Lichens: the Interface Between Mycology and Plant Morphology Author(S): WILLIAM B

Total Page:16

File Type:pdf, Size:1020Kb

Lichens: the Interface Between Mycology and Plant Morphology Author(S): WILLIAM B Lichens: The Interface between Mycology and Plant Morphology Author(s): WILLIAM B. SANDERS Source: BioScience, Vol. 51, No. 12 (December 2001), pp. 1025-1036 Published by: University of California Press on behalf of the American Institute of Biological Sciences Stable URL: http://www.jstor.org/stable/10.1641/0006- 3568%282001%29051%5B1025%3ALTIBMA%5D2.0.CO%3B2 . Accessed: 22/05/2013 17:34 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. University of California Press and American Institute of Biological Sciences are collaborating with JSTOR to digitize, preserve and extend access to BioScience. http://www.jstor.org This content downloaded from 143.107.247.159 on Wed, 22 May 2013 17:34:00 PM All use subject to JSTOR Terms and Conditions Articles Lichens: The Interface between Mycology and Plant Morphology WILLIAM B. SANDERS here do the lichens belong in the biological Wsciences? They are composed of fungus and alga, but WHEREAS MOST OTHER FUNGI LIVE AS AN neither mycologists nor phycologists have been eager to claim them. In most lichens, it is the fungus that builds the struc- ABSORPTIVE MYCELIUM INSIDE THEIR tural tissues of the thallus (body), as well as the characteris- FOOD SUBSTRATE, THE LICHEN FUNGI tic fungal fruiting structures. Its predominance is such that we often speak loosely of a “species of lichen,” when we mean CONSTRUCT A PLANT-LIKE BODY WITHIN more precisely a species of lichen fungus; the lichen algae, of course, have their own separate scientific names. WHICH PHOTOSYNTHETIC ALGAL SYM- The lichen-forming fungi represent nearly one-fifth of all known species of fungi (Hawksworth et al. 1995), yet they are BIONTS ARE CULTIVATED rarely given adequate attention in mycology. It seems their be- havior is too different from that of other fungi for many my- cologists to feel comfortable with them. Nor is their place in Lichens must first be appreciated in the context of other botany secure. Although lichens, as photosynthetic living fungi. As absorber heterotrophs, the primeval fungi evolved things, fit within the broad biological concept of “plant,”this a simple and enormously successful growth form: the term has been increasingly co-opted for use in a narrower, phy- mycelium. This loosely organized network of branching, fil- logenetic context that excludes all but green algae and their amentous cells (hyphae) is ideally suited to an organism that embryophyte (“land plant”) descendants. The lichens do re- lives inside its food source. The hypha’s exclusively linear ceive brief consideration as a classic example of symbiosis. But growth generates a vast absorptive surface area with very in treating them solely as a community-level ecological phe- modest increases in cell volume. nomenon, we overlook their organismal-level features and Only at the reproductive phase, when spores must be pro- their significance in mycology and botany. duced in quantity and borne away to fresh substrate, do cer- For the fungi, symbiosis with microalgae represents an tain fungi organize tissues and build complex structures that important nutritional innovation, one that evolved inde- emerge from the substrate, such as mushrooms. Such fruit- pendently in a number of different lineages (Wainio 1890, ing structures have diversified tremendously, as reproduction Gargas et al. 1995). These fungi have distinguished themselves and means of dispersal became specialized for exploitation of by a notable accomplishment: their transformation into very different food sources under diverse ecological conditions. “plants.” This metamorphosis is particularly visible in the But it is almost entirely within these reproductive phases more conspicuous macrolichens, in which fungus and alga are generally well-integrated in an often strikingly plant-like, su- perorganismal thallus (Figure 1). Although the structural William B. Sanders ([email protected]) is a research as- tissues are usually fungal, thallus form and function are emer- sociate at the University Herbarium, University of California, Berke- gent properties that have no real parallels among nonlichen ley, CA 94720-2465. He has combined his training in mycology and fungi. These properties the lichen thallus shares instead with in developmental plant morphology to focus on studies of lichen struc- plants. Thus, the lichens are not only of great significance in ture and development. He has lived and carried out research in Cal- the evolution of fungi; they can also offer important insights ifornia, Spain, and Brazil. © 2001 American Institute of Biological into fundamental principles of plant morphology. Sciences. December 2001 / Vol. 51 No. 12 • BioScience 1025 This content downloaded from 143.107.247.159 on Wed, 22 May 2013 17:34:00 PM All use subject to JSTOR Terms and Conditions Articles Figure 2. Lobe of a foliose lichen in longitudinal section. The algal symbiont (Scytonema sp.) is confined to a discrete layer surrounded by tissues of the lichen fungus Figure 1. Leafy (foliose) and shrubby (fruticose) lichens Coccocarpia palmicola (Spreng.) L.Arvidss. and D.Gall. of the genera Parmotrema, Ramalina, Teloschistes, and Scale bar = 20 µm. Heterodermia colonizing a tree branch behind dunes on Santa Catarina Island, Brazil. autonomous lichen colonizes inorganic or indigestible sub- that morphological evolution of nonlichen fungi has oc- strates and often occurs in extreme microhabitats with little curred (Poelt 1986). The vegetative mycelium, by contrast, has to offer the hunter–gatherer of ephemeral food resources. been very highly conserved throughout hundreds of mil- Agriculture has profound effects on the crop as well as on lions of years of evolution. It characterizes most of the sapro- the cultivator. Many of our most important crop plants trophic, parasitic, and mycorrhizal Eumycota (true fungi). The have been genetically selected for so long that they no longer mycelium also evolved independently in phylogenetically resemble any “natural” species, nor could they survive as distinct organisms traditionally treated as fungi, such as the such. Maize (corn), for example, is a crop whose exact ori- oomycetes. These are impressive indications of the mycelium’s gin is controversial, and one that cannot effectively perpet- ideal suitability to the “endotrophic” absorber lifestyle. uate itself outside human cultivation (Mangelsdorf 1974). But when a fungus establishes a symbiosis with a mi- Some lichen algae may be in a comparable situation. Species croalga, the usual spatial relationship of fungus to food source of the unicellular green alga Trebouxia (Figure 3) are the most is turned inside out. Surrounding the diminutive photosyn- common algal symbionts in lichens of temperate and boreal thetic cells, the fungus now finds itself on the outside (Figure climates. Yet Trebouxia’s immediate affinities among non- 2). To maintain and display the incorporated algae effec- lichen algae are unclear, and the genus has been only spo- tively, the fungus must build a protective, functional green- radically reported to occur outside lichen thalli (Tscher- house, usually emergent from the substratum. The hyphal mak-Woess 1978, Bubrick et al. 1984). It has been asserted building block is metamorphosed to produce a variety of that reportedly free-living Trebouxia cells represent transient tissue types, and a complex thallus replaces the mycelium. populations liberated from damaged or degenerated thalli or thallus fragments (Ahmadjian 1988). Such liberated al- Farmers of the fungal kingdom gal cells might then be likened to volunteer plants that es- Symbiosis with microalgae engenders a whole new fungal cape from cultivation. Whatever their origin or degree of sta- lifestyle: It represents nothing less than the advent of agri- bility, free-living Trebouxia populations can play an culture (see also Goward et al. 1994, p. 10). While their non- important role in lichen establishment. They can offer po- symbiotic brethren continue as hunter–gatherers of tran- tential symbionts available to compatible lichen fungi ger- sient carbon sources, the lichen fungi have become indoor minating from spores in the vicinity (Beck et al. 1998). gardeners, cultivating and perpetuating their internalized But not all lichen algae have been so thoroughly domesti- source of food. This agrarian control over food resources cated by the lichen fungus. Examples include algae of the confers both stability and the potential to occupy entirely new closely related genera Trentepohlia, Phycopeltis, and Cephaleu- ecological niches. In human development, agriculture per- ros, which are very important lichen symbionts in tropical and mitted the rise of populous, sedentary, highly complex civi- warm-temperate regions. These algae commonly occur free- lizations by providing a resource base far larger and more re- living as well as lichenized, not infrequently within the same liable than that available from the unmanipulated habitat. On a single leaf (an important substratum for trop- environment (Schwanitz 1966, Heiser 1990). For the fungi,“al- ical lichens), one can sometimes find Cephaleuros
Recommended publications
  • Epiphytic Lichens and Lichenicolous Fungi From
    LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004EPIPHYTIC LJL©2004 LJL©2004 LICHENS LJL©2004 AND LJL©2004 LICHENICOLOUS LJL©2004 LJL©2004 FUNGI LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004FROM LJL©2004 BAHÍA LJL©2004 HONDA LJL©2004 (VERAGUAS, LJL©2004 LJL©2004 PANAMA) LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004
    [Show full text]
  • Price's Scrub State Park
    Price’s Scrub State Park Advisory Group Draft Unit Management Plan STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION Division of Recreation and Parks September 2018 TABLE OF CONTENTS INTRODUCTION ...................................................................................1 PURPOSE AND SIGNIFICANCE OF THE PARK ....................................... 1 Park Significance ................................................................................1 PURPOSE AND SCOPE OF THE PLAN..................................................... 2 MANAGEMENT PROGRAM OVERVIEW ................................................... 7 Management Authority and Responsibility .............................................. 7 Park Management Goals ...................................................................... 8 Management Coordination ................................................................... 9 Public Participation ..............................................................................9 Other Designations .............................................................................9 RESOURCE MANAGEMENT COMPONENT INTRODUCTION ................................................................................. 11 RESOURCE DESCRIPTION AND ASSESSMENT..................................... 12 Natural Resources ............................................................................. 12 Topography .................................................................................. 12 Geology ......................................................................................
    [Show full text]
  • Komunitas Lumut Kerak (Lichens) Di Taman Wisata Alam Suranadi Kabupaten Lombok Barat
    Komunitas Lumut Kerak (Lichens) Di Taman Wisata Alam Suranadi Kabupaten Lombok Barat Fitrianti*1, Faturrahman1, Sukiman1 1Department of Biology, Faculty of Mathematics and Natural Sciences, University of Mataram, Jl. Majapahit No. 62, Mataram 83125, West Nusa Tenggara, Indonesia Tlp/Fax. 0370 646506, email: *[email protected] Abstrak Lumut Kerak merupakan simbiosis antara fungi dan alga atau cyanobacterium. yang bermanfaat sebagai bioresource, biondikator serta studi ekosistem. Dalam penelitian ini, beberapa aspek lumut kerak akan diteliti meliputi komposisi jenis, beserta jumlah individu tiap jenisnya dan nilai keanekaragaman lumut kerak. Penelitian ini bersifat deskriptif eksploratif yang telah dilaksanakan pada bulan Oktober-Desember 2016. Pengambilan data dilakukan menggunakan metode stratified random sampling dengan menempatkan 11 unit sampel berbentuk persegi. Pada tiap unit sampel, dipilih 12 pohon yang masing-masing akan dipasang 4 grid berukuran 50x10 cm. Identifikasi sampel dilakukan dengan mencocokkan (profile matching) ciri morfologi serta hasil spot test dengan buku identifikasi. Nilai keanekaragaman lumut kerak dianalisis dengan menggunakan Lichen Diversity Value serta Indeks Shannon dan Pielou. Dari hasil penelitian, 4 spesies ditemukan dari kelas Lecanoromycetes dan kelas Arthoniomycetes. Satu spesies tidak teridentifikasi. Nilai LDVj tertinggi 13,5 dari unit sampel blok perlindungan. Indeks nilai Shannon sebesar 0,57 dan Pielou sebesar 0,32. Kata kunci : TWA Suranadi, Lumut Kerak, Identifikasi, Nilai Keanekaragaman Abstract Lichen is a symbiosis between fungi and algae or cyanobacterium, which are useful as bioresource, bioindicator and ecosystem studies. In this research, several aspects of lichen will be examined including species composition along with the number of individuals of each species and the value of lichen diversity. This research is descriptive explorative which was conducted in October-December 2016.
    [Show full text]
  • British Lichen Society Bulletin No
    1 BRITISH LICHEN SOCIETY OFFICERS AND CONTACTS 2010 PRESIDENT S.D. Ward, 14 Green Road, Ballyvaghan, Co. Clare, Ireland, email [email protected]. VICE-PRESIDENT B.P. Hilton, Beauregard, 5 Alscott Gardens, Alverdiscott, Barnstaple, Devon EX31 3QJ; e-mail [email protected] SECRETARY C. Ellis, Royal Botanic Garden, 20A Inverleith Row, Edinburgh EH3 5LR; email [email protected] TREASURER J.F. Skinner, 28 Parkanaur Avenue, Southend-on-Sea, Essex SS1 3HY, email [email protected] ASSISTANT TREASURER AND MEMBERSHIP SECRETARY H. Döring, Mycology Section, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, email [email protected] REGIONAL TREASURER (Americas) J.W. Hinds, 254 Forest Avenue, Orono, Maine 04473-3202, USA; email [email protected]. CHAIR OF THE DATA COMMITTEE D.J. Hill, Yew Tree Cottage, Yew Tree Lane, Compton Martin, Bristol BS40 6JS, email [email protected] MAPPING RECORDER AND ARCHIVIST M.R.D. Seaward, Department of Archaeological, Geographical & Environmental Sciences, University of Bradford, West Yorkshire BD7 1DP, email [email protected] DATA MANAGER J. Simkin, 41 North Road, Ponteland, Newcastle upon Tyne NE20 9UN, email [email protected] SENIOR EDITOR (LICHENOLOGIST) P.D. Crittenden, School of Life Science, The University, Nottingham NG7 2RD, email [email protected] BULLETIN EDITOR P.F. Cannon, CABI and Royal Botanic Gardens Kew; postal address Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, email [email protected] CHAIR OF CONSERVATION COMMITTEE & CONSERVATION OFFICER B.W. Edwards, DERC, Library Headquarters, Colliton Park, Dorchester, Dorset DT1 1XJ, email [email protected] CHAIR OF THE EDUCATION AND PROMOTION COMMITTEE: position currently vacant.
    [Show full text]
  • Bat Fungus Takes Its Toll on the Little Guys in Early 2006, a Caver Noticed and Photographed What Appeared to Be a Fine White Mass on Bats in Howe’S Cave in New York
    50:3 N ⁄ D 2009 .. Bat Fungus Takes Its Toll on the Little Guys In early 2006, a caver noticed and photographed what appeared to be a fine white mass on bats in Howe’s Cave in New York. Within a year biologists at the New York State Department of Environmental Conservation documented the condition and gave it the name “white-nose syndrome” (WNS) because the fine white fungal mat appeared around the faces of some bats. In fact, the fungus was found to have invaded deep into the skin and wings of many bats. WNS appears to be responsible for killing large numbers of bats. In some caves the losses are between 90 and 100 percent! The white-nose syndrome has subsequently been identified in other northeastern states: Connecticut, Massachusetts, Maine, and Vermont. This winter WNS was confirmed in New Jersey, Pennsylvania, West Virginia, and Virginia. Recent news reports state that the fungus has been found on bats in the state of Delaware. In an effort to halt or at least restrict the spread of the fungus among bats, the United States Forest Service, Department of Agriculture, and the Fish & Wildlife Service, Department of the Interior, have closed thousands of caves and abandoned mines (where bats are known to hibernate) located on federal lands and requested a voluntary moratorium on recreational activities in caves in 17 states. (Continued on page 7) Above right: Close-up of In This Issue white-nose syndrome. Photo provided by Marc Bosch, U.S. From the President...................... 2 Field Service (Department of Agriculture). Alberta’s Mushroom ..................
    [Show full text]
  • Piedmont Lichen Inventory
    PIEDMONT LICHEN INVENTORY: BUILDING A LICHEN BIODIVERSITY BASELINE FOR THE PIEDMONT ECOREGION OF NORTH CAROLINA, USA By Gary B. Perlmutter B.S. Zoology, Humboldt State University, Arcata, CA 1991 A Thesis Submitted to the Staff of The North Carolina Botanical Garden University of North Carolina at Chapel Hill Advisor: Dr. Johnny Randall As Partial Fulfilment of the Requirements For the Certificate in Native Plant Studies 15 May 2009 Perlmutter – Piedmont Lichen Inventory Page 2 This Final Project, whose results are reported herein with sections also published in the scientific literature, is dedicated to Daniel G. Perlmutter, who urged that I return to academia. And to Theresa, Nichole and Dakota, for putting up with my passion in lichenology, which brought them from southern California to the Traingle of North Carolina. TABLE OF CONTENTS Introduction……………………………………………………………………………………….4 Chapter I: The North Carolina Lichen Checklist…………………………………………………7 Chapter II: Herbarium Surveys and Initiation of a New Lichen Collection in the University of North Carolina Herbarium (NCU)………………………………………………………..9 Chapter III: Preparatory Field Surveys I: Battle Park and Rock Cliff Farm……………………13 Chapter IV: Preparatory Field Surveys II: State Park Forays…………………………………..17 Chapter V: Lichen Biota of Mason Farm Biological Reserve………………………………….19 Chapter VI: Additional Piedmont Lichen Surveys: Uwharrie Mountains…………………...…22 Chapter VII: A Revised Lichen Inventory of North Carolina Piedmont …..…………………...23 Acknowledgements……………………………………………………………………………..72 Appendices………………………………………………………………………………….…..73 Perlmutter – Piedmont Lichen Inventory Page 4 INTRODUCTION Lichens are composite organisms, consisting of a fungus (the mycobiont) and a photosynthesising alga and/or cyanobacterium (the photobiont), which together make a life form that is distinct from either partner in isolation (Brodo et al.
    [Show full text]
  • Fungal Diversity in Lichens: from Extremotolerance to Interactions with Algae
    life Review Fungal Diversity in Lichens: From Extremotolerance to Interactions with Algae Lucia Muggia 1,* ID and Martin Grube 2 1 Department of Life Sciences, University of Trieste, via Licio Giorgieri 10, 34127 Trieste, Italy 2 Institute of Biology, Karl-Franzens University of Graz, Holteigasse 6, 8010 Graz, Austria; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +39-040-558-8825 Received: 11 April 2018; Accepted: 21 May 2018; Published: 22 May 2018 Abstract: Lichen symbioses develop long-living thallus structures even in the harshest environments on Earth. These structures are also habitats for many other microscopic organisms, including other fungi, which vary in their specificity and interaction with the whole symbiotic system. This contribution reviews the recent progress regarding the understanding of the lichen-inhabiting fungi that are achieved by multiphasic approaches (culturing, microscopy, and sequencing). The lichen mycobiome comprises a more or less specific pool of species that can develop symptoms on their hosts, a generalist environmental pool, and a pool of transient species. Typically, the fungal classes Dothideomycetes, Eurotiomycetes, Leotiomycetes, Sordariomycetes, and Tremellomycetes predominate the associated fungal communities. While symptomatic lichenicolous fungi belong to lichen-forming lineages, many of the other fungi that are found have close relatives that are known from different ecological niches, including both plant and animal pathogens, and rock colonizers. A significant fraction of yet unnamed melanized (‘black’) fungi belong to the classes Chaethothyriomycetes and Dothideomycetes. These lineages tolerate the stressful conditions and harsh environments that affect their hosts, and therefore are interpreted as extremotolerant fungi. Some of these taxa can also form lichen-like associations with the algae of the lichen system when they are enforced to symbiosis by co-culturing assays.
    [Show full text]
  • Paul Stamets and Dusty Yao Donate to Mycoflora
    Volume 58:2 March-April 2018 www.namyco.org Paul Stamets and Dusty Yao Donate to Mycoflora by David Rust Photo by Louie Schwartzberg by Louie Photo "We are honored to be able to give this modest contribution to help advance the study of mycology through the Mycoflora initiative.... Live long and sporulate !" We were thrilled to learn of a $10,000 donation by Paul Stamets and Dusty Yao to NAMA to support the North American Mycoflora Project. This contribution builds on the $24,000 matching fund set up by the Mycological Society of America and recent contributions to the matching fund by affiliated clubs and NAMA. Everyone accepts that the North American Mycoflora Project has been stalled since its inception in 2012 due to lack of funding. Substantive gifts like this not only give the work a short-term boost, but also establish a track record when applying for future fundraising. Dr. Tom Bruns at UC Berkeley has estimated that to complete a project of this size, $14-16 million will be needed. The Stamets-Yao gift will be designated for sequencing, offered by the lab of Dr. Todd Osmundson at the University of Wisconsin-La Crosse, and the lab of Dr. Rytas Vilgalys at Duke University in North Carolina. Sequencing is just the beginning, of course, with a next step of uploading data to a public website like GenBank to make this research available. Fungi Perfecti founder and president Paul Stamets has been a dedicated mycologist for over 40 years. Over this time, he has discovered and coauthored several new species of mushrooms, and pioneered countless techniques in the field of mushroom cultivation.
    [Show full text]
  • (Thallus) of a Lichen Photobiont(S) for Survival the Basic Structure of a Lichen Is Like That of the Popular Peanut Butter Cup Candy
    ENY-2051 The Life of Lichen1 James Stevenson, Lara B. Milligan, and Jennifer L. Gillett-Kaufman2 Florida is home to a vast diversity of an amazing group tentacles of a sea anemone. The brightly colored clownfish of organisms called lichens. What are these organisms? acts as a lure that draws other fish into the deadly tentacles. They are neither a plant nor an animal, but they are living, The clownfish’s immunity to the anemone’s toxin allows it breathing, reproducing, and complex organisms, the result a safe place to live while feeding on scraps of food left over of a seemingly impossible relationship. from the anemone. The anemone gets the advantage of a live-in fish lure. There is a saying that goes: “Freddie Fungus and Alice Alga took a lichen for each other,” but it is a bit more complicated than two different organisms, a fungus and an alga, coexist- ing. Lichens are composed of several organisms from three different kingdoms: fungi, plants, and bacteria. Figure 2. Jester lichen (Cladonia leporina). Credits: J. Stevenson, UF/IFAS Lichens are a bit different. The algal component of a lichen Figure 1. Tree trunk with many lichen species. Credits: J. Stevenson, UF/IFAS can survive outside of the relationship, while the fungal component cannot. Therefore, rather than a mutually The association of these separate organisms is often referred beneficial relationship, there are signs that the fungus is to as a mutualistic relationship, defined as two or more actually taking nutrients away from the alga, or parasitizing organisms living in a mutually beneficial arrangement.
    [Show full text]
  • Dunns Creek State Park Draft Unit Management Plan 2018
    Dunns Creek State Park Advisory Group Draft Unit Management Plan STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION Division of Recreation and Parks August 2018 i TABLE OF CONTENTS INTRODUCTION ...................................................................................1 PURPOSE AND SIGNIFICANCE OF THE PARK ....................................... 1 Park Significance ................................................................................1 PURPOSE AND SCOPE OF THE PLAN..................................................... 2 MANAGEMENT PROGRAM OVERVIEW ................................................... 8 Management Authority and Responsibility .............................................. 8 Park Management Goals ...................................................................... 9 Management Coordination ................................................................... 9 Public Participation ............................................................................ 10 Other Designations ........................................................................... 10 RESOURCE MANAGEMENT COMPONENT INTRODUCTION ................................................................................. 11 RESOURCE DESCRIPTION AND ASSESSMENT..................................... 13 Natural Resources ............................................................................. 13 Topography .................................................................................. 13 Geology ......................................................................................
    [Show full text]
  • Ruth B. Kirby Gilchrist Blue Springs State Park
    RUTH B. KIRBY GILCHRIST BLUE SPRINGS STATE PARK Advisory Group Draft Unit Management Plan Department of Environmental Protection Division of Recreation and Parks State of Florida October 2019 Limestone Outcrop 0.07 RUTH B. KIRBY GILCHRIST Successional Hardwood Forest 40.30 BLUE SPRINGS STATE PARK UNIT MANAGEMENT PLAN EXECUTIVE SUMMARY Sinkhole Lake 0.16 Florida’s newest state park, Gilchrist Blue Springs is well-known for Abandoned Field/Pasture 31.57 outstanding water clarity of its springs and renowned for its support of a Burrow Area 0.07 diversity of wildlife species including turtles, fish and invertebrates. Developed 23.41 Utility Corridor 6.33 FACTS AT A GLANCE Natural Communities Acres Alluvial Forest 30.45 Protects six known springs and 1.5 miles of the Santa Fe Bottomland Forset 37.07 River Basin Swamp 0.20 Visitors can enjoy camping, paddling, swimming, and hiking. Floodplain Swamp 24.19 Limestone Outcrop 0.07 Became Florida’s official 175th state park October of 2017 Sandhill 177.37 Successional Hardwood Forest 40.30 The park’s 69,141 annual visitors contributed over $5 mil- Sinkhole 1.23 lion in direct economic impact. Sinkhole Lake 0.16 Located in Gilchrist County Upland Hardwood Forest 26.02 Abandoned Field/Pasture 31.57 Acreage: 402.42 acres Burrow Area 0.07 Developed 23.41 Lease/Management Agreement Number(s): 4814 Utility Corridor 6.33 Use: Single Use Designated Land Use: Public outdoor recreation and con- servation is the designated single use of the property. Agency: Department of Environmental Protection Divison of Recreation and Parks Responsbility: Public Outdoor Recreation and Conserva- tion Sublease: None Encumbrances: See Appendix 1 for details Type of Acquisition(s): Fee-simple, warranty deed with ac- quisition funded through the Florida Forever program, see Appendix 1 for details.
    [Show full text]
  • Unravelling the Phylogenetic Relationships of Lichenised Fungi in Dothideomyceta
    available online at www.studiesinmycology.org StudieS in Mycology 64: 135–144. 2009. doi:10.3114/sim.2009.64.07 Unravelling the phylogenetic relationships of lichenised fungi in Dothideomyceta M.P. Nelsen1, 2, R. Lücking2, M. Grube3, J.S. Mbatchou2, 4, L. Muggia3, E. Rivas Plata2, 5 and H.T. Lumbsch2 1Committee on Evolutionary Biology, University of Chicago, 1025 E. 57th Street, Chicago, Illinois 60637, U.S.A.; 2Department of Botany, The Field Museum, 1400 South Lake Shore Drive, Chicago, Illinois 60605-2496, U.S.A.; 3Institute of Botany, Karl-Franzens-University of Graz, A-8010 Graz, Austria; 4Department of Biological Sciences, DePaul University, 1 E. Jackson Street, Chicago, Illinois 60604, U.S.A.; 5Department of Biological Sciences, University of Illinois-Chicago, 845 West Taylor Street (MC 066), Chicago, Illinois 60607, U.S.A. *Correspondence: Matthew P. Nelsen, [email protected] Abstract: We present a revised phylogeny of lichenised Dothideomyceta (Arthoniomycetes and Dothideomycetes) based on a combined data set of nuclear large subunit (nuLSU) and mitochondrial small subunit (mtSSU) rDNA data. Dothideomyceta is supported as monophyletic with monophyletic classes Arthoniomycetes and Dothideomycetes; the latter, however, lacking support in this study. The phylogeny of lichenised Arthoniomycetes supports the current division into three families: Chrysothrichaceae (Chrysothrix), Arthoniaceae (Arthonia s. l., Cryptothecia, Herpothallon), and Roccellaceae (Chiodecton, Combea, Dendrographa, Dichosporidium, Enterographa, Erythrodecton, Lecanactis, Opegrapha, Roccella, Roccellographa, Schismatomma, Simonyella). The widespread and common Arthonia caesia is strongly supported as a (non-pigmented) member of Chrysothrix. Monoblastiaceae, Strigulaceae, and Trypetheliaceae are recovered as unrelated, monophyletic clades within Dothideomycetes. Also, the genera Arthopyrenia (Arthopyreniaceae) and Cystocoleus and Racodium (Capnodiales) are confirmed asDothideomycetes but unrelated to each other.
    [Show full text]