a rocket implies a significant cost reduction potential. In order to maximize cost savings, the identification of optimum rocket configurations is of paramount importance. Yet, the complexity of launch systems, which is further increased by the requirement of a vertical landing reusable first stage, impedes the prediction of launch vehicle characteristics. Therefore, in this thesis, a multidisciplinary system design optimization approach is applied to develop an optimization platform which is able to model a reusable launch vehicle with a large variety of variables and to optimize it according to a predefined launch mission and optimization objective. -
Information Report
NOT 13 1 SENATE REGULAR SESSION OF 2019-2020 Recorded at the Presidency of the Senate November 19, 2019 INFORMATION REPORT MADE on behalf of the Committee on Economic Affairs (1) and the Committee on Foreign Affairs, Defense and Armed Forces (2) on the policy of the launch vehicles, By Sophie PRIMAS and Mr. Jean-Marie Bockel, senators (1) The commission is composed of: Sophie Primas President; Ms. Elizabeth Lamure MM. Daniel Gremillet, Alain Chatillon, Martial Bourquin, Franck Montaugé, Mrs Anne-Catherine Loisier, Noelle Rauscent, Alain Bertrand, Cécile Cukierman, Mr. Jean-Pierre Decool, Vice-Presidents; Messrs. François Calvet, Daniel Laurent, Mrs Catherine Procaccia Viviane Artigalas, Létard, secretaries; Serge Babary, Anne-Marie Bertrand, Mr. Bouloux Yves Bernard Buis Henry Cabanel, Mrs Anne-Larché Chain, Marie-Christine Chauvin Catherine Conconne Agnes Constant Messrs. Roland Courteau, Pierre Cuypers Marc Daunis, Daniel Dubois, Laurent DUPLOMB Alain Duran, Mrs Dominique Sassone, Françoise Férat, Fabien Gay, Annie Guillemot, MM. Iacovelli Xavier, Jean-Marie Janssens Joel Labbé, Marie-Noëlle Lienemann, Mr. Pierre Louault, Michel Magras, Jean-François Mayet, Franck Menonville, Jean-Pierre Moga, Mrs Patricia Morhet-Richaud, Sylviane Christmas, MM. Jackie Pierre, Michel Raison, Mrs Evelyne Renaud Garabedian, Denise St. Pé, Jean-Claude Tissot. (2) The commission is composed of: Mr. Christian Cambon, President ; Messrs. ALLIZARD Pascal, Bernard Cazeau, Robert del Picchia Ms. Sylvie Goy-Chavent MM. Jean-Noel Guerini, Joel Guerriau, Pierre Laurent, Cedric Perrin Gilbert Roger, Jean-Marc Todeschini, Vice-Presidents; Olivier Cigolotti, Joëlle Garriaud-Maylam, Philippe Paul, Marie-Françoise Perol-Dumont secretaries; Messrs. Jean-Marie Bockel, Gilbert Bouchet, Michel Boutant Olivier Cadic Alain Cazabonne Pierre Charon, Ms. -
Evidence for Multiple Stages of Extensive Low Outflow Channel Floor Resurfacing in Southern Circum-Chryse, Mars
45th Lunar and Planetary Science Conference (2014) 2917.pdf EVIDENCE FOR MULTIPLE STAGES OF EXTENSIVE LOW OUTFLOW CHANNEL FLOOR RESURFACING IN SOUTHERN CIRCUM-CHRYSE, MARS. J.A.P. Rodriguez1,2,V. Gulick1,3, V. Baker4, T. Platz2 and A.G. Fairén5, 1NASA Ames Research Center, Moffett Field, CA, 2Planetary Science Institute, Tucson, AZ ([email protected]), 3 SETI Institute, Mountain view, CA., 4Department of Hydrology, University of Arizona, Tucson, AZ, 5Department of Astronomy, Cornell University, NY. Background. The history of outflow channel activ- located in eastern Valles Marineris, which suggests a ity in southern circum-Chryse is of particular interest history of large-scale sediment and fluid discharge because flows from these channels may have contrib- from Valles Marineris contributing to the formation of uted to episodes of ocean or sea formation on the plan- the lower southern circum-Chryse outflow channels [7]. et’s northern lowlands [1,2]. The relevant channel The inferred paths of discharge are consistent with the floors of these outflow channels mostly occur within observed distribution of the smooth mantles within two distinct dissectional levels [3] that formed mostly extensive zones that exhibit lengths mostly oriented during the Late Hesperian [3]. The higher elevation towards the northern-plains (Fig. 1). channel floor extends from large chaotic terrains that flank extensive zones of subsidence, which led some investigators to hypothesize that catastrophic floods emanated from aquifers [4] or from vast cavernous systems [5-7]. Flood dissection into intra-cryospheric lenses of briny fluids might have led to the formation of systems of secondary chaotic terrains (zones of ouflow channel floor collapse) within these high-level channels [8]. -
IAC-19,D2,4,5,X49370.Pdf
70th International Astronautical Congress (IAC), Washington D.C., United States, 21-25 October 2019. Copyright ©2019 by DLR. Published by the IAF, with permission and released to the IAF to publish in all forms. IAC-19.D2.4.5x49370 Retro Propulsion Assisted Landing Technologies (RETALT): Current Status and Outlook of the EU Funded Project on Reusable Launch Vehicles Ansgar Marwegea*, Ali Gülhana*, Josef Klevanskia, Johannes Riehmera, Daniel Kirchhecka, Sebastian Karla Davide Bonettib, Jan Vosc, Matthew Jevonsd, Anett Krammere, João Carvalhof a DLR Institute of Aerodynamics and Flow Technology, Linder Höhe, 51147 Köln, Germany, [email protected], [email protected], b Flight Systems Business Unit DEIMOS Space S.L.U., Atmospheric Flight Competence Center, Ronda de Poniente, 19. Edificio Fiteni VI, portal 2, 28760 Tres Cantos (Madrid), Spain cCFS Engineering, EPFL Innovation Park, Batiment-A, 1015 Lausanne, Switzerland dMT Aerospace AG, Future Programs, Franz-Josef-Strauß-Straße 5, D-86153 Augsburg eAlmatech Space & Naval Engineering, EPFL Innovation Park D, CH-1015 Lausanne fAmorim Cork Composite, Rua de Meladas 260, Mozelos VFR 4536 902, Portugal * Corresponding Author Abstract The development and operation of Reusable Launch Vehicles (RLV) are currently changing the global market of space transportation. A main game changer in this field are the technologies of retro propulsion assisted landing, which is a concept of decelerating the vehicle during its return to ground by firing its engines against the velocity vector. To foster a cost-efficient and sustainable global and European launcher market there is not only an urgent need to build up the necessary know-how on state-of-the-art Vertical Take-off Vertical Landing (VTVL) Two Stage To Orbit (TSTO) concepts, but also to go beyond this approach. -
Back Matter (PDF)
Index Page numbers in italic refer to Figures. Page numbers in bold refer to Tables. Abalos Colles 257, 258, 259 channel networks 5–6 cratered cones 259, 271, 275 formation 9 layered cones 258, 259, 260, 261, Lethe Vallis 206–226 268–271, 273–275 anastomosing patterns 220 erosion 261, 268 outflow 11–12, 12 Abalos Mensa 258, 267 Sulci Gordii 231, 232–255 ablation, solar, Chasma Boreale 277 chaos regions 12 adsorption 146 interior layered deposits 281, 282, 284, 285, Adventdalen, Spitzbergen 113, 114 286, 289–290, 292, 294 periglacial landforms 118 comparison with Valles Marineris 295–296 comparison with Mars 115–118 Chasma Boreale 257, 258, 259, 267 ice-wedge polygons 121 elevation 262–263, 264, 269 aeolian processes 10, 13, 15 formation 276–277 air-fall accumulation, Chasma Boreale 277 air-fall accumulation 277 alases 133, 143 wind erosion 277 Alba Patera Formation 50 outflow event 275, 277 albedo 5, 6 Chryse Planitia, sublimation landforms, ejecta alcove-channel-apron gully morphology 151, 152, 153 blankets 141 alluvial flow clastic forms gully formation 174 blockfields 92, 93, 95, 98, 107 slope–area analysis 185 circles 92, 94, 103 Earth study sites 183, 184, 186, 189 garlands 92, 103 Amazonian epoch 9 islands 90–91, 92, 108 Amazonis Planitia 5 lobate 93–94, 98, 103, 105 thaw 88 Spitzbergen 116, 117 Aorounga Impact Crater, Chad 33 Thaumasia 76, 77–78, 79, 80, 81,82 Arabia Terra 5 nets 91, 92 Aram Chaos, interior layered deposits 282, 285, 286 protalus lobes and ramparts, Arcadia Formation 50 Spitzbergen 117 Ares Vallis stripes 92, 93–94,